
MAIDS: Mining Alarming Incidents from Data Streams

(Demonstration Proposal) ∗

Y. Dora Cai§ David Clutter§ Greg Pape§ Jiawei Han† Michael Welge§ Loretta Auvil§

§ Automated Learning Group, NCSA, University of Illinois at Urbana-Champaign, U.S.A.
† Department of Computer Science, University of Illinois at Urbana-Champaign, U.S.A.

ABSTRACT
Real-time surveillance systems, network and telecommuni-
cation systems, and other dynamic processes often generate
tremendous (potentially infinite) volume of stream data. Ef-
fective analysis of such stream data poses great challenges
to database and data mining researchers, due to its unique
features, such as single-scan algorithm, multi-dimensional
online analysis, fast response time, etc.

In this paper we propose to demonstrate our stream data
mining system, MAIDS—Mining Alarming Incidents from Data
Streams, which is a project supported by U.S. Office of
Naval Research and National Science Foundation, jointly
developed by Automated Learning Group, NCSA and De-
partment of Computer Science, the University of Illinois
at Urbana-Champaign. By integration of our most recent
research results on stream data analysis, we have success-
fully developed the MAIDS system within the D2K data
mining framework [19] with the following distinct features:
(1) a tilted time window framework and multi-resolution
model, (2) a stream “data cube” for multi-dimensional anal-
ysis, (3) online stream classification, (4) online frequent pat-
tern mining, (5) online clustering of data streams, and (6)
stream mining visualization. These stream data mining
functions, working together, can successfully mine alarm-
ing incidents from data streams on the fly. The system will
be demonstrated using network intrusion and sensor stream
data sets.

1. INTRODUCTION
Owing to the rapid progress of computer and electronic tech-
nologies, vast amount of stream data have been collected and

∗ The work was supported in part by U.S. Office of Naval
Research, U.S. National Science Foundation NSF IIS-02-
09199 and NSF-IIS-0308215, the University of Illinois, and
an IBM Faculty Award. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the
funding agencies.

made available for data analysis. There are many applica-
tions that require handling data in the form of data streams,
such as sensor data, network traffic flow, time-series data,
stock exchange, telecommunication, Web clicking streams,
weather or environment monitoring, and so on. As indi-
cated by many researchers [2, 3, 9, 11, 10, 5], data streams
are different from the finite, static data sets stored in flat
files or in database systems; they are in high volume, po-
tentially infinite, dynamically changing, and requires fast
response. Moreover, a lot of stream data resides at the
primitive abstraction level, and it is necessary to perform
multi-dimensional analysis on such data to find interesting
patterns at appropriate levels of abstraction and with ap-
propriate dimension combinations. These unique character-
istics have posted a great challenge for data analysis on data
steams.

With years of research into this area, many efficient algo-
rithms have been developed [2, 4, 6, 7] and many prototype
systems for stream query processing have been built, such
as STREAM, Cougar, Aurora, Hancock, Niagara, OpenCQ,
Telegraph, Tradebot, Tribeca, etc. (see an overview in [2]).
However, based on the best of our knowledge, there is no ex-
isting stream data mining system or system prototype that
can integrate multi-dimensional OLAP stream data analy-
sis with long-term multi-resolution stream book-keeping and
perform multiple stream data mining functions, including
stream classification, clustering, frequent pattern analysis,
and so on.

In this demo proposal, we will describe our recent research
and development of the MAIDS system, which integrates
multi-dimensional OLAP stream analysis with data mining
and provides the following major stream analysis functions:
(1) a tilted time window framework and multi-resolution
model, (2) a stream “data cube” for multi-dimensional anal-
ysis, (3) online stream classification, (4) online frequent pat-
tern mining, (5) online clustering of data streams, and (6)
stream mining visualization. The functionality, efficiency
and effectiveness of the MAIDS system will be demonstrated
using network intrusion and sensor stream data sets to show
that the system can successfully mine alarming incidents
from data streams.

