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Figura 1 - Comparação entre computadores digitais, computadores analógicos e 

neurocomputadores (PERETTO, 1992) 
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5 Rede de Hopfield: recorrência e dinâmica não-linear 

• inspirada em conceitos de física estatística e dinâmica não-linear; 

• principais características: unidades computacionais não-lineares 

simetria nas conexões sinápticas 

totalmente realimentada (exceto auto-realimentação) 

 

Figura 2 – Rede Neural de Hopfield: ênfase nas conexões 

The Hopfield Network

• Each node is connected to every other 

node in the network

• Symmetric weights on connections 

(w5,9 = w9,5 )

• Node activations are either -1 or +1

• Execution involves iteratively re-

calculating the activation of each 

node until a stable state (assignment 

of activations to nodes) is achieved

The Hopfield Equations

• Training performed in one pass:

where,

wij is the weight between nodes i & j

N is the number of nodes in the network

n is the number of patterns to be learnt

pi
k is the value required for the i-th node 

in pattern k

• Execution performed iteratively:

where,

si is the activation of the i-th node
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Pattern Completion (III)

64 pixel image of an “H”

Same image with 10 pixels altered

(I.e. approximately 16% noise added)

Pattern Completion (IV)
Food for thought - flight of fancy?

Memories of a deceased dog named Tanya ...

– Suppose we could create an associative 

network which enabled a small subset of the 

nodes below to trigger all of the other nodes

– Nodes could also make connections with 

other ANNS or (brain areas) so that the 

“Dog” node triggered the recall of “data”

about dogs, etc. and vice versa
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Gas dispersion NOT centred on the node 
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Gas Concentration around emitter 

concentration at a node is then determined by summing the contributions from all other emitting
nodes (nodes are not affected by their own concentration, to avoid runaway positive feedback).

5.3 Modulation by the Gases
For mathematical convenience, in the basic GasNet there are two gases, one whose modulatory effect
is to increase the transfer function gain parameter (kn

i from Equation 2) and one whose effect is to
decrease it. It is genetically determined whether or not any given node will emit one of these two
gases (gas 1 and gas 2), and under what circumstances emission will occur (either when the electrical
activation of the node exceeds a threshold, or when the concentration of a genetically determined gas
in the vicinity of the node exceeds a threshold; note these emission processes provide a coupling
between the electrical and chemical mechanisms). The concentration-dependent modulation is
described by the following equation, with transfer parameters updated on every time step as the
network runs:

kni ¼ k0i þ aCn
1 # bCn

2 ð6Þ

where k 0
i is the genetically set default value for ki , C1

n and C2
n are the concentrations of gas 1 and gas

2, respectively, at node i on time step n, and a and b are constants. Both gas concentrations lie in the
range [0, 1]. Thus the gas does not alter the electrical activity in the network directly, but rather acts
by continuously changing the mapping between input and output for individual nodes, either directly
or by stimulating the production of further virtual gas. The concentration-dependent modulation
can, for instance, change a node’s output from being positive to being zero or negative even though
the input remains constant. Any node that is exposed to a nonzero gas concentration will be
modulated. This set of interacting processes provides the potential for highly plastic systems with
rich dynamics. Typically, many aspects of a functioning GasNet, such as the gas concentrations at
any point or the gain parameter of a given node, are in continuous flux as it generates behavior in a
mobile robot engaged in a sensorimotor task. The general form of the diffusion is based on the
properties of a single source neuron as modeled in Section 4. The modulation chosen is motivated by
what is known of NO modulatory effects at synapses [5].

Figure 4 . (a) The spatial distributions of gas concentration for the different GasNet models. The solid line denotes the
spatial distribution for the original GasNet model, while the dotted line shows the spatial distribution for the plexus
model. Units are the (internally consistent) ones used in the implementation. See text for further details. (b) The spatial
distributions of gas concentration outside the emitting (real) neuron for a single source (solid line) and dispersed sources
(dotted line).

Artificial Life Volume 11, Number 1–2 147

Flexible CouplingsA. Philippides, P. Husbands, T. Smith, and M. O’Shea
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Nodes do NOT have a spatial relation 

? 

[0,1] is called the Mbias or Modulator Bias 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• Seja Wk a matriz de pesos da camada k, contadas da esquerda para a direita.  

• 
k

ijw  corresponde ao peso ligando o neurônio pós-sináptico i ao neurônio pré-

sináptico j na camada k. 

