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AbstTact- A multiploid genetic algorithm (GA) incorpo- 
rates several candidates for each gene within a single geno- 
type, and uses some form of dominance mechanism (most 
simply, an encoded choice) to  decide which choice of each 
gene is active in the phenotype. We explore a simple multi- 
ploid model. Investigation with two simplified test problems 
is reported, respectively suggesting certain strengths and 
weaknesses of employing multiploidy. In particular, multi- 
ploidy appears useful in cases where attractive suboptima 
are profoundly Hamming distant from the true optimum, 
thus requiring a GA to recover substantial lost material in 
order to recover from suboptima. This is distinct from cases 
where a GA’s difficulty in solving a problem is, for exam- 
ple, more concerned with appropriately combining genetic 
material than finding it. 

I. INTRODUCTION 

Most implementations of Genetic Algorithms (GAS) are 
based on populations composed of single chromosome (hap- 
loid) genotypes. However, in nature we find that many 
organisms have poky-ploid genotypes, which consist of mul- 
tiple sets of chromosomes with some mechanism for deter- 
mining which gene is expressed, i.e. is dominant at each 
locus. This mechanism seems to confer a number of advan- 
tages on a system, mainly by enhancing population diver- 
sity; currently unused genes remain in a multiploid geno- 
type, unexpressed, but shielded from extinction until they 
may later become useful. 

A similar mechanism promises to benefit a genetic algo- 
rithm (GA). In a standard GA, the artificial evolution pro- 
cess gradually decreases population diversity, often leading 
to premature convergence. The multiploid genotype may 
provide a method of maintaining enough useful diversity in 
the population to  often thwart this effect. As ever, better 
overall results would have to come at  the expense of extra 
computational time and/or space usage. For example, a 
multiploid population may contain a large amount of os- 
tensibly redundant information which has to be maintained 
by the algorithm. Also, any diversity-enhancing mecha- 
nism (for example, increasing the population size in an 
ordinary GA, or increasing the mutation rate) slows down 
convergence speed. In order to be useful, an applied multi- 
ploid GA should counteract these costs with better quality 
overall results. By investigating two simple test problems 
in this paper, we find results which suggest how we may 
distinguish applications in which the cost is indeed worth- 
while from others where multiploidy will provide no useful 
benefit. 

mask: 0 0 0 1 1 1 2 2 2  
chromosome[O] : a a a a a a a a a 
chromosome[l] : b b b b b b b b b 
chromosome[2]: c c c c c c c c c 
phenotype : a a a b b b c c c 

Fig. 1. Multiploid Type 1 

mask: 0 1 2  
chromosome[O]: a a a a a a a a a 
chromosome[l]: b b b b b b b b b 
chromosome[2]: c c c c c c c c c 
phenotype : a a a b b b c c c 

Fig. 2.  Multiploid Type 2 

A.  Related Work 
Early research into GAS tested a number of methods of 

introducing the notion of diploidy (double chromosomes) 
into the genotype; see [3] for a summary. But such tended 
to concentrate on dominance mechanisms rather than com- 
parison with haploid GA performance, for example [l]. 
More recently, Yoshida & Adachi [5] look at  a diploid GA 
in the context of solving non-stationary problems. 

Work on comparing such models with standard GAS has 
been done by Dasgupta & MacGregor [a], who use a struc- 
tured GA in which a genotype is a hierarchical structure; 
high level genes activate or deactivate low level genes, and 
so on recursively, to a limited depth. Genes that are not 
active remain in the structure and are carried through to  
subsequent generations. Dasgupta & MacGregor have gen- 
erally found this method successful on a variety of prob- 
lems, though do not report any particular weaknesses of the 
model. The multiploid model tested here is conceptually 
simpler than Dasgupta & MacGregor’s ‘structured GA’, 
which seems justified by the lack of evidence for any par- 
ticular need for multiple recursive levels of gene-activation. 
For example, reports on the use of the ‘structured GA’ tend 
not to extend beyond two levels. 

11. THE MULTIPLOID MODEL 

A multiploid genotype, shown in figure 1, contains p 
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chromosomes, each of length L,  and a mask which spec- 
ifies which of the p chromosomes has the dominant gene at 
a particular position in the chromosome. This information 
is decoded to yield the phenotype as follows: 

An allele value of a at locus i in the mask denotes that 
the i th gene in the chromosome with index a becomes the 
i th gene of the phenotype. The mask length can be shorter 
than the length of the chromosomes, as for example in fig- 
ure 2. In this case, if the mask length is m and the chro- 
mosome length L ,  then a gene at locus i in the mask with 
a value of a indicates that  the i th  set of L / m  consecutive 
genes in the ath chromosome are dominant. 