The remaining of the paper is organized as follows. Section
2 will present the MAIDS system architecture. Section 3
will describe the major functional components of the sys-
tem. And Section 4 will outline our demonstration plan and



conclude our proposal.

2. SYSTEM ARCHITECTURE
The architecture of MAIDS is shown in Figure 1. On the
top are the incoming data streams from various applications
that produce data streams indefinitely. After data prepro-
cessing, such as data formatting, normalization, and trans-
formation, the data streams are simultaneously sent to the
following four modules:(1) Stream Query Engine, (2) Stream
Data Classifier, (3) Stream Pattern Finder, and (4) Stream
Cluster Analyzer, which will generate query results, classifi-
cation models, frequent patterns, and data clusters, respec-
tively, and these results will be output to users in various
forms including graphs and charts accomplished by Stream
Mining Visualizer.

Figure 1: MAIDS Architecture

There are several unique features of the MAIDS system.

First, the system adopts a flexible tilted time window frame-
work throughout all of the functional modules. The idea of
tilted time window has been seen in quite a few studies in
stream data analysis [2, 4]. It is proposed based on the
following philosophy. In stream data analysis, both of the
recent data and historical data are required, but the recent
data are usually more important than the historical data.
People are often interested in recent changes at a fine scale,
but long term changes at a coarse scale. Naturally, time
can be registered at different levels of granularity. The most
recent time can be registered at the finest granularity; the
more distant time can be registered at the coarser granular-
ity; and the level of coarseness depends on the application
requirements. By aggregating data to a coarser granular-
ity for the distant time period, we can substantially save
storage space and computation time, but still preserve im-
portant information.

The titled time window, first designed in our research in

[4], and later further developed in [1], proposed a flexible
framework for a multi-resolution model. Based on the appli-
cations, it may adopt a few models, including (1) natural ti-
tled time window, (2) logarithmic titled time window, and (3)
pyramidal titled time window [4, 1]. The current implemen-
tation of MAIDS adopts the natural titled time window, that
uses the natural time to configure the time granularity, such
as second, minute, quarter, hour, day, etc. However, being
implemented in the object-oriented programming method-
ology, this tilted time window module can be changed easily
into other models based on the application requirements.

The natural titled time window is implemented using circu-
lar queues. Each queue is for a specific time granularity. For
example, we may use six time granularities: minute, quar-
ter, hour, day, month, and year to store aggregates from
the finest level to the coarsest level. The titled time win-
dow is self-maintained automatically. Whenever reaching
the boundary of a time granularity, the aggregates stored in
a finer granularity level are summarized and propagated to
a coarser granularity level. For example, when time reaches
9:15AM, all counts accumulated during 9:01AM–9:15AM
would be summarized and propagated to the first quarter
slot in the quarter granularity level. This technique has
substantially compressed the data without loosing impor-
tant information, and thus has made possible the long-run
analysis on the data stream, because it dramatically reduces
the processing requirement on memory and CPU.

Second, it facilitates multi-dimensional analysis using a stream
cube architecture [4] which will be detailed in the next sec-
tion. This architecture ensures that online analytical pro-
cessing can be performed on stream data in a similar way
as OLAP in data cubes.

Third, the architecture facilitates the integration of multi-
ple stream mining functions into one platform so that multi-
ple mining functions can cooperate to discover patterns and
alarming incidents in real time.

MAIDS is a general-purpose tool for data stream analysis
and is designed to process high rate and multi-dimensional
stream data. MAIDS can interface to data streams gener-
ated by various types of devices. It can be used in many
applications, such as network intrusion detection, telecom-
munication data flow analysis, credit card flaw prevention,
Web click streams analysis, financial data trend prediction,
and so on. MAIDS is built on the D2K (Data to Knowl-
edge) framework [19] and has become a new component
of D2K. D2K is developed by Automated Learning Group
(http://alg.ncsa.uiuc.edu), NCSA, in the University of Illi-
nois at Urbana-Champaign. D2K is a rapid, flexible data
mining and machine learning system that integrates ana-
lytical data mining methods for prediction, discovery, and
deviation detection, with data and information visualiza-
tion tools. It offers a visual programming environment that
allows users to connect programming modules together to
build data mining applications and supplies a core set of
modules, application templates, and a standard API for
software component development. All D2K components are
written in Java for maximum flexibility and portability.