• Em notação matricial, a saída da rede é dada por: 
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y = f3(W3 f2(W2 f1(W1x))) 

• Note que fk, k = 1,..., M (M = número de camadas da rede) é uma matriz quadrada 

fk ! "l#l, onde l é o número de neurônios na camada k. 

• O que acontece se as funções de ativação das unidades intermediárias forem 

lineares? 

 

Redes Recorrentes 

• O terceiro principal tipo de arquitetura de RNAs são as denominadas de redes 

recorrentes, pois elas possuem, pelo menos, um laço realimentando a saída de 

neurônios para outros neurônios da rede. 
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action. Its strength ∆M t
j will be dictated by

the concentration Ct
i in the vicinity of node

i at time step t , times the respective recep-
tor quantity Rj (7). Each node could have
one of three discrete receptor quantities {zero,
medium, maximum}.

∆M t
j = ρiC

t
iRj (7)

Another difference between the original Gas-
Net model and the Receptor is that in the later
there is only one type of gas being emitted.
However, its concentration is still constrained
to a gas cloud maximum radius. In both Plexus
and Receptor models, all new node variables
are also under evolutionary control. Next we
will highlight the original GasNet genetic en-
coding.

2.1.1 Original GasNet Genetic Encoding

Normally, depending on the task, the network
is composed of a variable number of nodes.
Thus, a network is encoded on a variable-
sized genotype, where each gene represents a
network node:

< genotype >:: (< genes >)
< gene >=< node >

A gene consists of an array of integer vari-
ables lying in the rage [0, 99] (each variable oc-
cupies a gene locus). The decoding from geno-
type to phenotype obeys simple laws for con-
tinuous values and for nominal values ([1]). 1
summarizes the original GasNet genetic encod-
ing, including all node variables, their range
and discrete values in the phenotype space
and the gene locus representation. It is worth
mentioning that apart from the task dependent
parameters, the original model has 15 variables
associated with each node.

As it was previously mentioned, there are
two other extensions to the original GasNet
model, namely Plexus and Receptor, and both
differ from the original in the way the gas
modulation occurs. Nonetheless, all archetypes
proposed so far are still spatially constrained.
In the next section, we will provide a detailed
explanation of the novel non-spatial GasNet
model and its major differences in relation to
the original model.

2.2 Non-Spatial GasNet: the NSGasNet
model

It is believed that once released the gas neu-
rotransmitter NO is not constrained to synap-
tic sites and therefore diffuses freely, possibly
modulating many nerve cells ([6]; [7]; [8]).
Drawing inspiration from this fact, a novel
spatially unconstrained network model was
devised, named NSGasNet . In this new model
the nodes do not have a location in a Euclidean
space. In the absence of a spatial relation, all
emitted gases can spread freely among neu-
rons, thus there is no notion of a gas cloud
anymore.

In this new scenario, the gas emitted from
any node can in principle affect all nodes.
Therefore it was envisaged that a sensitivity
limit should be imposed to each network node
in order to regulate the strength of modulation.
The sensitivity limits are under evolutionary
control lying in the range [0, 1] and are specific
to each other emitting node. This can be under-
stood as if there are ”gas” connections between
nodes of a strength defined by the respective
sensitivity limit.

Three models were designed to date, namely
NSGasNetI, NSGasNetII and NSGasNetIII. All
NSGasNet prototypes are discrete time recur-
rent neural networks which could either have
full or partial electrical connections and/or
fixed or flexible number of nodes. The full or
partial connectivity applies only to the synaptic
connections; the gaseous connections are de-
fined as follows:

• NSGasNetI - in this model a list of all pos-
sible gas connections is genetically set and
a fixed sensitivity limit of 0.5 is imposed to
each network node (bearing a resemblance
to the Plexus model from Philippides et al.
[2]).

• NSGasNetII - in this model there is also a
list of all possible gas connections (geneti-
cally set). However, the sensitivity limit is
no longer fixed. It is now under evolution-
ary control lying in the range [0, 1] and it
is specific to each other emitting node.

• NSGasNetIII - in this model there are only
sensitivity limits which are under evolu-
tionary control lying in the range [0, 1]
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TABLE 1: Original GasNet genetic encoding: phenotype and genotype. Each node variable is
encoded in a gene locus. The third column expresses the range and discrete values for each
node variable in the phenotype space.

