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Cellular automata are simple models of computation which exhibit fascinatingly
complex behavior. They have captured the attention of several generations of
researchers, leading to an extensive body of work. Here we trace a history of
cellular automata from their beginnings with von Neumann to the present day.
The emphasis is mainly on topics closer to computer science and mathematics
rather than physics, biology or other applications. The work should be of interest to
both new entrants into the field as well as researchers working on particular
aspects of cellular automata.
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1. INTRODUCTION

Cellular automata were originally pro-
posed by John von Neumann as formal
models of self-reproducing organisms.
The structure studied was mostly on
one- and two-dimensional infinite grids,
though higher dimensions were also
considered. Computation universality
and other computation-theoretic ques-
tions were considered important. See
Burks [1970] for a collection of essays
on important problems on cellular au-
tomata during this period. Later, physi-
cists and biologists began to study cellu-
lar automata for the purpose of
modeling in their respective domains. In
the present era, cellular automata are
being studied from many widely differ-
ent angles, and the relationship of these

structures to existing problems are be-
ing constantly sought and discovered.

Next, we would like to clarify the
purpose of this survey as compared to
other related work. There is an excel-
lent survey of CA by A.R. Smith III
[Smith III 1976]. However, it is more
than twenty years old. There are also
two other surveys [Vollmar 1977; Ala-
dyev 1974] which are quite old. Cur-
rently, it is perhaps quite impossible to
survey the whole of CA research. There
is a good survey on computation theo-
retic aspects of CA by Culik II et al.
[1990]. There are also books on CA
[Garzon 1995; Chaudhuri et al. 1997;
Wolfram 1986] which cover specific top-
ics of CA research. In this survey we try
to cover the major questions asked
about CA as opposed to the use of CA in
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modeling of natural phenomena. We fo-
cus on topics which are closer to com-
puter science and mathematics rather
than physics or other applications. We
believe that such a survey has not been
previously attempted, and will prove to
be useful to both fresh entrants into this
field and to experts working on particu-
lar aspects of CA. However, we would
like to point out that any review of CA
is bound to be incomplete. We have been
motivated in choosing topics based on
our knowledge and interest. The afore-
mentioned surveys by A.R. Smith III
and Culik II et al. have helped us
greatly in preparing this work. The bib-
liography associated with this article is
not comprehensive, though we believe
that there are sufficient links to almost
all aspects of CA. Additional bibliogra-
phies can be found in the books men-
tioned above. An online bibliography on
CA is also available at

http://alife.santafe.edu/alife/topics/
cas/ca-faq/ca-faq.bib

At this point we would like to make a
few remarks on the problem of trying to
write a history of any scientific topic. A
chronological ordering of ideas is diffi-
cult to adhere to, since an idea may be
introduced at some point in time, is
pursued vigorously for a while, and may

disappear from the literature for quite
some time, only to be taken up again at
a later point. There is almost no final
statement on any idea. A thematic
grouping of topics is possible and is
mostly used. However, in such an ap-
proach one might have to include work
from different decades under the same
group, and this presents its own prob-
lems. The scientific temper varies
across time, which leads to a distinct
difference in the approach to a problem.
So even though the topic may be the
same, the method and questions may
vary considerably. In this paper we try
to take a chronological view of work
done in the area of cellular automata
over the past forty years, and we order
the topics based upon their first appear-
ance in the literature. We have divided
the work into three broad categories.

—Classical: The themes which were
more or less influenced by the initial
work of von Neumann.

—Modern: The themes which were in-
fluenced by the work of Wolfram on
one hand, and by developments of
other branches of computer science on
the other hand. In this part we re-
strict ourselves to topics closer to
computer science than physics.

—Games: Apart from the Game of Life
and s-game we have also included the
Firing Squad problem in this section.
The problem formulation of the Firing
Squad problem has more of the flavor
of a game than a synchronization
problem. Also, this problem somehow
does not fit into any of the above two
classes.

In the rest of the article we abbreviate
both cellular automata and cellular au-
tomaton by CA. We consider different
varieties of CA, but the exact structure
meant will always be clear from the
context.
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2. CLASSICAL

2.1 Beginnings

The simplest description of a CA is a
one-dimensional array (possibly two-
way infinite) of cells. Time is discrete,
and at each time point each cell is in
one of a finite set of possible states. The
cells change state at each clock tick, and
the new state is completely determined
by the present state of the cell and its
left and right neighbors. The function
(called the local rule) which determines
this change of state is the same for all
cells. The automaton does not have any
input, and hence is autonomous. The
collection of cell states at any time point
is called a configuration or global state
of the CA, and describes the stage of
evolution of the CA. At time t 5 0, the
CA is in some initial configuration, and
henceforth proceeds deterministically
under the effect of the local rule, which
is applied to each cell at each clock tick
(see Figure 1).

Application of the local rule to each
cell of the CA results in a transforma-
tion from the set of all configurations
into itself. This transformation is called
the global map, or global rule of the CA.
This is a very simple description of a
CA, although it is perhaps the most
studied structure.

The automaton originally described
by von Neumann is a two-dimensional

infinite array of uniform cells, where
each cell is connected to its four orthog-
onal neighbors (see Figure 2).

This was originally called a cellular
space, but the term CA is more popular
now. It was introduced by von Neumann
[1966] as a formal model of self-repro-
ducing biological systems. Key ideas of
the construction can be traced back
even earlier to his talk on modeling of
biological systems [von Neumann
1963a]. The main purpose of von Neu-
mann was to bring the rigor of axiom-
atic and deductive treatment to the
study of “complicated” natural systems.
The basic idea of a self-reproducing au-
tomaton is presented in von Neumann
[1963a], and is a beautiful adaptation of
the idea of constructing a universal Tur-
ing Machine (TM). Here we present a
brief sketch of the idea.

2.1.1 Self-Reproducing Automata. First,
let us note that it is not very difficult to
imagine the following two kinds of au-
tomata. The first kind is an automaton
A which when given an instruction I can
use it to construct an automaton (or
machine) which is encoded by I. In fact,
I can be considered to be composed of
simpler instructions, each of which is
used to construct the basic parts along
with instructions which specify how to
put these basic parts together. The sec-
ond automaton (say B) is even simpler.
It copies an instruction I into the con-

Figure 1. Evolution of an 1-d CA.
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trol part of some other automaton. Now
consider A and B along with a control
automaton C, which operates as follows.
Given an instruction I, C runs A to
create an automaton A1 corresponding
to I and then runs B to copy the instruc-
tion I into the control part of A1. Let D
consist of A, B and C. Then, clearly, D is
an automaton which requires an in-
struction I to operate. Let ID be the
instruction which codes D. Let E be an
automaton formed from D by copying ID
into the control portion of D. Now it is
easy to see that E constructs itself, and
hence is capable of self-reproduction.
This simple description ignores the cod-
ing and other formal details. These
were later formalized by von Neumann
[1966] himself, in which he describes a
cellular space where each cell can be in
any one of 29 possible states. The struc-
ture is capable of non-trivial self-repro-
duction in the sense that it can support
a universal computer. The process of
self-reproduction can be visualized as
follows [Smith III 1976]. Initially, the
machine is placed in an environment
where in each direction there is any
amount of hardware available (a “hard-

ware soup”). Following local rules, the
initial configuration goes through a se-
quence of steps whereby it extends an
“arm” into the hardware soup and cre-
ates a copy of itself, and then detaches
the newly created machine from itself.
The original proof of von Neumann was
simplified and reformulated several
times [Arbib 1966; Banks 1970] (see
also Smith III [1976]).

The notion of self-reproduction intro-
duced by von Neumann is asexual, in
the sense that the offspring is derived
from a single parent. In this form of
reproduction, the offspring is con-
structed from a single “genetic” tape
which contains an encoding of the ma-
chine. Sexual reproduction have also
been considered, and Vitanyi [1973]
contains a description of a machine
which constructs an automaton from
two “genetic” tapes, where the resulting
offspring is not an exact copy of either
parent.

It is important to note that a self-
reproducing machine is to be nontrivial,
in the sense of being capable of univer-
sal computation. Otherwise, a 1-d array
with a single quiescent cell and a local
rule copying this cell to the left and
right neighbors can be considered to be
self-reproducing. This brings up the
question of CA capable of universal
computation and universal construc-
tors. If a machine can construct a set of
automata, then it is called an universal
constructor over this set. If this set con-
tains the automaton itself, then it is
self-reproducing. Before we discuss the
question of universal computation, we
briefly mention the general problem of
pattern replication.

Amoroso and Cooper have described
in an interesting paper [Amoroso and
Cooper 1971] 1-d and 2-d CA, which
after many steps finitely reproduces its
initial pattern. The rule used is very
simple. For 1-d, it is the sum of the left
neighbor and itself modulo k, where k is
the number of states a cell can assume.
For 2-d, the rule is modified to include
the neighbor vertically above the cell. A

Figure 2. A 2-d CA with von Neumann (orthog-
onal) neighbourhood.
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generalisation to higher dimensions is
conjectured in Amoroso and Cooper
[1971] and proved in Ostrand [1971].
Moreover, the pattern “reproduces” in a
quiescent environment if k is prime.
The CA rule used is linear, and is one of
the early examples of linear CA.