3. MAJOR FUNCTIONAL COMPONENTS



The MAIDS system consists of the following systems compo-
nents: (1) Stream Query Engine, (2) Stream Data Classifier,
(3) Stream Pattern Finder, (4) Stream Cluster Analyzer, and
(5) Stream Mining Visualizer. Each of these functional mod-
ules will be outlined in this section.

3.1 Stream Query Engine
Stream Query Engine serves as a powerful stream query pro-
cessor that supports many query options, including single-
dimensional vs. multi-dimensional queries, ad-hoc vs. con-
tinuous queries, drill-down vs. roll-up OLAP queries, point
vs. duration time queries, and exact vs. approximate queries.
The query result can be either presented in a report format
or visualized in a chart or a graph. Figure 2 shows the visu-
alization of a three-hour continuous query that requests the
dimensions Protocol Type and Time for the network traffic
stream data. The Time dimension has been presented in the
tilted time window. Three time granularities (minute, quar-
ter and hour) can be easily identified by three spectrums of
colors.

Figure 2: Query With Time Dimension

There are several novel features in the design and implemen-
tation of Stream Query Engine: (1) It implements a largely
virtual, dynamically constructed and incrementally updated
stream data cube using the H-tree data structure described
in [13, 4], and the various kinds of stream queries are pro-
cessed using this cube structure; (2) due to the nature of
huge volume in data streams, it is unrealistic and unneces-
sary to construct and materialize a full cube. Thus only two
layers of the cube: (i) m-layer (Minimum Interest Layer),
and (ii) o-layer (Observation Layer), and the internal nodes
of the tree along the popular querying path between these
two layers are materialized; (3) queries that fall outside of
the popular querying path are answered by minimal compu-
tation on target cells from those reachable at the run-time;
and (4) each tree node in the H-Tree stores a tilted time
window that tracks the aggregates (count, sum, max, min)
in different time slots for the node.

3.2 Stream Data Classifier
Stream Data Classifier constructs classification models dy-
namically based on the current as well as historical stream

data collected in the tilted time window. The model con-
struction follows the philosophy of the data classification.
In particular, we have integrated Naive Bayes algorithm [17,
20] with the new features of stream data analysis. A user-
friendly interface has been built in this module that can dis-
play the list of models and the predicted alarming events.
Figure 3 is a screen capture of Stream Data Classifier. The
list of models generated at various time is shown on the left.
The variable statistics for the selected model is displayed as
pie charts in the center. And the conclusion probability for
the selected variables is presented on the right.

Figure 3: Stream Classification Models

Several distinct features can be identified in our design and
implementation of Stream Data Classifier, as illustrated be-
low: (1) An efficient data structure, called AVC-list [12] (i.e.,
Attribute-Value-Class Label list), has been constructed dy-
namically and maintained incrementally to accumulate sin-
gle variable statistics for the Naive Bayesian classifier, and
a tilted time window is associated with the each node in the
AVC-list, (2) the classification models can be built automati-
cally on the requested time horizons and at the specified time
intervals, (3) we have applied many techniques in the model
building to promote model accuracy, such as multi-model
evaluation and boosting, and (4) the model constructed can
be immediately applied to predict events for the incoming
data streams.

