Biologically Inspired Computing: Neural Computation

Lecture 6

Patricia A. Vargas

Lecture 6

- I. Lecture 5 Revision
- II. Artificial Neural Networks (Part IV)
 - I. Recurrent Artificial Networks
 - I. GasNet models
 - II. Evolving Artificial Neural Networks
 - I. MLPs
 - II. GasNet models

Artificial Neural Networks

Recurrent Neural Networks

- Hopfield Neural Network

64 pixel image of an "H"

Same image with 10 pixels altered (I.e. approximately 16% noise added)

GasNet Models x Classical ANN

Original

Plexus

Receptor

NSGasNet

$$O_i^n = \tanh\left[k_i^n\left(\sum_{j \in C_i} w_{ji}O_j^{n-1} + I_i^n\right) + b_i\right] \qquad k_i^n = k_i^0 + \alpha C_1^n - \beta C_2^n$$

6

$$T(t) = \begin{cases} H(\frac{t-t_{\epsilon}}{s}), & \text{emitting} \\ H[H(\frac{t_{s}-t_{\epsilon}}{s}) - H(\frac{t-t_{\epsilon}}{s})], & \text{not emitting} \\ \end{cases}$$

$$H(x) = \begin{cases} 0, \ x \le 0 \\ x, \ 0 < x < 1 \\ 1, \ \text{else} \end{cases}$$

Plexus Model

Gas dispersion NOT centred on the node

Original X Plexus

Gas Concentration around emitter

$$C(d,t) = \begin{cases} e^{-2d/r} \times T(t), d < r \\ 0, & \text{else} \end{cases} \xrightarrow{\text{formula}} 0.75 \\ 0, & \text{otherwise} 0.75 \\ 0.$$

Receptor Model

$$C(d,t) = \begin{cases} e^{-2d/r} \times T(t), d < r \\ 0, & \text{else} \end{cases}$$

 $\Delta M_j^n = \rho_i C_i^n \mathbf{R}_j$

Nodes do NOT have a spatial relation

[0,1] is called the *Mbias* or Modulator Bias

Artificial Neural Networks

- I. Evolving Artificial Neural Networks
 - I. MLPs
 - I. Topology and weights
 - II. Example: Evolving (training) MLPs to learn some functions

Artificial Neural Networks

- I. Evolving Artificial Neural Networks
 - I. GasNet models
 - I. Topology + all network parameters + task dependent parameters

< genotype >:: (< genes >)< gene >=< node >

I. Evolving GasNets models - Original

Node variables	Description	[Range]DiscreteValues	Gene locus	Description
Coordinates	Node coordinates on the	[0, 99]	$\langle x \rangle$	< x value >
	Euclidean plane $(100x100)$	[0, 99]	$ \langle y \rangle$	$< y \ value >$
Electrical	Defines the parameters of the	[0, 50]	$\langle r_p \rangle$	< radius >
connectivity	on the node that will determine the excitatory and inhibitory	$[0,2\pi]$	$ < T_p >$ $ < \theta_e >$ $ < \theta_c >$	$< angular \ extent >$
	links		$ \begin{vmatrix} \langle \theta_p \rangle \\ \langle \theta_p \rangle \\ \langle \theta_p \rangle \end{vmatrix} $	< orientation >
Recurrence status	Determines whether the node has an inhibitory, none or excitatory recurrent connection	{-1,0,1}	< rec >	$< recurrent\ status >$
Emitting status	Determines the circumstances under which the node will emit gas {none, electrical, gas}	{0,1,2}	$< E_s >$	$< emitting\ status >$
Type of gas	Determines which gas the node will emit	$\{1, 2\}$	$\langle G_t \rangle$	$< gas \ type >$
Rate of build up/ decay	Determines the rate of gas build up and decay	[1, 11]	$\langle s \rangle$	< build up/ $decay rate >$
Radius of emission	Maximum radius of gas emission	[10%,60%]* * of plane dimension 100 <i>x</i> 100	$< G_r >$	< gas radius >
Transfer function parameter default value K_i^0	Used in (2) to determine the transfer parameter value K_i^n	[1, 11]	$\langle K^0 \rangle$	< transfer function default value >
Bias	The b_i term ? on 1	[-1.0, 1.0]	< b >	$< bias \ value >$
Task parameters	Parameters which depend on the task, e.g. a robot vision sensors input area ([1])	?		?

I. Evolving GasNets models - NSGasNet

Node	Description	[Range]	Gene	Description
variables	_	DiscreteValues	locus	
Recurrence status	Determines whether the node has an inhibitory, none or excitatory recurrent connection	{-1,0,1}	< rec >	$< recurrent \ status >$
Emitting status	Determines the circumstances under which the node will emit gas {none, electrical, gas}	{0,1,2}	$< E_s >$	$< emitting \ status >$
Type of gas	Determines which gas the node will emit	{1,2}	$\langle G_t \rangle$	$< gas \ type >$
Rate of build up/ decay	Determines the rate of gas build up and decay	[1, 11]	$\langle s \rangle$	< build up/ decay rate >
Transfer function parameter default value K_i^0	Used in (2) to determine the transfer parameter value K_i^n	[1, 11]	$\langle K^0 \rangle$	< transfer function default value >
Bias	The term b_i on 1	[-1.0, 1.0]	< b >	$< bias \ value >$
Task parameters	Parameters which depend on the task, e.g. a robot vision sensors input area ([1])	?		?
$\begin{array}{l} \text{Modulator} \\ \text{Bias} \\ (Mbias_n) \end{array}$	Parameter which depend on the number of nodes, i.e. there will be as many <i>Mbias</i> as the number of network nodes	[0, 1]	$< Mbias_n >$	< Modulator bias for node $n >$

Lecture 6

References:

- Husbands, P., Smith, T., Jakobi, N. and O'Shea, M. (1998). "Better living through chemistry: Evolving GasNets for robot control," Connection Science, vol. 10(3-4), pp. 185–210, 1998.
- Philippides, P. Husbands, T. Smith, and M. O'Shea (1999) "Flexible couplings: Diffusing neuromodulators and adaptive robotics," Artificial Life, vol. 11, pp. 139–160, 2005.ciples and individual variability," Journal of Computational Neuroscience, vol. 7, pp. 119–147.
- Smith, T. M. S. (2002). "The Evolvability of Artificial Neural Net- works for Robot Control". University of Sussex, Brighton, England, UK, 2002, PhD thesis.
- Vargas, P.A., Di Paolo, E. A. & Husbands, P. (2007). "Preliminary Investigations on the Evolvability of a Non-spatial GasNet Model". In Proceedings of the 9th European Conference on Artificial life, ECAL'2007, Springer-Verlag, Lisbon, Portugal, September 2007, pp: 966-975.
- Vargas, P.A., Di Paolo, É. Á., & Husbands, P. (2008). "A study of GasNet spatial embedding in a delayed-response task". In the Proc. of ALIFE-XI'2008, England, UK, pp:640-647.

Husbands, P., Philippides, A., Vargas, P. A., Buckley, C, Fine, P., Di Paolo, E. & O'Shea,

M. (2011). "Spatial, Temporal and Modulatory Factors affecting GasNet Evolvability", Complexity 16(2):35-44, Wiley Periodicals, Inc. (invited paper).

Lecture 6

- I. Artificial Neural Networks (Part IV)
 - I. Recurrent Neural Networks
 - I. GasNet Models
 - II. Evolving ANN
 - I. MLP
 - II. GasNet models