Biologically Inspired Computing:
Neural Computation

Lecture 3

Lecture 3

|. Lecture 2 — Revision
Il. Artificial Neural Networks (Part Il)

l. Learning Paradigms

Il. Perceptron

Artificial Neural Networks (ANN)

- 1943 McCulloch e Pitts
o
H IStO ry 1948 Wiener
1949 Hebb
1957 Rosenblatt
1958 Widrow e Hoff
1969 Minsky e Papert

1960- | Kohonen, Grossberg, Widrow,
1980 Anderson, Caianiello,
Fukushima, Aleksander

1974 Werbos

1982 Hopfield
1986 Rumelhart e McClelland

Artificial Neural Networks

* Architectures: Single-layer Feedforward Networks

Artificial Neural Networks

* Architectures: Multilayer Feedforward Networks

Artificial Neural Networks

 Architectures: Recurrent Neural Networks

Ex: Hopfield Neural
L Network

Artificial Neural Networks

* Learning Paradigms
w(t+1) = w(t) + Aw(?)

Supervised Learning
l. Unsupervised Learning

Il. Reinforcement Learning

Artificial Neural Networks

l. Supervised Learning ?

w(t+1) = w(t) + Aw(?)

Artificial Neural Networks

Supervised Learning

w(t+1) = w(t) + Aw(?)

One or more i |
layers of Output v i)

—» hidden [neuron

neurons J ro—
1

Multi-layer Feedforward Network

efr)

di(1)

Error Surface

Error

local

HITFIIMILL piare i

global

HITFIT LR

A Weight

Artificial Neural Networks

Supervised Learning

- based on a set of examples of input-output
mapping, i.e. input and desired output pairs

- there is a supervisor/teacher

One or more
layers of

—> hidden

neurons

—p neuron

Output

Multi-layer Feedforward Network

w(t+1) = w(t) + Aw(?)

Error Surface

Error

focal

BIFIMILAN pﬁ ateats

glabal

FLIFIIFLLLN

A Weight

Artificial Neural Networks

Il. Unsupervised Learning ?

Artificial Neural Networks

Il. Unsupervised/Self-organised Learning

- there is no supervisor/teacher and thus no error value
- based only on the stimuli the network receives
- no targets for the outputs

- networks which discover patterns, correlations, etc. in the
input data (the ANN needs to learn how to categorise the
stimuli)

- thisis a self-organisation process

- usually employs a competitive learning algorithm

Artificial Neural Networks

Ill. Reinforcement Learning?

Artificial Neural Networks

Ill. Reinforcement Learning
- based on goal-directed learning from interaction

- “is learning what to do--how to map situations to
actions--so as to maximize a numerical reward

signal”(Sutton & Barto, 1998)

- thereis no supervisor and no explicit model of the
environment

eBook: http://webdocs.cs.ualberta.ca/~sutton/book/ebook/index.html

Artificial Neural Networks

1943 McCulloch e Pitts

1948 Wiener

1949 Hebb

1957 Rosenblatt

1958 Widrow e Hoff

1969 Minsky e Papert

1960- | Kohonen, Grossberg, Widrow,

1980 Anderson, Caianiello,
Fukushima, Aleksander

1974 Werbos

1982 Hopfield

1986 Rumelhart e McClelland

* Frank Rosenblatt (1957)
a
— Perceptron Inputs %Dendrites

ut
N/%%%é\%
—— ¢ @\L Output
AlS Axon
N
ndrites

Wig -
5
5

C
Inpu& q
/ Outi

Integrate Fire

— Rosenblatt, F. (1958), “The perceptron: A
probabilistic model for information
storage and organization in the brain,
Psychological Review, v65, n6, pp:
386-408.

a4
a

— Perceptron

a

Inputs

ﬁ%@é%%%

X1
e Activation
\b— CAIS
Cell Bo dy
el

Artificial Neural Networks
Frank Rosenblatt (1957)

Synaptic
41 Weights

Wio = by
.

Function

Input
Signals
_NA—

Uy

Y
flw) —»
Wi Output
Summing
Junction

Integrate

= f(u,)= f{iwijjj

Artificial Neural Networks

e Activation functions

fan't
: >

1 D
<

Two main forms of learning

* Supervised Learning
— Error-correcting learning

* Perceptron
— delta rule

e Multi-Layer Perceptron (MLP)

— Backpropagation (generalized delta rule)

* Unsupervised Learning

— Associative (Hebbian) learning

The Perceptron by Frank Rosenblatt
(1958, 1962)

* binary nodes (McCulloch-Pitts nodes) that
take values O or 1

* continuous weights, initially chosen randomly

Very simple example

Vi = f(uk) = f(iwijjj

u (net input) =0.4 x 0 +-0.1 x 1 =-0.1

0.4 -0.1 ok

0 | I >
0

u

Learning problem to be solved

Suppose we have an input pattern (0 1)
We have a single output pattern (1)

We have a net input of -0.1, which gives an
output pattern of (0)

How could we adjust the weights, so that this
situation is remedied and the spontaneous
output matches our target output pattern of (1)?