3.3 Stream Pattern Finder
Data streams may contain many hidden patterns, such as
frequent patterns and sequential patterns, which can be used
to discover unusual incidents by comparing the current pat-
terns with certain previous durations based on the patterns
stored in the tilted time window. A pattern mining module,
Stream Pattern Finder, has been constructed to discover
frequent patterns (implemented and tested) and sequential
patterns (under the research and development stage). The
underlying algorithm essentially adopts the extended fre-
quent pattern growth approach [14, 8] which discovers fre-
quent patterns for the interested sets of items specified by
users. This philosophy is somewhat different from counting
approximate frequent pairs in data streams [16, 8], however,
it provides an alternative angle to examine the problem.



Since a user may have knowledge about the set of inter-
ested items to be traced, this approach will derive precise
patterns of user’s interest. Further extension of this frame-
work may handle additional frequent patterns beyond user-
specified items with good approximation bound. This mod-
ule dynamically constructs a FP-tree while scanning data
streams. Each node in the tree contains a tilted time win-
dow that accumulates counts of the frequent patterns for
each time slot. The frequent patterns and association (or
correlation) rules for a requested time horizon can be ex-
tracted and visualized using the FP-tree structure [14]. The
extension of the method for mining sequential patterns is
under active investigation and experiment. Figure 4 shows
the association rules discovered for a 5-minute period. In
this 3-D bar chart, the height of bars represents the rule’s
Support, and the color of bars represents the rule’s Confi-
dence.

Figure 4: Stream Association Rules

3.4 Stream Cluster Analyzer
Stream Cluster Analyzer dynamically performs cluster anal-
ysis based on the current data set as well as those stored in
different slots in the tilted time window. This framework
is different from steam clustering method proposed in [11,
18], but is essentially based on the CluStream framework
investigated in our research [1]. The method constructs
clusters in two steps: (1) micro-clustering, and (2) macro-
clustering. The first step dynamically builds a hierarchical
CF-Tree (Clustering Feature Tree) similar to the BIRCH al-
gorithm [21]. However, in our CluStream algorithm, each
entry of a leaf node in the CF Tree stores a tilted time win-
dow, each time slot of the tilted time window holds a Clus-
tering Feature Vector, and the entries in the leaf nodes form
micro-clusters. The integration of CF-Tree with tilted time
window has made it possible that the hierarchical CF-Tree
is maintained in a stream data environment and the time-
series information is stored along with clustering features.
The second step of the clustering process uses a modified K-
Means algorithm [15]. The macro-clusters are computed for
a requested time horizon. The computation applies several
techniques, such as seed sampling, distance-based partition,
and weighted centroid adjustment. A major advantage of
this model is that clustering can be performed based on dif-
ferent weighting factors of different time durations, and one

can compare the clusters at different time durations and dis-
cover the evolving behaviors and contrasts of the clusters at
different times. Stream Cluster Analyzer is currently at the
refinement and testing stage, based on the work done in [1].

3.5 Stream Mining Visualizer
We have developed an effective stream query and mining
interface with a set of visualization tools (some of them
have been displayed in previous subsections). These inter-
faces and visualization modules will be further refined or
redesigned based on user’s feedbacks and application sce-
narios. The distinct features of the MAIDS Stream Mining
Visualizer are that they can be served as continuous queries
and continuous mining displays. The models, rules, clusters
and OLAP results will change from time to time for con-
tinuous updates. They are the watchdogs of the dynamic
streaming system and they will trigger alarms and giving
messages when some alarming incidents are being detected
based on the ongoing stream data.

4. CONCLUSIONS AND DEMONSTRATION
PLAN

The MAIDS system is a joint research and development ef-
fort by Automated Learning Group, NCSA and Department
of Computer Science in the University of Illinois at Urbana-
Champaign. It is based on the integration of our fruitful
research results on data mining, data warehousing, and es-
pecially on recent stream data mining for finding dynamics
and alarming incidents in multi-dimensional stream data.
It is a special component of D2K for stream data analysis.
Please visit http://maids.ncsa.uiuc.edu for detailed informa-
tion about MAIDS.