2.1.2 Computation Universality. It
is not very difficult to see that a CA is
capable of universal computation. The
basic idea is that a CA can perform a
step by step simulation of a single tape
Turing Machine (TM). For convenience,
assume that the tape of the TM is two-
way infinite. Each cell of the simulating
CA will have two components. The first
component stores the tape symbol of the
corresponding cell of the TM tape, and
the second component indicates
whether the head is scanning the corre-
sponding cell of the TM. Then, from the
TM’s transition function, it is easy to
derive the local rule for the CA. The
essential idea is the following.

(1) If the head is not scanning the cell
or its left or right neighbor, the con-
tents of the cell do not change.

(2) If the head is scanning the left cell
and there is a right move, then in
the next step the head scans the
present cell. Similarly for the other
direction.

(3) If the head is scanning the cell, then
at the next clock tick, the contents
of the first component of the cell is
updated and the head does not scan
the cell anymore.

Note that this step for step simulation
of TM by CA destroys the inherent par-
allelism of CA. There have been at-
tempts to bring out the power of this
parallelism [Smith III 1972]. Later
work has shown how to simulate TM by
reversible CA [Dubacq 1995]. There ex-
ists a universal CA AU with 14 states,
which can simulate step by step any CA
whose initial configuration and local
rule are encoded as an initial configura-
tion of AU (see Culik II et al. [1990]).

Computation universality of one-way
CA and totalistic CA (see Section 2)
have also been proved [Culik II et al.
1990]. The problem of deciding whether
a CA is computation-universal based on
the local rule is undecidable, since oth-
erwise the problem of deciding whether
a Turing machine is universal would be
decidable. See Martin [1994] for addi-
tional work on universal CA and its
S-m-n form.

2.1.3 CA Tradeoffs. An early techni-
cal question regarding CA was the dif-
ferent kinds of tradeoffs

—between the size of cell (number of
possible states) and the size of the
neighborhood and

—between the size of cell and the speed
of computation.

The idea of tradeoff is an immediate
consequence of reformulation of von
Neumann’s original proof of self-repro-
ducing machines. The original CA de-
scribed by von Neumann used 29 states
per cell. Codd [1968] gave an 8-state
machine. Arbib [1966] provided a sim-
ple description where each cell can exe-
cute a short program–and hence the
number of states per cell is large. Banks
[1970] provided a 4-state cell which
could be used to build a self-reproducing
CA. Each of these constructions are for
2-d infinite CA and uses the so-called
von Neumann or 5-cell (orthogonal ones
and itself) neighborhood.

Generalization of these tradeoff ideas
for construction and computation uni-
versal machines is natural and has been
studied in some depth. The simplest
known construction universal machine
with 4 states per cell and von Neumann
neighborhood is that of Banks [1970].
He has also described the simplest
known computation universal 2-d CA (3
states per cell and von Neumann neigh-
borhood). However, for 9 cell or unit
square neighborhood (also called Moore
neighborhood), 2 states per cell is suffi-
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cient and a particular local rule called
“Game of Life” (see Section 3) has been
shown to be computation-universal
[Smith III 1976]. Smith III [1971] pro-
vides a list of neighborhood size versus
state set size tradeoff results for compu-
tation-universal 1-d CA capable of self-
reproduction.

The other kind of tradeoff results is
related to simulation of a CA by another
CA, which is a basic technique for prov-
ing results on CA. Specialization of such
results to computation-universal CA
yields the results just described. It has
been observed (but not proved) that the
cost of reducing neighborhood or in-
creasing speed leads to an increase in
the size of the state set. For a neighbor-
hood of M cells and n states per cell, the
size of the state set increases to about
M n when reduction is to Moore neigh-
borhood (a generalization of the 9 neigh-
borhood for 2-d CA). Reduction of Moore
neighborhood to von Neumann neigh-
borhood is difficult, and increases the
state set size from n to nV, where V is
the volume (number of cells) in a d-
dimensional sphere of radius 2d3 / 2

[Smith III 1971]. For the 2-d and 3-d
cases, this cost can be significantly re-
duced [Butler 1974; Hamacher 1971].
Simulations can be carried out with
neighborhoods smaller than von Neu-
mann. For example, a neighborhood
consisting of the cell itself and a neigh-
bor in each dimension suffices for a step
by step simulation of an arbitrary CA.
In fact, the cell itself can also be left out
[Smith III 1971]. If a strict step by step
simulation is not required, then the ini-
tial encoding may be omitted, and the
CA can itself perform the initial encod-
ing. The reverse tradeoff decreasing the
state set size by increasing the neigh-
borhood is also possible [Smith III
1971]. See also Mazoyer and Reimen
[1992] for later work on CA speed-up.

Given a CA, it is possible to design
another CA which simulates the given
CA k times faster at a cost of increase of
state set size, assuming Moore neigh-
borhood before and after simulation

[Smith III 1971]. Both decrease in
neighborhood and speed-up can also be
achieved at a cost of increase in the
state set size. But there seem to be no
theoretical results on the limits of the
tradeoff possible. For example, assum-
ing finite neighborhood, what is the
maximum speed-up possible at a cost of
increase in state set size? Investigation
of this and similar questions can lead to
interesting results.

2.2 Variants of Cellular Automata

A CA is characterized by four features:
the geometry of the underlying medium
which contain the cells; the local transi-
tion rule; the states of the cell; and the
neighborhood of a cell. In the following
paragraphs we briefly discuss different
types of CA that can arise by varying
the four features mentioned above. To
the best of our knowledge, these cover
the several variations considered in the
literature.

2.2.1 Cell States. The cells of a CA
can assume one of a finite number of
possible states at any point of time.
Usually there is one particular state,
called the quiescent state, such that the
local rule takes a cell to the quiescent
state, if all its neighbors are in the
quiescent state.

A CA where the cells can have differ-
ent state sets is called a polygeneous
CA. Such CAs have not received much
attention except for the work of Holland
[Burks 1970, Essay 15]. The case where
the state sets of all cells are the same is
the usual one. This set can have an
algebraic structure. For linear CA, the
state set is usually taken to be a field
[Martin et al. 1984], though CA with
state sets Zm (the integers modulo m),
for arbitrary m have also been studied
[Ito et al. 1983]. In the VLSI context,
this set is taken to be $0, 1%, the field of
two elements.

A CA can be visualized as a collection
of a set of finite automaton. Each cell of
the CA is an individual finite automa-
ton. Though it is possible to allow each
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cell to assume infinitely many states,
such kinds of CA have not been studied.
However, in Litow and Dumas [1993],
CA is described for which the temporal
sequence of a cell is an algebraic series,
and hence the cell can store an arbi-
trary integer.

In the study of limit sets of CA evolu-
tion, it has been necessary to equip the
state set with the discrete topology [Cu-
lik II et al. 1989].

2.2.2 Geometry. This can be a
d-dimensional (possibly infinite) grid.
Usually, the term CA is used for such
structures. In case of finite grids, it is
possible to define different boundary
conditions. The grid is supposed to have
a periodic boundary condition in some
dimension if it is considered folded in
that dimension. The dimension has a
fixed boundary condition if the extreme
cells are considered to be adjacent to
cells in some prespecified state whose
value does not change during the com-
putation. In case this prespecified state
is the quiescent state, the boundary con-
dition is called a null boundary condi-
tion. For linear CA, the quiescent state
is the state zero. Among the fixed
boundary conditions, only the null
boundary condition has been studied se-
riously. But see Martin et al. [1984] for
a brief discussion of other possibilities.
It is also possible to consider one end to
have periodic boundary condition and
the other end to have fixed boundary
condition [Bardell 1990].

A more abstract way of defining the
geometry is through group graphs. The
following definition is from Harao and
Noguchi [1978]. A group graph is a
tuple N 5 ~G, h!, where G is a group
which defines the nodes for the cells
and h defines a map from G to Gk by
h~g! 5 ~h1 + g, . . . , hk + g!, where
hi [ G and + is the group operation.
The map h provides the neighborhood
for the cells. The concept of group graph
is a convenient way to describe “uni-
form” geometry—a connection pattern
which “looks the same” at all points.

Nonuniform connections have also been
studied, though the relation between
uniform and nonuniform geometry has
not been fully understood (see Jump
and Kirtane [1974]).

So far we have considered what is
called static CA—the node set and the
interconnection pattern do not change
with time. It is possible to consider node
static CA where the node set does not
change with time, but the interconnec-
tion pattern may change. Such a struc-
ture is still considered static and has
not received much attention (see Var-
shavsky et al. [1970]). However, dy-
namic CA—both node set and connec-
tions may change—have been studied
extensively due to its use in modeling of
biological systems. For example, the
work of Lindenmayer [1968], as described
in Section 2, falls in this category.

Recently, there has been a recent in-
terest in studying CA over Cayley
graphs [Machi and Mignosi 1993; Roka
1995; 1994].