Learning problem to be solved

* How could we adjust the weights, so that this
situation is remedied and the spontaneous
output matches our target output pattern of (1)?

0

net input=04x0+-0.1 x 1 =-0.1

0.4 -0.1 I

Answer

Increase the weights, so that the net input
exceeds 0.0

E.g., add 0.2 to all weights

Observation: Weight from input node with
activation O does not have any effect on the
net input

So we will leave it alone

Perceptron algorithm in words

For each node in the output layer:

— Calculate the error, which can only take the values
-1,0, and 1

— If the error is O, the goal has been achieved.
Otherwise, we adjust the weights

— Do not alter weights from inactivated input nodes

Perceptron algorithm in rules

* weight change = some small constant x (target
activation - spontaneous output activation) x
Input activation

 if speak of error instead of the “target
activation minus the spontaneous output
activation”, we have:

* weight change = some small constant x error
X iInput activation

Perceptron algorithm as equation

* |f we call the input node i and the output node
j we have:

* Aw; is the weight change of the connection
from node i to node |

* a,is the activation of node j, a; of node j

* t;is the target value for node j

. 6jis the error for node j

* The learning constant u is typically chosen
small (e.g., 0.1).

Perceptron algorithm in
pseudo-code

Start with random initial weights (e.g., uniform random in [-.3,.3])

Do
{
For All Patterns p
{
For All Output Nodes j
{

CalculateActivation(j)

Error j = TargetValue j for Pattern p - Activation j

For All Input Nodes i To Output Node j
{

DeltaWeight = LearningConstant * Error j * Activation i
Weight = Weight + DeltaWeight
}

}
}

Until "Error is sufficiently small" Or "Time-out"

Perceptron convergence theorem

* /f a pattern set can be represented by a
Perceptron, ...

* the Perceptron learning rule will always be able
to find some correct weights

* Example:
http://lcn.epfl.ch/tutorial/english/perceptron/html/index.html

The Perceptron was a big hit

* Responsible for the first wave in
‘connectionism’

e Great interest and optimism about the future
of neural networks

* First neural network hardware was built in the
late fifties and early sixties

Limitations of the Perceptron

* Can only represent linear separable
problems...

Decision
/ Boundary
/

(b)

FIGURE 3.9 (a) A pair of linearly separable patterns. (b) A pair of non-
linearly separable patterns.

Limitations of the Perceptron

* Minsky and Papert (1969) showed that a
Perceptron cannot represent certain logical

functions

 Some of these are very fundamental, in
particular the exclusive or (XOR)

Exclusive OR (XOR)

In Out !

01 1

10 | 0.4 0.1
11 O
00 O

Let us try it in our applet:
http://lcn.epfl.ch/tutorial/english/perceptron/html/index.html

Minsky and Papert book caused the
‘first wave’ to die out

GOOFAI was increasing in popularity
Neural networks were very much out
A few hardy pioneers continued

Within five years a variant was developed by Paul
Werbos that was immune to the XOR problem, but
few noticed this

Even in Rosenblatt’s book many examples of more
sophisticated Perceptrons are given that can learn the
XOR

An extra layer is necessary to
represent the XOR

* No solid training procedure existed in 1969 to

accomplish this
* Thus commenced the search for the hidden

layer...

Error-backpropagation ?

 What was needed, was an algorithm to train
Perceptrons with more than two layers

* Preferably also one that used continuous
activations and non-linear activation rules

* Such an algorithm was developed by
— Paul Werbos in 1974
— David Parker in 1982
— LeCun in 1984
— Rumelhart, Hinton, and Williams in 1986

Lecture 3

|. Lecture 2 — Revision
Il. Artificial Neural Networks (Part I1)
|. Learning Paradigms

Il. Perceptron

Lecture 3

Reading list/Homework
- Read Introduction chapter: .8 (“Learning Processes”) and

- Chapter 1 (“Rosenblatt’s Perceptron”): 1.1, 1.2 and 1.7
(inclusive) from the book:

“Neural Networks and Learning Machines”
Simon O. Haykin (Nov 28, 2008)

LOOK INSIDE!

- Answer questions 7 to 16 from the Tutorial material .

Lecture 4

What’s next?

Artificial Neural Networks
(Part Ill)