111. THE ALGORITHM 

A population of multiploids, each of ploidy p is cre- 
ated by randomly generating each mask using alleles in the 
range 0 - p - 1, and generating each of the p chromosomes 
in each structure using alleles from a suitable range. 

Multiploids are selected for reproduction using a conven- 
tional selection technique; in this study, rank based selec- 
tion was used [4]. In a typical GA run, some form of tradi- 
tional crossover is applied t o  z% of the p chromosomes in 
the multiploid and (optionally) to  the mask to produce a 
child. The 2% of chromosomes to  cross are chosen at  ran- 
dom - crossover is always performed by crossing chrom[i] 
of parent 1 with chrom[i] of parent 2 to produce chrom[i] 
of the child. If chrom[i] is not chosen for crossover, then 
chrom[i] of the child is produced by randomly selecting 
chrom[i] from one of the parents. Similarly, if the mask 
is not crossed, then one of the parent masks is chosen at  
random to  become the child mask. The resulting child 
multiploid contains the same number of chromosomes as 
its parents. 

Mutation operators can then be applied optionally to the 
mask and to any or all of the chromosomes in the new child. 
Note that operators are not applied to the phenotype - 
this is always constructed using the information from the 
mask and chromosomes. Convergence of the population is 
defined here (arbitrarily) as the point at which all pheno- 
types are identical - at this point however the population 
is still genotypically diverse. 

IV. EXPERIMENTS - OVERVIEW 

Experiments were performed on two test problems, each 
of which presents difficulties for a standard GA for differ- 
ent reasons. The first of these, coined the Indecisive(k) 
problem, comprises a landscape with multiple suboptima 
and one true optimum, all maximally Hamming distant 
from each other. The true optimum is only slightly better 
than the suboptima, and this difference is very difficult for 
schema processing to  latch on to early on in a GA run. A 
standard GA or hillclimber can be expected to converge 
on any one of the suboptima with a chance equal to its 
converging on the true optimum. The difficulty for the GA 
lies in the attractiveness of the suboptima, drawing search 
away from the true optimum, which in this case amounts 
to steadily removing all but traces (at most) of the genetic 
material required to  recover progress towards the true op- 

11 Ploidy I % Success Rate  in n 
finding optimum sol’n 

1 (haploid) 

100% 

I I  5 I 98% 

100% 

100% 
10 98% 

Table 1. Indecisive(1) Problem 

timum. 
The second problem was the well-known ‘Max’ (or ‘uni- 

tation’) problem, in which the fitness of a binary string is 
simply the number of ‘1’s in the string. This a very simple 
problem which is known to  present a challenge to  a GA; the 
difficulty lies in converting the final few ‘0’s to ‘1’s towards 
the end of a run. Using gene-wise mutation in particular, 
in which mutation involves a small chance of individually 
altering any gene in the string, useful mutations a t  this 
stage are likely to  be accompanied by destructive muta- 
tions elsewhere in the string. So, rather than a problem of 
lost genetic material, the challenge presented by the Max 
problem concerns judicious use of genetic operators. 

V. THE INDECISIVE(K) PROBLEM 

In this problem, alleles can take values from 0 to  k .  Fit- 
ness depends on the ‘allele-counts’. For example, the allele 
count of allele j ,  0 <= j <= k is the number of j’s in 
the string. Allele counts are obtained for each allele, sub- 
tracting 1 from each such count for alleles j in the range 
0 <= j < k .  The highest count then becomes the fitness. 
An ‘all ks’ chromosome is thus the true optimum, while the 
k strings ‘all O’s’, ‘all l’s’, and so on up to IC - 1, are at- 
tractive suboptima, all maximally Hamming distant from 
each other and from the true optimum. 

A haploid GA would be expected to  find the optimum 
solution around l / ( k  + 1) of the time. We expected the 
multiploid GA to improve on this. The intuition behind 
this is that in a multiploid GA, it seems likely that the al- 
leles appropriate to the true optimum will not be so quickly 
and irretrievably lost. Even if phenotypic convergence to 
a suboptimum starts to occur, ample genetic material ap- 
propriate to the true optimum should stay around which, 
in conjunction with serendipitous results of genetic opera- 
tions, still have a chance of re-emergence. 