Node variables Description [Range]DiscreteValues Gene locus Description
Coordinates Node coordinates on the [0, 99] < x > < x value >

Euclidean plane (100x100) [0, 99] < y > < y value >

Electrical Defines the parameters of the [0, 50] < rp > < radius >
connectivity two segments of circle centred < rp >

on the node that will determine [0, 2π] < θe > < angular extent >
the excitatory and inhibitory < θe >
links < θp > < orientation >

< θp >

Recurrence Determines whether the node {-1,0,1} < rec > < recurrent status >
status has an inhibitory, none or

excitatory recurrent connection

Emitting Determines the circumstances {0,1,2} < Es > < emitting status >
status under which the node will emit

gas {none, electrical, gas}

Type of gas Determines which gas {1, 2} < Gt > < gas type >
the node will emit

Rate of Determines the rate of gas [1, 11] < s > < build up/
build up/ build up and decay decay rate >
decay

Radius of Maximum radius of [10%,60%]* < Gr > < gas radius >
emission gas emission * of plane

dimension
100x100

Transfer Used in (2) to determine the [1, 11] < K0 > < transfer function
function transfer parameter value Kn

i default value >
parameter
default
value K0

i

Bias The bi term ? on 1 [−1.0, 1.0] < b > < bias value >

Task Parameters which depend on ? <? > ?
parameters the task, e.g. a robot vision

sensors input area
([1])

specific to each other emitting node. This
could be understood as if each node could
be connected in terms of gas to every other
node, although to an extent defined by its
respective sensitivity limit.

The NSGasNetIII model has proven to have
higher evolvability with respect to the other
NSGasNet models I and II. Therefore, we will
refer to the NSGasNetIII model simply as the
NSGasNet model in the set of comparative
experiments to follow.

In the NSGasNet model, the sensitivity limit

was named Mbias (modulator bias) and its
product with the amount of gas emitted T (t)
will now determine the gas concentration at
the node. Each node will have a modulator
bias lying in the range [0, 1] for every emitting
node. Therefore, given an emitting node, any
network node could ”decide” whether it will
be affected (Mbias > 0), or not (Mbias = 0)
by the gas emitted, without the requirement of
being within its gas cloud limits:

C(t) = Mbias× T (t) (8)
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TABLE 2: NSGasNet genetic encoding: phenotype and genotype. Each node variable is encoded
in a gene locus. The third column expresses the range and discrete values for each node variable
in the phenotype space.

Node Description [Range] Gene Description
variables DiscreteValues locus
Recurrence Determines whether the node {-1,0,1} < rec > < recurrent status >
status has an inhibitory, none or

excitatory recurrent connection

Emitting Determines the circumstances {0,1,2} < Es > < emitting status >
status under which the node will emit

gas {none, electrical, gas}

Type of gas Determines which gas {1, 2} < Gt > < gas type >
the node will emit

Rate of Determines the rate of gas [1, 11] < s > < build up/
build up/ build up and decay decay rate >
decay

Transfer Used in (2) to determine the [1, 11] < K0 > < transfer function
function transfer parameter value Kn

i default value >
parameter
default
value K0

i

Bias The term bi on 1 [−1.0, 1.0] < b > < bias value >

Task Parameters which depend on ? <? > ?
parameters the task, e.g. a robot vision

sensors input area
([1])

Modulator Parameter which depend on [0, 1] < Mbiasn > < Modulator bias
Bias the number of nodes, for node n >
(Mbiasn) i.e. there will be as many

Mbias as the number of
network nodes

1) Ten:Four = 1111111111:0000
2) Eleven:Five = 11111111111:00000
3) Eleven:Seven = 11111111111:0000000
4) Seven:Five = 1111111:00000

3.1.1 Network Architecture and Genetic En-
coding

In this experiment, both GasNet models, orig-
inal and NSGasNet, were designed as fully
connected ANNs (including self-connections)
with four nodes (Figure 4). Apart from each
model’s particularities, both genetic encodings
only differ from the basic GasNet (Table 1)
in that the synaptic weights are also under
evolutionary control lying in the range [−1, 1],
and there are no other electrical connectivity
parameters (Table 2).

Hence, the original GasNet genotype will

Fig. 4: Pictorial example of a fully-connected
ANN for the CPG task with four nodes. The
network does not receive external input and
the first network neuron output determines the
network output.

have 9 parameters for each node, which makes
a total of 36 parameters for the entire network
plus 6 parameters for the synaptic connection
weights. Remember that the NSGasNet geno-
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