2.2.3 Neighborhood. In some cases
such as group graphs, the geometry it-
self determines the neighborhood of a
cell. However, if we are considering a
d-dimensional grid it is possible to de-
fine different kinds of neighborhood.
The von Neumann (orthogonal) neigh-
borhood and the Moore (unit cube)
neighborhood have already been men-
tioned in connection with the tradeoff
results. It is possible to define input and
output neighborhoods of a cell. A cell
takes its input from its input neighbor-
hood and its state is available to the
cells of its output neighborhood. If the
sizes of the input and output neighbor-
hoods are equal, then the CA is bal-
anced. For balanced but nonuniform
neighborhoods, the connection to uni-
form neighborhood has been studied in
Jump and Kirtane [1974]. A variant of
CA where the local rule depends on the
sum of the states of the neighboring
cells is called totalistic CA, and was
introduced by Wolfram. Computation
universality of this kind of CA have
been proved [Culik II 1990].
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2.2.4 Local Rule. The local rule is
usually assumed to be deterministic.
This, however, is not necessary, and
nondeterministic maps have been stud-
ied in connection with language theory
[Smith III 1972; Seiferas 1974; Mahajan
1992] and reliable computation [Nishio
and Kobuchi 1975]. A CA where each
cell has its own local rule is called hy-
brid. Such structures have been studied
in connection to VLSI applications
[Serra et al. 1990; Chaudhuri et al.
1997; Sarkar and Barua 1998b]. It is
possible for a cell to change its local rule
at each time step. In the VLSI context,
this is called a programmable CA
[Nandi et al. 1994], and in theoretical
studies on CA the structure has been
called a tessellation automata.

Next, we discuss three variants of CA
which have received more attention.

2.2.5 Tessellation Automata. This is
a CA with an input line distributed to
all cells. The setup can be visualized as
each cell having a finite set of local
rules and the input is used to choose the
particular local rule to apply. See
Yamada and Amoroso [1969; 1971] for a
nice discussion on tessellation spaces.
An interesting problem which is inher-
ently tessellation-automata-theoretic is
the completeness problem, and related
to the Garden of Eden problem for CA.
The problem is stated as follows. Start-
ing from an initial configuration with
only one nonquiescent state, is it possi-
ble to apply input to drive the automa-
ton to any specified finite configuration?
If the answer is yes for some subclass of
automata, then the subclass is called
complete. There are only partial an-
swers to this question [Yamada and
Amoroso 1970; Maruoka and Kimura
1974; 1977]. Tessellation automata have
also been called time-varying CA and
their formal language-theoretic proper-
ties have been studied [Mahajan 1992].

2.2.6 Iterative Automata. This is a
CA where only one particular cell is
given an input. Such structures have
been considered in connection with lan-

guage recognition studies [Kosaraju
1975; Seiferas 1974; Chang et al. 1988].
Different tradoff results (similar to CA)
for this class have been considered [Cole
1969]. In Smith III [1972], it is shown
that this class is an inherently slower
device than the usual CA. (Note that in
this case the input is provided one sym-
bol at a time to a particular cell,
whereas, for a CA, the input is the
initial configuration.) Iterative autom-
ata languages contain the context-free
languages [Kosaraju 1975]. A 1-d itera-
tive automaton requires O(n2) steps to
accept a string of a CFL of length n. The
nondeterministic 2-d version of iterative
automata can accept in linear time any
language accepted in linear time by a
nondeterministic multihead TM with a
tape of arbitrary dimension [Seiferas
1974]. The paper also contains the result
that the nondeterministic d-dimensional
iterative spaces can accept in linear
time any language accepted in time nd

by a nondeterministic multihead TM
but with a 1-d tape.

An interesting application is a linear
time multiplier designed by Atrubin.
The binary representation of the multi-
plicands are fed to the first cell (least
significant digit) first and the product is
output from the first cell (again, least
significant digit first) with no delay. See
Knuth [1973] for a good exposition of
the algorithm. Iterative linear arrays
have also been used in VLSI applica-
tions [Kung 1988].

The concepts of tessellation and itera-
tive automata can be generalized to tes-
sellation and iterative graph automata
by defining such structures on group
graphs [Smith III 1976].

2.2.7 One-Way CA. A one-way CA
allows only one-way communication,
i.e., in a 1-d array each cell depends
only on itself and its left neighbor. One
can also consider dependence on the cell
and its right neighbor. However, both-
side dependence is not allowed. This
lack of two-way flow of information can
be considered to be a restriction on the
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power of the automaton. However, there
are results which indicate otherwise.
Morita [1992] has shown the computa-
tion universality of 1-d, one-way revers-
ible CA. Language recognition proper-
ties of one-way CA have also been
studied [Chang et al. 1988; Ibarra et al.
1985a]. However, Terrier [1996] pro-
vides an example of a language which is
not recognizable in real time by one-way
CA or iterative CA, but recognizable in
real time by CA. One-way versions of
the iterative automata have been de-
fined and their properties carefully
studied [Chang et al. 1988]. It turns out
that they can accept PSPACE-complete
languages and the languages accepted
by a linear time-bounded alternating
TM. The investigation in Chang et al.
[1988] points out the connection of one-
way iterative automata to complexity
theory. (See Section 2.5 for formal lan-
guage properties of this class of CA.) A
related class of automata motivated by
design of systolic systems and algo-
rithms is the class of systolic trellis
automata, which have been quite exten-
sively studied by Choffrut and Culik II
[1984]; and Culik II et al. [1984]. This
class is equivalent to bounded space re-
al-time one-way CA. Study of systolic
arrays modeled as 1-d, 2-d, one-way CA,
and iterative arrays were carried out by
Ibarra and Kim [1984] and Ibarra et al.
[1985b]. This work has resulted in the
development of many easy-to-imple-
ment systolic algorithms. One-way CA
on Cayley graphs have also been stud-
ied [Roka 1994].

2.3 Biological Connection

2.3.1 L-systems. CA were originally
proposed by von Neumann to provide a
formal framework for the study of “com-
plicated” natural systems. Later work
in this direction used a structure called
dynamic CA for modeling of biological
systems. One of the early attempts was
by Lindenmayer [1968], who proposed a
model of growth for filamentary organ-
isms based on ideas of CA. The class of
CA used is called dynamic CA where

cells may appear or disappear with
time. The key idea is to consider a se-
quence (1-d array) of cells of the organ-
isms. Then cell division is modeled by
allowing a cell to be replaced by more
than one cell, each in some prespecified
state. If a cell has a neighborhood con-
sisting of its left neighbor, then after
division the same neighborhood holds.
The model just described is for non-
branching filamentary organisms. It is
also possible to extend the theory to
model branching organisms along with
a neighborhood consisting of both left
and right neighbors. For the model with
both left and right neighbors, two out-
put functions are defined, the left and
the right output. The input to the left
cell in the next step is the left output
and similarly for the right cell. Thus we
may consider the cell to consist of three
components (a technique which has also
been used very successfully in other ar-
eas of CA). For the branching organism,
the local rule specifies the first cell of
the branch to be created. So if the local
neighborhood of a cell is conducive, a
new branch is created, which is then
considered attached to the basal cell. A
cell may give rise to several branches,
and in the model it is not possible to
distinguish between the relative orien-
tation of the branches. However, it is
also possible for the branches to give
rise to new branches, and so on. Use of
L-systems in modeling plant life is dis-
cussed in detail [Prusinkiewicz and Lin-
denmayer 1990]. Later work on such
systems was mainly formal language-
theoretic (see Kari [1997]).

2.3.2 Self-Reproduction and Artificial
Life. The first attempt at modeling ar-
tificial life with CA was von Neumann’s
self-reproducing automata. An imple-
mentation of this construction was done
[Pesavento 1995]. Langton [1984] ar-
gued that computation universality is
not a fundamental requirement for a
self-reproducing automata.

An interesting biological connection
was studied by Holland [1976]. He used
CA as a model to study the spontaneous
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emergence of self-replicating systems.
The CA is used as a model of the uni-
verse (called the a-universe) where each
cell has two parts. The first part stores
the state of the cell and the second part
indicates the nature of the bond (strong
or weak) the cell has with its left or
right neighbors. Stochastic operators
are used to manipulate the states in
accordance with the bonds and in a con-
servative manner—elements are never
created or destroyed, they are only
moved about and rearranged by the op-
erators. The operators are themselves
encoded by the states of the cells. The
crucial parameter studied is the ex-
pected time until the emergence of self-
replicating systems, which is an ar-
rangement of the universe which can
replicate itself.

For other work on modeling of artifi-
cial life using CA, see Ikegami and
Hashimoto [1995] and Adami [1994]. A
great amount of work has been done
using CA for modeling biological sys-
tems. One can see current issues of the
Journal of Theoretical Biology for recent
work in this area.