Two series of experiments were performed: in the first, 
a haploid GA using a population of 50 chromosomes was 
compared to the multiploid GA with a population of 50 
multiploid units; the ploidy of these units was varied from 
2 to 10. In the second, the population size for each of 
the multiploid tests was reduced in proportion to ploidy, 
so that in each experiment the populations contained an 
equivalent amount of raw genetic material. Thus a hap- 
loid GA with population 100 was compared to a diploid 
GA with population 50, and so on. In each experiment, 
the chromosome length was 20, and the experiment was 
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25 78% 
20 62% 

10 10 24% 

Table 2. Indecisive(1): Population size reduced in relation to ploidy 

repeated 50 times. 
In each experiments, a steady state reproductive strategy 

was used, with rank based selection, as in Whitley’s GEN- 
ITOR [4]. The operators applied are two-point crossover, 
and gene-wise mutation, with a mutation rate of 0.02. In 
the results reported below, crossover and mutation are ap- 
plied to  all of the chromosomes of the parent genotypes as 
well as the masks. 

A .  Results and Discussion 
The results for Indecisive(l), given in table 1, clearly 

show that all values of ploidy are able to greatly outperform 
the haploid GA. For Indecisive(2), shown in table 2, and 
for ploidy values greater than 2, the multiploid is similarly 
more capable of finding the optimum than a haploid GA. 

Table 3 shows that multiploid populations containing the 
equivalent amount of genetic material as a haploid popu- 
lation still achieve greater success rates. With very high 
ploidy, and hence a very small population of multiploids, 
the actual number of optimal solutions is low merely as 
a result of the very low population size. However, at the 
point of convergence, the best solution in each of the 50 
trials was always dominated by ‘1’ alleles. 

The inference is that the multiploid GA is able to recover 
from early genetic drift, where ‘good’ genes become lost in 
the initial selection process. Good genes manage to remain 
in the population, shielded from any harmful over selection 
of ‘bad’ genes, and are available for reintroduction into the 
phenotype at a later stage. In a haploid GA, the only way 
to recover from this form of drift is by a highly unlikely 
series of chance mutations. 

Looking further into the ability of the multiploid GA to  
recover lost material, we note that there are at least two 
possible mechanisms by which this can occur: First, oper- 
ations on the mask can produce a new mask whose genes 
point at good genes that were previously recessive; second, 
operations on the chromosomes can introduce new ‘good’ 
genes into the chromosome so that mask genes previously 
pointing at a locus that contained a poor gene now point 
at a good gene in the same locus. 

Experiments on Indecisive( 1) and Indecisive(2) in which 
a) the mask was fixed and the chromosomes allowed to 
evolve and b) the chromosomes were fixed and the mask al- 
lowed to evolve, tended to show that both methods were in- 
dependently capable of improved results over a haploid GA 
on the Indecisive(1) problem. This suggests that the com- 
bination of these two routes towards gene-recovery in an 
unrestricted multiploid GA comprises a particularly pow- 
erful and flexible system. The genotype is able to negotiate 

finding optimum sol’n 

6 44% 
8 54% 

10 72% 

Table 3. Indecisive(2) Problem 

210,  , , , , , , , , 

Fig. 3. Max Problem: Crossover only 

conceptually separate but related routes towards optima. 

VI. THE MAX PROBLEM 

The efficiency of the multiploid was first investigated by 
comparing the performances of a multiploid and a haploid 
GA on a Max problem in which the only operator applied to 
the chromosomes was 2-point crossover. Both GAS would 
be expected to converge rapidly - the average fitness of 
the multiploid population however ought to be higher at 
convergence, and hence the GA should be less likely to  
need to rely on mutation operators later in the evolution. 
The population size in each case was 50 and the length of 
the chromosomes and mask 300. 

The experiments were then repeated, adding the mu- 
tation operator into the GA with a probability of 0.02. 
Evolution was halted when either a genotype in the popu- 
lation had reached maximum fitness, or after a maximum 
of 40000 evaluations, and the average solution fitness of the 
best solution obtained in each of 50 trials calculated. 

A .  Results 
The results from the set of experiments where the only 

operator was crossover (shown in figure 3) are interest- 
ing -all values of ploidy perform significantly better than 
the haploid (shown in t-tests), but the actual value of the 
ploidy seems to make very little difference. Moreover, a 
haploid GA with double the population size achieves a sig- 
nificantly higher fitness of 227.2. 

