Biologically Inspired Computing: Neural Computation

Lecture 3

Patricia A. Vargas

- I. Lecture 2 Revision
- II. Artificial Neural Networks (Part II)
 - I. Learning Paradigms
 - II. Perceptron

Artificial Neural Networks (ANN)

• History

1943	McCulloch e Pitts
1948	Wiener
1949	Hebb
1957	Rosenblatt
1958	Widrow e Hoff
•••	•••
1969	Minsky e Papert
•••	•••
1960-	Kohonen, Grossberg, Widrow,
1980	Anderson, Caianiello,
	Fukushima, Aleksander
•••	•••
1974	Werbos
•••	•••
1982	Hopfield
1986	Rumelhart e McClelland

• Architectures: Single-layer Feedforward Networks

• Architectures: Multilayer Feedforward Networks

• Architectures: Recurrent Neural Networks

Ex: Hopfield Neural Network

• Learning Paradigms

 $w(t+1) = w(t) + \Delta w(t)$

- I. Supervised Learning
- II. Unsupervised Learning
- **III. Reinforcement Learning**

I. Supervised Learning ?

 $w(t+1) = w(t) + \Delta w(t)$

I. Supervised Learning

 $w(t+1) = w(t) + \Delta w(t)$

- I. Supervised Learning
 - based on a set of examples of input-output mapping, i.e. input and desired output pairs
 - there is a supervisor/teacher

II. Unsupervised Learning?

- II. Unsupervised/Self-organised Learning
 - there is no supervisor/teacher and thus no error value
 - based only on the stimuli the network receives
 - no targets for the outputs
 - networks which discover patterns, correlations, etc. in the input data (the ANN needs to learn how to categorise the stimuli)
 - this is a self-organisation process
 - usually employs a competitive learning algorithm

III. Reinforcement Learning?

III. Reinforcement Learning

- based on goal-directed learning from interaction
- "is learning what to do--how to map situations to actions--so as to maximize a numerical reward signal"(Sutton & Barto, 1998)
- there is no supervisor and no explicit model of the environment

eBook: http://webdocs.cs.ualberta.ca/~sutton/book/ebook/index.html

• Frank Rosenblatt (1957)

McCulloch e Pitts
Wiener
Hebb
Rosenblatt
Widrow e Hoff
Minsky e Papert
Kohonen, Grossberg, Widrow,
Anderson, Caianiello,
Fukushima, Aleksander
Werbos
Hopfield
Rumelhart e McClelland

Rosenblatt, F. (1958), "The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, v65, n6, pp: 386-408.

- Frank Rosenblatt (1957)
 - Perceptron

• Activation functions

Two main forms of learning

- Supervised Learning
 - Error-correcting learning
 - Perceptron
 - delta rule
 - Multi-Layer Perceptron (MLP)
 - Backpropagation (generalized delta rule)
- Unsupervised Learning
 - Associative (Hebbian) learning

The Perceptron by Frank Rosenblatt (1958, 1962)

- binary nodes (McCulloch-Pitts nodes) that take values 0 or 1
- continuous weights, initially chosen randomly

Very simple example $y_k = f(u_k) = f\left(\sum_{j=0}^m w_{kj} x_j\right)$ 0 u (net input) = $0.4 \times 0 + -0.1 \times 1 = -0.1$ 0.4 -0.1 $f(u)^{\prime}$ () θ U

Learning problem to be solved

- Suppose we have an input pattern (0 1)
- We have a single output pattern (1)
- We have a net input of -0.1, which gives an output pattern of (0)
- How could we adjust the weights, so that this situation is remedied and the spontaneous output matches our target output pattern of (1)?

Learning problem to be solved

 How could we adjust the weights, so that this situation is remedied and the spontaneous output matches our target output pattern of (1)?

Answer

- Increase the weights, so that the net input exceeds 0.0
- E.g., add 0.2 to all weights
- Observation: Weight from input node with activation 0 does not have any effect on the net input
- So we will leave it alone

Perceptron algorithm in words

For each node in the output layer:

- Calculate the error, which can only take the values
 -1, 0, and 1
- If the error is 0, the goal has been achieved.
 Otherwise, we adjust the weights
- Do not alter weights from inactivated input nodes

Perceptron algorithm in rules

- weight change = some small constant × (target activation - spontaneous output activation) × input activation
- if speak of *error* instead of the "target activation minus the spontaneous output activation", we have:
- weight change = some small constant × error × input activation

Perceptron algorithm as equation

• If we call the input node *i* and the output node *i* we have:

 $\Delta w_{ii} = \mu (t_i - a_i) a_i = \mu \delta_i a_i$

- **\Delta w**_{jj} is the weight change of the connection from node *i* to node *j*
- *a_i* is the activation of node *i*, *a_i* of node *j*
- t_j is the target value for node j
 δ_i is the error for node j
- small (e.g., 0.1).

Perceptron algorithm in pseudo-code

Start with random initial weights (e.g., uniform random in [-.3,.3])

```
Do
  For All Patterns p
  {
    For All Output Nodes j
      CalculateActivation(j)
      Error j = TargetValue j for Pattern p - Activation j
      For All Input Nodes i To Output Node j
      {
        DeltaWeight = LearningConstant * Error j * Activation i
        Weight = Weight + DeltaWeight
      }
    }
Until "Error is sufficiently small" Or "Time-out"
```

Perceptron convergence theorem

- If a pattern set can be represented by a Perceptron, ...
- the Perceptron learning rule will always be able to find some correct weights
- Example:

http://lcn.epfl.ch/tutorial/english/perceptron/html/index.html

The Perceptron was a big hit

- Responsible for the first wave in 'connectionism'
- Great interest and optimism about the future of neural networks
- First neural network hardware was built in the late fifties and early sixties

Limitations of the Perceptron

• Can only represent linear separable problems...

FIGURE 3.9 (a) A pair of linearly separable patterns. (b) A pair of nonlinearly separable patterns.

Limitations of the Perceptron

- Minsky and Papert (1969) showed that a Perceptron cannot represent certain logical functions
- Some of these are very fundamental, in particular the exclusive or (XOR)

Exclusive OR (XOR)

Let us try it in our applet: <u>http://lcn.epfl.ch/tutorial/english/perceptron/html/index.html</u>

Minsky and Papert book caused the 'first wave' to die out

- GOOFAI was increasing in popularity
- Neural networks were very much out
- A few hardy pioneers continued
- Within five years a variant was developed by Paul Werbos that was immune to the XOR problem, but few noticed this
- Even in Rosenblatt's book many examples of more sophisticated Perceptrons are given that can learn the XOR

An extra layer is necessary to represent the XOR

- No solid training procedure existed in 1969 to accomplish this
- Thus commenced the search for the hidden layer...

Error-backpropagation ?

- What was needed, was an algorithm to train Perceptrons with more than two layers
- Preferably also one that used continuous activations and non-linear activation rules
- Such an algorithm was developed by
 - Paul Werbos in 1974
 - David Parker in 1982
 - LeCun in 1984
 - Rumelhart, Hinton, and Williams in 1986

- I. Lecture 2 Revision
- II. Artificial Neural Networks (Part II)
 - I. Learning Paradigms
 - II. Perceptron

Reading list/Homework

- Read Introduction chapter: I.8 ("Learning Processes") and
- Chapter 1 ("Rosenblatt's Perceptron"): 1.1, 1.2 and 1.7 (inclusive) from the book:

"Neural Networks and Learning Machines" Simon O. Haykin (Nov 28, 2008)

- Answer questions 7 to 16 from the Tutorial material

What's next?

Artificial Neural Networks (Part III)