2.4 Fault-Tolerant Computing

The idea of fault-tolerant computing
also originates from von Neumann
[1963b], who showed how to build a
reliable Boolean circuit out of unreliable
components. For the case of CA, the
unreliable components are taken to be
the cells. Each cell can misoperate and
assume an incorrect state, i.e., one not
dictated by the local rule. Early work in
this area assumed a fault model called
k-separated misoperation [Nishio and
Kobuchi 1975], i.e., there exists a finite
set K of Z d such that given a cell x [

Z d at most one cell in the set x 1 K
will misoperate (here d is the dimension
of the grid, and Z is the set of integers).
In Nishio and Kobuchi [1975], it is
shown how to construct a CA which will
correctly simulate an unreliable CA
with k separated misoperation, step for

step. The basic idea is to encode the
initial configuration of the unreliable
automaton suitably to form the initial
configuration of the simulating automa-
ton. The coding is carefully designed so
that each cell in the coded configuration
can use a majority voting rule to decide
its state. The local rule of the simulat-
ing automaton is almost the same as the
original one, except that at each step
each cell of the simulating automaton
corrects any error in its neighboring
cells before applying the local rule. This
leads to an increase in the neighborhood
size. It has been shown that under the
same fault model, unreliable CA over
group graphs can also be simulated in
an error-free way [Harao and Noguchi
1975].

Gacs [1986] has shown how to con-
struct a 1-d CA which can reliably per-
form arbitrarily large computations,
and where each cell can perform an
error with a positive probability. The
fault model so considered is important
from an ergodic theory point of view,
and Gac’s result leads to the refutation
of the “positive probability conjecture”
in statistical physics, which states that
any one dimensional infinite particle
system with positive transition proba-
bilities is ergodic. For recent work on
reliable cellular automata, see Gacs
[1997].

2.5 Language and Pattern Recognition

A finite CA can be thought of as a
language acceptor by considering the
initial configuration to be the input
string and acceptance or rejection is de-
termined by a specific cell (say the
rightmost) going to an accept or reject
state. For a 2-d CA, the problem is one
of pattern recognition and the accept
cell can be the northeast one in a rect-
angular grid or it could be the eastern-
most cell in the northernmost row for a
general 2-d layout. It turns out that the
linear, Dyck and bracketed context-free
languages can be accepted by CA (also
by one-way CA) in real time [Smith III
1972; Dyer 1980; Ibarra et al. 1985a]. In
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Smith III [1972], it is shown that nonde-
terministic-bounded (the input is delim-
ited and all other cells are in the quies-
cent state and remain so during the
computation) CA can recognize the
CFLs in real time. The deterministic
case is open. If the number of steps of a
computation is fixed (but language-de-
pendent), then the set of languages ac-
cepted by nondeterministic 1-d CA is
the set of regular languages [Sommer-
halder and Westrhenen 1983]. Here ac-
ceptance is defined by all nonquiescent
cells entering some final state. This no-
tion of acceptance allows languages to
be accepted is less than real time. In
Ibarra et al. [1985a] it is shown that
there are noncontext-free languages re-
cognizable in O~log n! time, and that
the languages accepted in o~log n! time
are regular.

Certain language classes can be de-
fined by both restricting and enhancing
the power of CA. This is done by intro-
ducing the following four conditions:

(1) one-way communication giving rise
to oneway CA;

(2) for an input of n symbols, the num-
ber of steps of computation required
is exactly n; this is called real-time
computation;

(3) for an input of n symbols, the num-
ber of steps of computation is pro-
portional to n; called linear-time
computation;

(4) the local rule is nondeterministic,
giving rise to nondeterministic CA.

The symbols O, r, l, and N are used as
prefixes to the word CA to denote a
particular language class. As an exam-
ple, rOCA denotes the class of lan-
guages accepted by real-time one-way
CA. The CA is taken to be bounded, so
that all computations take place within
the n cells of the initial configuration of
length n. The relationships among CA
language classes, as well as their rela-
tionship to the classical language
classes, were extensively studied. See

Mahajan [1992] for a good survey of
results and techniques in this area.
Here we briefly mention several impor-
tant results. The first (and easy) result
is that the language class CA is equal to
DSPACE(n). The class lCA is a subset
of OCA [Chang 1988; Ibarra and Jiang
1987; Ibarra et al. 1985b]. This is ob-
tained by considering the relationship of
both OCA and lCA to sweeping autom-
ata [Chang et al. 1988]. It is also known
that rOCA is a proper subset of rCA
[Choffrut and Culik II 1984; Culik II et
al. 1984], and rCA is equal to lOCA
[Choffrut and Culik II 1984]. The
PSPACE-complete language QBF
(quantified Boolean formulas) belongs
to OCA [Ibarra and Jiang 1987] and
NSPACE(În) and ATIME(n) are sub-
sets of OCA. The class OCA lies be-
tween NSPACE(În) and CA5DSPACE
(n), and proper containment between
OCA and CA would separate these two
classes, improving Savitch’s result. It is
also conjectured that lCA is properly
contained in OCA, since lCA is a subset
of P and OCA contains QBF, any proof
that lCA5OCA will imply that
P5PSPACE, a rather unlikely result.
For the nondeterministic language
classes, it has been proven in Dyer
[1980] that NOCA5NCA5NSPACE(n),
the class of context-sensitive languages.
Further, it is known that rNOCA con-
tains an NP-complete problem [Ibarra
and Kim 1984]. Open problems and ad-
ditional examples of languages con-
tained by rOCA, rCA, lCA, and OCA can
be found in Mahajan [1992].

2.6 Invertibility, Surjectivity and Garden of
Eden

A major focus of research in CA is re-
lated to questions of invertibility. A CA
rule r is called invertible if there exists
another rule r21, called the inverse rule,
which drives the CA backward, i.e., if
application of r to a configuration c
produces a configuration d, then appli-
cation of r21 to d produces c. A CA is
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called invertible if its local rule is in-
vertible. Richardson [1972] proved that
a CA is invertible iff its global map is
injective. The technique does not pro-
vide an inverse, as topological argu-
ments are used to prove the result. For
an automata-theoretic approach to the
problem, see Culik II [1987]. Amoroso
and Patt proved that there is an effec-
tive procedure to determine invertibility
of 1-d CA, based on the local rule [Amo-
roso and Patt 1972]. Kari [1990; 1994]
has shown that for a 2-d CA the ques-
tion of determining invertibility from
the local rule is undecidable. The reduc-
tion is from the tiling problem in con-
junction with a special version of the
tiling problem, called the directed tiling
problem.

The surjectivity of the global map of a
CA have also been studied. A configura-
tion is called a “Garden of Eden” config-
uration if it is not “reachable,” i.e., it
can only occur as an initial configura-
tion in any evolution. Existence of such
a configuration shows that the global
map is not surjective. Myhill [1963]
proved that a global map is surjective iff
its restriction to finite configurations is
injective. The surjectivity of 1-d CA is
decidable [Amoroso and Patt 1972].
Kari [1990; 1994] proves that the prob-
lem is undecidable for two dimensions
by showing that the injectivity problem
restricted to finite configurations is un-
decidable. To tackle finite configura-
tions, Kari [1990; 1994] introduced a
special class of tilings with the “finite
tiling property”.

For linear CA over Zm, Ito et al.
[1983] provide necessary and sufficient
conditions for invertibility. Computa-
tion of the inverse of a CA, even when it
is invertible, can be a difficult job. Sato
[1994] provides a construction for a spe-
cial class of CA, called the group-struc-
tured CA. Manzini and Margara [1998]
provide an efficiently computable for-
mula for the inverse of a d-dimensional
linear CA over Zm. There is a quadratic-
time algorithm to determine reversibil-
ity and surjectivity of the global map of

a linear CA [Sutner 1991]. The algo-
rithm is based on the representation of
a configuration of a linear CA by a finite
graph (a De Bruijn graph) as used by
Wolfram [1984a].

Given a 1-d CA, it is possible to con-
struct an invertible 1-d CA which can
simulate the original CA [Morita 1995].
It is even possible to simulate TM by
invertible CA [Dubacq 1995]. Toffoli
[1977] has shown how to simulate any
k-d CA by an invertible ~k 1 1!-d CA.
This proves the computation universal-
ity of invertible CA for dimensions
higher than one; and from the result of
Morita [1995], 1-d invertible CA is also
capable of universal computation. How-
ever, the question of whether a k-d CA
can be simulated by a k-d invertible CA
is still open for k . 1. The invertibility
question is of fundamental importance
to physics, as it can be used for model-
ing microscopically reversible dynami-
cal systems; see Toffoli and Margolus
[1990] for a survey.

For a finite CA, an injective global
map has to be bijective. Moreover, if the
global map of a finite CA is injective, it
does not necessarily mean that there is
an inverse CA, in the sense that there is
a inverse local rule that can be used to
force a configuration to retrace the orig-
inal evolution. So a finite CA is said to
be invertible if the global map is a bijec-
tion. In this case, it is trivial to see that
the nonexistence of Garden of Eden con-
figuration is a necessary and sufficient
condition for invertibility of the global
map. It is, in general, difficult to deter-
mine invertibility of finite CA; see
Harao and Noguchi [1978] for a discus-
sion of the dynamics of finite CA. If the
global map is a linear transformation,
then the problem becomes more man-
ageable. Extensive discussion on prop-
erties of linear or additive CA can be
found in Martin et al. [1984]. In fact, for
1-d linear CA, the question is easy to
answer [Martin et al. 1984; Sutner
1990b; Barua and Ramakrishnan 1996].
Extensions to 2-d CA are studied in Ba-
rua and Ramakrishnan [1996]; Sutner
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[1996]; and Sarkar [1996] and multi-d
CA in Sarkar and Barua [1998a].