Adding in mutation reveals that the multiploid popula- 
tions evolve more slowly than the haploid GA, and hence 
after an equivalent number of evaluations the average fit- 
ness of the populations were lower than that of the haploid. 
The haploid GA found the optimum answer on just over 
50% of tests in an average of approximately 36000 evalu- 
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Ploidy 

10 

289.54 40,000 
289.3 40,000 
289.02 40,000 
288.92 40,000 
289.6 40,000 
289.28 40,000 
289.18 40.000 
289.26 40,000 
290.0 40,000 

Table 4. Max Problem: Crossover plus Mutation 

ations - the optimum was never reached by a multiploid 
GA in 40,000 evaluations (although the GA had never con- 
verged a t  this point). These results are shown in table 4. 
Again we see little difference between ploidy values. 

We can suggest an explanation for the general lack of im- 
provement provided by multiploidy on the Max problem as 
follows. As we have seen with the Indecisive problem, and 
also amenable to intuition, the multiploid method supports 
diverse search by way of saving useful genetic material from 
being lost. In a case where the relevant material can be re- 
covered readily with a normal GA anyway, however, this 
support would seem to be superfluous, and adds little. In 
the Max case, the basic units which need to be found are ‘1 
alleles at loci currently sporting ‘0’ alleles; mutation very 
readily provides a source of such material. The problem 
towards the end of a GA run on the Max problem, how- 
ever, is that useful mutations will often be accompanied by 
detrimental ones elsewhere in the genotype. Multiploidy 
offers no particular support for this difficulty. 

In the Indecisive problem, however, the difficulty facing 
a GA converging on a suboptimal solution is to somehow 
recover substantial collections of genetic material appro- 
priate to the true optimum. The multiploid model helps 
directly with this, while the haploid GA would have a van- 
ishingly small chance otherwise. In Max, however, a hap- 
loid GA readily possesses the ability to incrementally ac- 
quire the missing material (hence multiploidy offers little 
or no benefit) but is faced with logistic difficulties finding 
this material at appropriate moments. 

VII. CONCLUSION 

Our findings can be summarised in the following ten- 
tative hypothesis: Multiploidy appears useful an precisely 
those cases where useful genetic material m a y  otherwise be 
irretrievably lost. This is the central point underlying ju- 
dicious use of a simple multiploid model for optimisation. 
The import of this statement lies in recognising the idea 
that multiploidy will not  be helpful in cases where the GA 
does not  find it difficult to find the needed material (eg: ‘1‘ 
alleles in the Max problem). In such a case, either a hap- 
loid GA solves the problem adequately anyway, or there a.re 
other difficulties, such as there being only a very limited 
probability of combining the material in the appropriate 
way. The multiploid seems unable to effectively help in 
such cases, and so the extra computational burden of the 
multiploid algorithmic baggage is not cost-effective. 

Cases where necessary genetic material may be rather 
more difficult for a standard GA to  find, however, include 
situations in which various high-order schemata are needed. 
For example, a collection of five contiguous ‘1’ alleles in an 
Indecisive( 1) GA run fast converging to an ‘all 0’s’ solution. 
Here, the ‘1’s solution is virtually irretrievable by the sim- 
ple GA alone, since the probability of chance mutation pro- 
ducing a genome which both contains such material, and 
is fit enough to remain in the population long enough for 
useful further processing, is very small. More particularly, 
such material is not retrievable incrementally; mutations of 
a single or limited number of ‘0’ alleles to  ‘1‘ alleles, in the 
general area of the ‘all 0’s’ suboptimum, produces less fit 
children which are therefore unlikely to be selected again 
for reproduction. 

In conclusion, multiploidy, like many other methods 
which attempt to enhance the basic GA, is occasionally 
useful and occasionally superfluous or detrimental, depend- 
ing on the problem landscape at hand. Here, by examining 
some simple well-understood problem landscapes, we have 
attempted to understand when multiploidy may or not be 
useful in terms of certain very general features of the prob- 
lem landscape. Tentative conclusions from explorations so 
far suggest that multiploidy is of benefit when there exist 
optima whose discovery requires fairly high order building 
blocks, but attractive suboptima exist which do not use 
these building blocks. In particular, an element of decep- 
tion should exist which impedes a standard incremental 
route between suboptima and optima. 
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