The MAIDS project has achieved great progress. Based on
our current testing, the MAIDS system has shown excel-
lent real-time performance on several major functions. We
expect to have an impressive demo ready for SIGMOD’04
conference. We plan to demo five modules of MAIDS in the
coming SIGMOD conference: Stream Query Engine, Stream
Data Classifier, Stream Pattern Finder, Stream Cluster An-
alyzer, and Stream Mining Visualizer.

We are going to use KDDCup99 data to simulate network
data streams and show how MAIDS can monitor the network
flow and detect the network intrusions. We will also bring
a data set from a real application, with minor preprocess to
remove sensitive private identities, to show how MAIDS can
be used in the real world, and how business companies can
get benefit from it.

In the demonstration, visitors are encouraged to play with
MAIDS and explore the features by themselves. We will also
present our experience and lessons from our research and
implementation using posters.

5. REFERENCES
[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
Proc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), Berlin, Germany, Sept. 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.



In Proc. 2002 ACM Symp. Principles of Database
Systems (PODS’02), pages 1–16, Madison, WI, June
2002.

[3] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Record, 30:109–120, 2001.

[4] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang.
Multi-dimensional regression analysis of time-series
data streams. In Proc. 2002 Int. Conf. Very Large
Data Bases (VLDB’02), pages 323–334, Hong Kong,
China, Aug. 2002.

[5] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data
streams. In Proc. 2002 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’02), pages 61–72,
Madison, Wisconsin, June 2002.

[6] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proc. 2000 ACM SIGKDD Int. Conf.
Knowledge Discovery in Databases (KDD’00), pages
71–80, Boston, MA, Aug. 2000.

[7] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying
and mining data streams: You only get one look (a
tutorial). In Proc. 2002 ACM-SIGMOD Int. Conf. on
Management of Data (SIGMOD’02), page 635,
Madison, WI, June 2002.

[8] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu.
Mining frequent patterns in data streams at multiple
time granularities. In H. Kargupta, A. Joshi,
K. Sivakumar, , and Y. Yesha, editors, Data Mining:
Next Generation Challenges and Future Directions.
AAAI/MIT Press, 2003.

[9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In Proc.
2001 Int. Conf. on Very Large Data Bases
(VLDB’01), pages 79–88, Rome, Italy, Sept. 2001.

[10] S. Guha, N. Koudas, and L. Shim. Data streams and
historgrams. In Proc. ACM Symposium on Theory of
Computing (STOC’00), pages 471–475, Crete, Greece,
July 2001.

[11] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In Proc. IEEE Symposium
on Foundations of Computer Science (FOCS’00),
pages 359–366, Redondo Beach, CA, 2000.

[12] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient
clustering algorithm for large databases. In Proc. 1998
ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’98), pages 73–84, Seattle, WA, June 1998.

[13] J. Han, J. Pei, G. Dong, and K. Wang. Efficient
computation of iceberg cubes with complex measures.
In Proc. 2001 ACM-SIGMOD Int. Conf. Management
of Data (SIGMOD’01), pages 1–12, Santa Barbara,
CA, May 2001.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. 2000
ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’00), pages 1–12, Dallas, TX, May 2000.

[15] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, New York,
2001.

[16] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. 2002 Int. Conf.
Very Large Data Bases (VLDB’02), pages 346–357,
Hong Kong, China, Aug. 2002.

[17] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[18] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani. High-performance clustering of
streams and large data sets. In Proc. 2002 Int. Conf.
Data Engineering (ICDE’02), San Fransisco, CA,
April 2002.

[19] M. Welge, L. Auvil, A. Shirk, C. Bushell, P. Bajcsy,
D. Cai, T. Redman, D. Clutter, R. Aydt, and
D. Tcheng. Data to knowledge (D2K), A rapid
application development environment for knowledge
discovery in databases. In Technical Report, 2003.

[20] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 2000.

[21] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
an efficient data clustering method for very large
databases. In Proc. 1996 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’96), pages 103–114,
Montreal, Canada, June 1996.