3. CA GAMES

3.1 Firing Squad Problem

This is basically a synchronization prob-
lem, but can also be thought of as a
game. The problem was first proposed
by Minsky around 1957, and first ap-
peared in print in Moore [1964]. The
following is a simple description of the
problem. Consider n soldiers (out of
which one is a general) standing in a
row. The soldiers (including the gen-
eral) can communicate only with their
immediate left and right neighbors. The
general gives the command to fire. Ulti-
mately, the soldiers and the general are
required to fire simultaneously, and for
the first time. In CA terms, the problem
is to design a cell and a local rule such
that starting from an initial configura-
tion, where only one cell is on and the
other n 2 1 cells are off, there is an
evolution such that all the cells enter a
predesignated state all at once and for
the first time. Note that the problem
can also be considered on an infinite 1-d
array, but then the other cells must all
be in the quiescent state and remain so
throughout. The basic problem is to de-
sign a cell which is independent of the
number of soldiers, and hence will work
for an array of arbitrary length. This
means that none of the cells can count
upto n. In case the general is one of the
end cells, it is easy to see that the
minimum time required for synchroni-
zation is 2n 2 2 steps. Waksman
[1966] provides a solution in 2n 2 2
steps. The solution depends heavily on
the idea of signals propagating through
the array at different speeds. A signal is
essentially a symbol which passes from
one cell to its neighbor in a particular
direction (left or right). A signal propa-
gates at the “speed of light” if it moves
one cell at each step. This is the fastest
speed at which a signal can propagate
through the array. It is possible for a

cell to suppress a signal for a fixed
number of time steps. Then the speed of
the signal determines its geometry—the
angle that it makes with the horizontal.
A minimum state solution to the prob-
lem is provided in Mazoyer [1987].

For a solution to the problem where
the general can be any cell, see Moore
and Langdon [1968]. Culik II [1989]
considered several other variation, and
has used the results to disprove a con-
jecture of Ibarra and Jiang that real-
time one-way CA cannot accept certain
languages. The problem has also been
generalized to higher dimensions
[Nguyen and Hamacher 1974; Shinahr
1974] and node static and dynamic CA
[Herman et al. 1974; Varshavsky et al.
1970]. A generalization to arbitrary
graphs called the Firing Mob problem
was introduced in Culik II and Dube
[1991], where an efficient solution is
also provided. The introduction to Culik
II and Dube [1991] also contains a brief
history of the Firing Squad problem and
also the solutions attempted by various
researchers. The central result that it is
possible to design such a CA is called
the Firing Squad theorem, and used in
language and pattern-recognition stud-
ies of CA [Smith III 1972; Culik II
1989]. A related “desynchronization”
problem is to design a CA such that all
cells are initially in the same state, and
ultimately only one cell goes to a pre-
designated state. It is called the “Queen
Bee” problem [Smith III 1976].

3.2 Game of Life

This game was originally proposed by
Conway and made popular through
Martin Gardner’s column in the Scien-
tific American [Gardner 1970; 1971].
The original motivation was to design a
simple set of rules to study the macro-
scopic behavior of a population. The cri-
terion for choosing the rules was based
on the principle that the growth or de-
cay of the population should not be eas-
ily predictable. After a great deal of
experimentation, Conway chose the fol-
lowing set up. The population is repre-
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sented by a configuration of a 2-d infi-
nite array of cells with Moore (unit
square) neighborhood, where each cell
can be in one of the states 1 or 0. The
local rule is described as follows:

(1) Survival: If a cell is in state 1 (alive)
and has 2 or 3 neighbors in state 1,
then the cell survives, i.e., remains
in state 1.

(2) Birth: If a cell is in state 0 and has
exactly 3 neighbors in state 1, then
in the next time step the cell goes to
state 1.

(3) Deaths: A cell in state 1 dies (goes to
state 0) of loneliness if it has 0 or 1
neighbors. Also, it dies because of
overcrowding if it has 4 or more
neighbors.

Each configuration is called a popula-
tion, and the evolution of the population
is studied. As with many CA evolutions,
the “Game of Life” shows fantastic vari-
ation in the growth patterns of the ini-
tial population. A group at MIT has
shown that there is a simple initial con-
figuration that grows without limit. The
configuration grows into a “glider gun”
and, after 40 steps, fires the first “glid-
er,” and thereafter continues firing glid-
ers after every 30 moves. It has been
informally proved that the “Game of
Life” is capable of universal computa-
tion. For a good account of the game and
for some good pictures, see Gardner
[1970; 1971] and Conway et al. [1992].
There are also several Internet pages
dedicated to the “Game of Life.”

3.3 s~s1! -Game

This game was first proposed by Sutner
[1990a] and is based on the battery-
operated toy MERLIN [Pelletier 1987].
It is a two-person game and is played on
a 2-d finite grid, where each node has a
bulb that can be either on or off. A move
is made by choosing a node and, as a
result, the states of all the bulbs in
orthogonal neighborhood positions tog-
gle. A configuration of the game is a
state of the grid where some of the

bulbs are on and others are off. Player A
chooses two configurations, the initial
and the target configurations. Player B
has to make a sequence of moves start-
ing from the initial configuration and
reach the target configuration. It is easy
to see that choosing a node twice is the
same as not choosing it at all. The order
of the choice of nodes is not important.
Thus, any winning strategy (solution)
for B can be viewed as a set rather than
a sequence. This set of nodes can then
be thought of as a configuration of the
grid (the bulbs in the set are on, the
others are off). Suppose the initial con-
figuration is the all 0 configuration and
the target configuration is Xt. If Z is a
solution to this instance, then s~Z ! 5
Xt, where s is the global rule of a finite
2-d CA whose local rule is the sum
(modulo 2) of the four orthogonal neigh-
bors. Again, Z is a solution for the pair
~ Xs, Xt! iff s~Z ! 5 Xs 1 Xt and hence
the number of solutions (if any exist) is
2k, where k is the corank of the linear
map s. Thus, the study of the s-game
reduces to the study of linear 2-d CA
[Barua and Ramakrishnan 1996; Sutner
1990b]. The corresponding game where
the state of the chosen bulb also
changes is called the s1-game. Both the
s and s1-games have been studied on
2-d and multidimensional grid; see
Sarkar and Barua [1998a] for results on
multidimensional CA, and with direct
relevance to the multidimensional
s~s1!-game. The game has also been
considered over arbitrary graphs [Sut-
ner 1988b; 1989b], but results are more
difficult to obtain in this setting.

4. MODERN RESEARCH

4.1 Empirical Study

The mid-1980s are an important period
in the history of CA, largely due to the
work carried out by Wolfram. The na-
ture of his questions represent a para-
digm shift in CA research. Wolfram car-
ried out an extensive experimental
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analysis of the growth patterns of CA.
An early paper by Wolfram [1983] dis-
cusses several statistical parameters of
the space-time patterns of CA evolution.
Later work extended and clarified much
of the intuition in several directions. An
excellent source of papers on this period
of CA research is a book by Wolfram
[1986].

The approach taken is to consider CA
as models of complex systems, in the
sense that very simple CA rules can
give rise to extremely complicated pat-
terns. The mathematical simplicity in
CA description is thought to be a signif-
icant advantage for modeling, rather
than using systems of differential equa-
tions. A related phenomenon in CA evo-
lution is self-organization. Starting
from random unordered configurations
with maximum entropy, a CA will
evolve to states of lesser entropy. This is
contrary to the second law of thermody-
namics, which states that reversible
systems evolve to states of maximal en-
tropy. The microscopic irreversibility of
CA is the reason behind this self-orga-
nizing behavior.

The 1-d, 3 neighborhood, binary CA is
the one extensively studied by Wolfram.
A numbering system for the possible
local rules of such a CA can be found in
Wolfram [1986]. Rules 90 and 150 are
important. Rule 90 is the sum modulo 2
of the states of the nearest two neigh-
bors. Rule 150 is the sum modulo 2 of
the states of the nearest two neighbors
and the state of the cell itself. Note that
both rules 90 and 150 are linear.

The approach taken by Wolfram
[1984b] in studying the growth patterns
of CA is to define several local and
global statistical parameters and to
study their behaviors. Some important
local parameters are

—average density of nonzero sites,
which is a “rough” measure of the
growth of CA evolution;

—the average number of triangles or
triangle density T(n) of triangles of
base length n, in the space time pat-
tern (see Figure 3);

—sequence density Qi~n! is the density
of sequences of exactly n adjacent
sites with the same value i.

Both the triangle and the sequence
density follow an exponential rule for
evolution from an initial disordered
state. For example, for large n, T~n! z
l2n and the parameter l distinguish be-
tween linear (l ' 2) and nonlinear (l
' 4 / 3) rules. Another important fea-
ture of the space time evolution from an
initial disordered state is that triangles
of all sizes are obtained, and hence the
structure is generated on all scales.

For a finite N-cell CA, one can con-
sider the finite set of 2N configurations
to be an ensemble where each configu-
ration has equal probability of occur-
rence. After evolution for a few time
steps, an equilibrium is achieved where
the configurations have different proba-
bilities according to some distribution
function. On taking the average over
the ensemble, properties of configura-
tions with higher probability dominate.
This indicates the self-organizing char-
acter of CA evolution. Another measure
of self-organization is entropy. For a
finite CA, the entropy is defined as
(pilog pi, where pi is the probability of
configuration i. For irreversible CA,
this entropy decreases from an initial
maximum (for random initial configura-
tions) to lesser values. A corresponding
entropy called “block” or “Renyi” en-
tropy can be defined for infinite 1-d CA,
and shows a similar phenomenon. For
second-order (next state depends on
present and previous states of neigh-
bors) reversible infinite CA, the entropy
almost always increases with time.

Another interesting approach to char-
acterize CA evolution comes from for-
mal language theory. It was shown in
Wolfram [1984a] that the set of configu-
rations that can appear after t time
steps forms a regular language. The size
of the minimal DFA after t steps pro-
vides an indication of the complexity of
the set of configurations after t steps.
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For many CA rules, the minimal DFA
becomes more complicated at each step
and the sequence of DFAs does not ap-
pear to exhibit any overall structure.
Again, for some CA rules, the infinite
limit set of configurations (the set of
configurations reachable at arbitrarily
large time steps) is also a regular lan-
guage; but there are others whose regular
language complexity grows with time,
and hence seem to generate nonregular
language in the limit. In fact, Hurd [1987]
provided examples of CA with strictly

nonregular, noncontext-free and non-r.e.
limit sets. In Green [1987], a CA is de-
scribed whose limit set is NP-hard.

A modification of this approach asso-
ciates a weight, corresponding to the
probability Pi that each node is visited,
to each node of the minimal DFA. One
then computes the entropy measure
(Pilog Pi and uses it to study the
growth pattern of the configurations for
details, see the Appendix (Table 11) of
Wolfram [1986].

Figure 3. Triangles in the space time pattern of a CA. The pattern shows a self-similar structure.
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4.2 Classification of CA

A major problem stemming from Wol-
fram’s work is classifying CA rules ac-
cording to their behavior. The initial
empirical classification was proposed by
Wolfram himself [Wolfram 1984b]. His
classification is based on entropy mea-
sures and identifies the following four
classes.

(1) Evolution leads to a homogeneous
state.

(2) Evolution leads to a set of separated
simple stable or periodic structures.

(3) Evolution leads to a chaotic pattern.

(4) Evolution leads to complex localized
structures which are sometimes
long-lived. It is believed that this
class is capable of universal compu-
tation.

Later work concentrated on formalizing
the intuitive classifications by Wolfram
et al. Culik II and Yu [1988] proposed
the following classification. Let r be the
local rule for a CA. Then

(1) Rule r is in class one iff every finite
configuration, i.e. configurations in
which only a finite number of cells
are in nonquiescent states, evolves
to a stable configuration in finitely
many steps.

(2) Rule r is in class two iff every finite
configuration evolves to a periodic
configuration in finite number of
steps.

(3) Rule r is in class three iff it is
decidable whether a configuration
occurs in the orbit of another.

(4) Class four comprises all local rules.

They show that the problems of decid-
ing membership of a rule r in classes
one and two are P1

0-hard. Similarly,
class three is S1

0-hard. Sutner [1989c]
has shown that classes one and two are
P2

0-complete and class three is
S3

0-complete. The arguments are based

on encoding TM instantaneous descrip-
tions by natural numbers and the simu-
lation of TM by CA. It is important to
note that the above classification con-
siders only finite configurations. Infi-
nite configurations in general cannot be
finitely described, and hence cannot be
tackled by conventional computability
theory. A classification of periodic
boundary condition CA (whose configu-
rations can be thought of as spatially
periodic configurations of an infinite
CA) have also been proposed [Sutner
1990a]. Using a nonstandard simulation
of a TM by a CA, it is shown that the
problem of deciding membership in the
hierarchy is undecidable.

In a recent study, Braga et al. [1995]
provided a classification of CA based on
pattern growth. The pattern growth
properties are shown to be dependent
on the truth table of the local rule of the
corresponding CA. This provides an al-
gorithm for classifying CA rules, and
hence defines an effective hierarchy of
CA rules, in sharp contrast to the unde-
cidability results discussed above. The
essential technique is the fact that cer-
tain shift-like dynamics in the evolution
can be discovered by looking at the
truth table of the local rule. Then a
proper grouping of rules exhibiting sim-
ilar dynamics yields a classification
which is close to that of Wolfram; see
Culik II et al. [1990] for other ap-
proaches in classifying CA.

A preliminary study of 2-d CA [Pack-
ard and Wolfram 1985] shows that it is
possible to classify 2-d CA along the
same lines as 1-d CA. This suggests
that the global behavior of 2-d CA is
similar to 1-d CA. However, 1-d and 2-d
CA show marked differences with re-
spect to other properties. Golze [1976]
has shown that for 1-d CA every recur-
sive configuration (a configuration
where each cell value can be calculated
effectively) has a recursive predecessor;
but in the 2-d case, even a finite config-
uration may fail to have a recursive
predecessor. Again, invertibility of 1-d
CA is decidable, while it fails to be so
for 2-d (and higher dimension) CA.
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4.3 Limit Sets and Fractal Properties

One important direction of CA research
in the modern era is the study of the
limit sets of CA space-time patterns.
Early work in this area was done by
Willson [1978; 1981], and the topic re-
ceived an impetus from Wolfram [1983;
1984b]. However, the notion of a limit-
ing set of configurations obtained by
evolving a CA was introduced by Pod-
kolzin in 1976 (see Culik II et al.
[1990]). Later, we will mention some of
the work in this area.

4.3.1 Fractal Dimension of Space-
Time Patterns. The space time-pattern
observed during simulation shows sev-
eral kinds of interesting characteristics
(see Appendix of Wolfram [1986]). One
of the important features is a scale in-
variance and self-similarity on different
scales. This immediately suggests com-
puting the fractal dimension of such
patterns. Wolfram’s empirical investiga-
tion [Wolfram 1983] outlines two natu-
ral ways to do this. In the first ap-
proach, a parameter T~n! is defined
that measures the density of triangles
of base length n. A geometrical con-
struction shows that for rule 90, T~n!
z n21.59 and for rule 150, T~n! z
n21.69. The invariants 1.59 and 1.69
then give the limiting fractional dimen-
sion of the patterns. In the second ap-
proach, the space-time configurations
are scaled to fit the same perimeter,
and one considers the set of all limit
points. This gives rise to a fractal di-
mension which is a “geometric” dimen-
sion, and is also called the Kolmogoroff
dimension. Willson [1984b] investigates
theoretically why the two approaches to
compute dimension should coincide and
provides examples where the Kolmogor-
off dimension differs from the more
usual Hausdorff-Besicovitch dimension.

Theoretical study of the limit sets of
CA evolution via geometric invariants
were performed by Willson [1984a]. The
basic object of study is the sequence

v, Fv, F 2v, . . . , F pv, . . . ,

where v is a configuration of an
n-dimensional CA, and F is the global
rule of some CA. If we fix a state q, then
we can think of the set of cells (in space-
time configuration) having value q as a
set of points where each point is given
by an ~n 1 1!-dimensional vector. Let
Xp be the above set corresponding to
F pv. Consider the set Xp/p, where the
vectors of Xp/p are obtained by dividing
each vector of Xp by p. This scaling
ensures that the space-time configura-
tions fit the same perimeter at each
time step. Let Lim~v, q! be the set of
points in the limit p 3 `. This limit is
taken as an approximation of Xp and
properties of the limit indicate the nature
of the growth pattern in space-time con-
figurations. For example, if Lim~v, 1! is
a tetrahedron, then we expect the con-
figurations to grow into a tetrahedral
form. When the CA rule is linear (mod
2), it has been shown that the limit set
is a compact subspace of Euclidean
space and can have fractional Hausdorff
dimension. For linear CA, this provides
a formal proof of Wolfram’s basic intu-
ition. Space-time patterns of arbitrary
linear CA have also been studied [Taka-
hashi 1992]. The corresponding limit
sets are generally fractals. The self-sim-
ilar structure is characterized by a tran-
sition matrix, whose maximum eigen-
value determines its Hausdorff
dimension.

4.3.2 Limit Sets of CA Evolution.
Limit sets were also studied from a dif-
ferent direction using formal language-
theoretic methods [Hurd 1987; Culik II
et al. 1989]. In this approach, the set of
configurations rather than the space-
time patterns are considered. For a
d-dimensional infinite CA having S as
the set of cell states, the set of configu-
rations is SZd

. When S is endowed with
the discrete topology, then SZd

with the
product topology is compact by Ty-
chonoff’s theorem, and the global map G
of the CA is a continuous function. Let-
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ting SZd

5 V0 and V i 5 G~V i21! for i
$ 1, each V i is a compact subspace of
SZd

and V 5 ù
i$0

V i is the limit set for

the CA. This V is the object of study. It
was shown in Culik II [1989] that, for
d $ 2, it is undecidable whether V con-
tains a finite configuration. Using the
notion of a limit set of a CA, it is possi-
ble to define a limit language as follows.
Consider a 1-d CA, then every configu-
ration is a bi-infinite word over S. For a
configuration c, define

L@c# 5 $w [ S* :

w is a finite subword of c%

and let L@C# 5 ø
c[C

L@c# for a set of

configurations C, then L@V# is the limit
language. The membership problem for
such a limit language is undecidable
[Culik II et al. 1990]. For a survey of
results regarding this limit language,
see Culik II et al. [1990]. Given a CA,
the complement of the limit language is
r.e. [Culik II et al. 1990]. Also, for any
language whose complement is r.e., one
can construct a CA whose limit lan-
guage yields the chosen language after
intersection with a regular language
and a e-limited homomorphism. This
can be used to show that there exists a
CA whose limit language is not r.e. Sim-
ilar properties have been obtained for
P, the closure of the points periodic
under the global CA map; see Culik II et
al. [1990] for details.

4.4 Dynamics of CA

4.4.1 State Transition Diagram.
One can define a State Transition Dia-
gram (STD) for an infinite CA by con-
sidering an infinite directed graph
whose vertices are the configurations of
the CA and whose edges represent one-
step evolution of the CA. This was done
by Podkolzin (see Culik II et al. [1990]),
where it is shown that the STD either
has a single connected component or

has uncountably many connected com-
ponents. If a CA has only one single
connected component, it is called a nil-
potent. It has been proved (see Culik II
et al. [1990]) that, for two or more di-
mensions, the problem of CA nilpotency
is undecidable. The same result was
proved by Kari [1992] for one dimen-
sion. Podkolzin has also shown that, for
any CA, either the limit set is a single-
ton and the CA is nilpotent, or the limit
set contains an infinite number of ele-
ments; see Culik II et al. [1990] for
further discussion on limit sets.

4.4.2 Symbolic Dynamics. Another
interesting approach to the study of dy-
namic properties of CA is to consider
the CA as a computational device acting
on bi-infinite strings, on one hand, and
as a continuous function on a compact
metric space on the other. This gives
rise to considerations of symbolic dy-
namics on bi-infinite strings. If S is the
state set for a cell of a 1-d CA and Z is
the set of integers, then SZ is the set of
all configurations of the CA. It should
be noted that if G is a global CA map,
then it is a shift-invariant continuous
map from SZ to SZ. The converse that
any shift-invariant continuous map
from SZ to SZ arises as a CA map was
proved by Hedlund [1969]. A topologi-
cally closed subset of SZ is called a
subshift if it is invariant under the shift
map. A subshift is said to be of finite
type if no bi-infinite word in it contains
any block from an excluded finite set. A
sofic system is the image of a shift-
invariant continuous map acting on a
subshift of finite type. It has been
shown that each sofic system is a
vv-regular set, and for each i $ 0,
Gi~SZ! is a vv-regular set [Culik II and
Yu 1991] where G is the global map of a
CA; see Culik II and Yu [1991] and
Culik II et al. [1990] for a more detailed
discussion.

4.4.3 Topological Properties. A topic
closely related to limit sets, which has
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received a lot of attention in recent
times, is the topological properties of
CA. These properties arise when a CA is
considered to be a discrete time dynam-
ical system. As mentioned before, the
set of d-dimensional CA configurations
with global map F can be considered
equipped with the product topology
when the state set of a cell is given a
discrete topology. An element of a sub-
basis for this topology is a set of config-
urations such that a particular cell of
all the configurations in the set are in a
fixed state. It is possible to define sev-
eral distance measures on the set of
configurations, all of which induce the
product topology (see Finelli et al.
[1998] for an example).

One can define several dynamical
properties [Manzini and Margara 1999;
Finelli et al. 1998; Hurd et al. 1992]
such as

(1) Topological transitivity: For each
pair of nonempty open subsets U,
V # X, there exists n $ 0 such that
F n~U ! ù V Þ f.

(2) Sensitivity to an initial condition: If
there exists d . 0 such that for all
configurations x and for all e . 0
there exists a configuration y and
an n $ 0 such that d~x, y! , e and
d~F n~x!, F n~ y!! . d.

(3) Attractor: A nonempty subset Z of
configurations is an attractor for F
iff there exists an open set U of

configurations such that F~U# # U !
and Z 5 ù

j$0
F j~U !.

(4) Expansivity: If there exists d . 0
such that for every pair of distinct
configurations x, y there exists an
integer n such that d~F n~x!,
F n~ y!! . d. Since n can vary over
the set of integers, this definition
makes sense only if the associated
CA is invertible. For noninvertible
CA, this definition can be modified
by restricting n to be nonnegative.

In this case, the CA is said to pos-
sess positive expansivity.

(5) Topological entropy: Informally this
measures the uncertainty of the for-
ward evolution of any dynamical
system in the presence of an incom-
plete description of an initial config-
uration. A definition tailored to 1-d
CA is provided in Hurd et al. [1992].

(6) Lyapunov exponents: This is usually
defined over differentiable spaces.
An adaptation of this concept for the
topology on CA configurations is
provided in Shereshevsky [1992].

Many interesting results have been ob-
tained for these and other topological
properties. Hurd et al. [1992] have
shown that the topological entropy of
CA is uncomputable. However, for lin-
ear and positively expansive CA, this
can be computed as shown in Michele et
al. [1998]. Attractors of CA are studied
in Blanchard et al. [1997] and in Kurka
[1997]; and linear CA in Manzini and
Margara [1999]. Complete characteriza-
tions of most topological parameters for
linear CA have also been done (see
Manzini and Margara [1999] for a list of
such properties). The relationship of
Lyapunov exponents to expansivity and
sensitivity were studied in Finelli et al.
[1998]. A classification of CA into five
disjoint classes based on the structure
of their attractors was made by Kurka
[1997].

4.5 Computational Complexity

An early task in the study of CA’s com-
putational complexity is learning the
minimum number of steps required to
perform certain computations. Serious
attempts at studying complexity-theo-
retic questions regarding CA is a later
development. Wolfram [1984a] shows
how to construct a graph to represent
configurations reachable after one time
step of a 1-d CA. All possible infinite
paths through the graph represent all
possible configurations. The notion can
be generalized to a finite number of
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time steps and also to limit sets. The
graph can be regarded as the state tran-
sition graph of a finite automaton that
may be nondeterministic. The equiva-
lent minimum state DFA can be con-
structed, and the number of states in
such a DFA provides a measure of the
complexity of the corresponding configu-
ration set. For some interesting proper-
ties of this measure, see Wolfram
[1986]. A consequence of Wolfram’s re-
sult is that the predecessor existence
problem (i.e., given configuration X,
does there exist a configuration Y such
that Y evolves to X in one time step?)
for 1-d CA is decidable.

This leads to a more formal study of
the computational complexity of CA. In
particular, it was important to find NP-
complete problems for CA. First results
appeared in Green [1987], where a CA
is constructed for which the following
problems are NP-complete:

—determining if a given subconfigura-
tion s can be generated after ?s? time
steps;

—determining if a given subconfigura-
tion s will recur after ?s? time steps;

—determining if a given temporal se-
quence (values of a particular cell
taken over time) of states s can be
generated in ?s? time steps.

The particular CA described is quite
complicated, since an arbitrary struc-
ture of the 3-SAT problem has to be
encoded in the essentially local commu-
nication mechanism of a CA. For an
infinite CA, certain problems [Sutner
1989a] such as configuration reachabil-
ity (CREP, source configuration X; tar-
get configuration Y; is Y reachable from
X?), and predecessor existence (PEP)
are undecidable. Undecidability of
CREP is easy to see, since a CA can
simulate a TM, and configurations of
the CA encode instantaneous descrip-
tions of TM. Hence the halting problem
for TM can be translated to CREP by
asking whether a halting configuration

is reachable from the initial configura-
tion. In fact, CREP is S1

0-complete for
infinite CA of any dimension. However,
for PEP there is a marked difference for
the 1-d and higher dimensional CA.
From Wolfram’s characterization of 1-d
CA using regular grammars [Wolfram
1984a], it follows that PEP is decidable.
On the other hand, Yaku [1973] has
shown that for 2-d CA restricted to fi-
nite configurations, PEP is equivalent
to the problem of whether a TM halts on
the empty tape, and hence is S1

0-complete.
Similar results for finite CA are stud-

ied in Sutner [1995]. For 1-d CA, PEP is
NLOG-complete, and is NP-complete for
all dimensions higher than one. In Sut-
ner [1995], examples of local rules are
constructed such that CREP is
PSPACE-complete/NP-complete for 1-d
CA. For 1-d CA, if one restricts atten-
tion to a polynomially bounded version
of CREP (i.e., the number of steps is
less than or equal to some polynomial in
the number of cells), it is possible to
construct a local rule such that CREP is
P-complete (w.r.t. log space reductions).
For 2-d CA, an example of rule r is
provided such that CREP is NP-com-
plete. A classification of CA rules simi-
lar to that of Culik and Yu (for infinite
CA) is connected to several deep prob-
lems in complexity theory.

Durand [1994; 1995] provides com-
plexity results for CA with a different
flavor. The injectivity problem for 2-d
CA restricted to finite configurations
and von Neumann neighborhoods is
co-NP complete [Durand 1994]. This re-
sult is about arbitrary CA and is differ-
ent from the above results where exam-
ples of CA are provided for which a
problem is complete for some complexity
class. Hence this kind of result may be
called uniform complexity results. Du-
rand [1995] also proves that the revers-
ibility problem for 2-d CA restricted to
certain types of finite configurations is
complete for the class RNP introduced
by Levin.
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4.6 Finite CA and its Applications

A finite CA has a finite number of cells.
Figure 4 shows a 4-cell CA whose local
rule is the sum modulo 2 of the states of
the left and right neighbors. For finite
CA, the dynamical properties are com-
pletely captured by the State Transition
Diagram (STD), which is a directed
graph whose nodes are configurations of
the CA, and there is a edge from node i
to node j iff configuration i leads to
configuration j in one time step. Since a
finite CA is an autonomous determinis-
tic machine, it is easy to see that the
STD will consist of components, with
each component having a unique cycle
and trees of height $ 0 rooted on the
cycle vertices. The cycles capture the
steady state behavior of the system and
are sometimes called attractors, while a
branch in a tree captures the initial
transient behavior. One can ask several
important questions regarding the dy-
namical parameters of the system; the
number of cycles, length of the cycles,
height of the trees, branching degree of
each node, etc. For an arbitrary CA
such questions are very difficult to an-
swer. For CA with a periodic boundary
condition, some results for reversibility
and maximal cycle length are presented
in Harao and Noguchi [1978]; see Lee
and Kawahara [1996] for recursive for-
mulas describing STD of finite CA.
However, a complete characterization is
not known and generalization to higher
dimensions is difficult.

4.6.1 Linear CA. For finite linear
CA, much more information can be ob-

tained using algebraic methods. The
STD in this case shows a more uniform
behavior [Martin et al. 1984]; the trees
rooted on any cycle vertex are isomor-
phic to the tree rooted on the null con-
figuration, the indegrees of all the nodes
are equal, and equal to the dimension of
the kernel of the linear map, etc. For a
wealth of results on the STD of 1-d
periodic boundary CA, see Martin
[1984]. Additional results can be found
in Guan and He [1986]. For 2-d CA,
Kawahara et al. [1995] investigate
when the configuration reachable in one
time step from the all ones configura-
tions lies on a cycle. The dimension of
kernel of 2-d linear CA were studied by
several authors [Barua and Ramakrish-
nan 1996; Sutner 1988b; 1990b; Sarkar
1996], and is related to the s-game
mentioned before. For multidimensional
CA, it is difficult to obtain a character-
ization of the dimension of the kernel,
but a characterization of reversibility is
presented in Sarkar and Barua [1998a].

An important problem in the alge-
braic analysis of linear CA is the repre-
sentation of the linear global map. Mar-
tin et al. [1984] use dipolynomials to
represent the configuration of a periodic
boundary CA. The next configuration is
obtained by multiplying the present
configuration with a fixed polynomial
(which represents the local rule) modulo
X N21, for an N cell CA. The algebra of
dipolynomials is then used in the alge-
braic analysis of the map. The extension
of this method to multidimensional CA
is possible, but requires working with
multivariate dipolynomials, which is
difficult (see Martin et al. [1984] for
details). However, the technique of di-
polynomials cannot be used directly for
the null boundary condition. Another
way to use dipolynomials (or polynomi-
als) to handle null boundary conditions
arises from a nice technique introduced
in Martin et al. [1984], whereby an
N-cell null boundary 1-d CA can be em-
bedded in a ~2N 1 2!-cell periodic
boundary 1-d CA. Kawahara et al.
[1995] extended this approach to study

Figure 4. A 4-cell null boundary
CA.
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2-d null boundary CA. However, the
polynomial method fails for hybrid CA.
A different approach to the problem,
and one that is extensively used in
VLSI applications, is to represent the
global rule of a CA by a matrix. For an
uniform periodic boundary 1-d CA, the
matrix is circulant, and for nearest
neighborhood null boundary 1-d CA, the
matrix is tridiagonal. The characteristic
and minimal polynomial for this matrix
encodes all information about the STD
of the CA; for details, see Barua and
Ramakrishnan [1996] and Sutner
[1996]. A generalization to multidimen-
sional CA results in the linear operator
being represented by a sum of Kro-
necker products of certain special matri-
ces [Sarkar and Barua 1998a]. Another
approach to multidimensional linear CA
can be found in Le Bruyn and Van den
Bergh [1991], where each cell state is
considered a vector.

All of the above discussion is for CA
on grids. However, linear CA on arbi-
trary graphs was studied by Sutner
[1989b; 1988a]. In Sutner [1989b], it is
shown that the all-ones configuration is
not a Garden of Eden for a linear binary
CA on any finite graph. For a CA on a
finite undirected graph with addition
carried out in some finite Abelian
monoid, the predecessor existence prob-
lem is studied in Sutner [1988a]. It is
shown that the problem is polynomial
time solvable if the underlying monoid
is a group and is NP-complete for an
arbitrary monoid. Further, a linear time
algorithm is presented to decide revers-
ibility over a special class of graphs.

A more abstract treatment of linear
CA, where the cell space is an Abelian
group and the state space is a finite
commutative ring, can be found in Aso
and Honda [1985]. An interesting de-
composition of a CA with state space
Zm, into a set of CA with state space
power of a prime which divides m is
also presented in Aso and Honda [1985].
In yet another approach to the study of
linear CA, the generating function for
the temporal sequence of a cell is stud-

ied and is shown to be an algebraic
series [Litow and Dumas 1993]. Addi-
tional results on linear CA can be found
in the work of Jen [1988]; for fractal
properties of infinite linear CA, see Sec-
tion 4.

4.6.2 VLSI Applications. One impor-
tant area of application for finite CA is
in VLSI design; see Chaudhuri et al.
[1997] for details of applications of addi-
tive cellular automata to VLSI. The lo-
cal communication structure of CA and
the homogeneous nature of each cell are
provided as strong arguments in favor
of using CA for VLSI. In its use as a
VLSI structure, it is often offered as a
replacement for the Linear Feedback
Shift Register (LFSR). Perhaps the
most successful area of applying VLSI
for CA is generation of pseudorandom
sequences, and their use in built-in self-
test (BIST). The successive configura-
tions of a CA are taken as a random
sequence. Other areas of VLSI where
CA is used are in error-correcting codes,
private key cryptosystem, design of as-
sociative memory, aliasing, and testing
the finite state machine.

In the VLSI context, the 1-d binary
CA is most common, though use of a 2-d
structure has been reported. Since non-
linear CA cannot be analyzed satisfacto-
rily, they are not used in applications.
Most applications are based on CA
where the global map is a linear or
affine map. Another important feature
of CA used in VLSI applications is the
null boundary condition, since periodic
boundary conditions require “long dis-
tance” communication between the end
cells. Also, the CA structure is usually a
hybrid one, where each cell has its own
local rule. For theoretical questions re-
garding hybrid 1-d CA, see Bardell
[1990]; Nandi and Chaudhuri [1996];
Tezuka and Fushimi [1994]; Serra and
Slater [1990]; and Sarkar and Barua
[1998b]. An important problem in VLSI
applications is to design a null bound-
ary 90/150 CA given an irreducible or
primitive polynomial, which is the char-
acteristic polynomial for the CA. The
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problem was first mentioned in Bardell
[1990], and a solution appears in Serra
and Slater [1990] using a version of the
Lanczos tridiagonalization algorithm
over GF~2!. However, a much simpler
and elegant algorithm appears in Te-
zuka and Fushimi [1994]. For periodic
boundary CA, the characteristic polyno-
mial can always be factored. This is
suggested in Bardell [1990] and tackled
in Nandi and Chaudhuri [1996]. Several
CA-based cryptographic primitives such
as stream ciphers, private key crypto-
systems, public key cryptosystems, and
hash functions have been proposed; see
Niemi [1997] for details.

5. CONCLUSION

CAs have been studied from several dif-
ferent angles other than the ones men-
tioned here (they are important, but are
not included here mainly because they
are either new or have an extensive
literature requiring a separate survey).
A (perhaps incomplete) list of these top-
ics includes modeling in physics [Wol-
fram 1986] (see also Physica D vols. 10
(1984) and 45 (1990)); asynchronous CA
[Pighizzini 1994]; cellular neural net-
works [Chua and Yang 1988]; quantum
CA [Richter and Werner 1996; Watrous
1996]; relation to polyomino tilings
[Aigrain and Beauquier 1995]; and the
interesting work done at the Santa Fe
Institute on evolving a CA with genetic
algorithms [Mitchell et al. 1994].
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