Biologically Inspired Computing: Neural Computation

Lecture 4

Patricia A. Vargas

- I. Lecture 3 Revision
- II. Artificial Neural Networks (Part II)
 - I. Multi-Layer Perceptrons
 - I. The Back-propagation Algorithm

Artificial Neural Networks

Learning Paradigms

$$w(t+1) = w(t) + \Delta w(t)$$

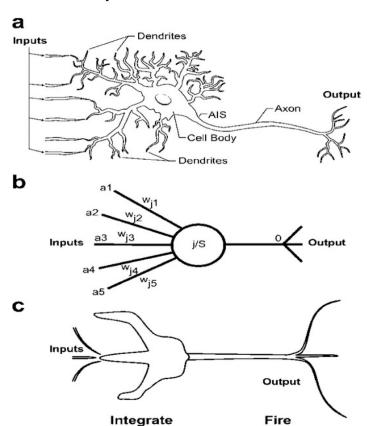
- Supervised Learning
- II. Unsupervised Learning
- III. Reinforcement Learning

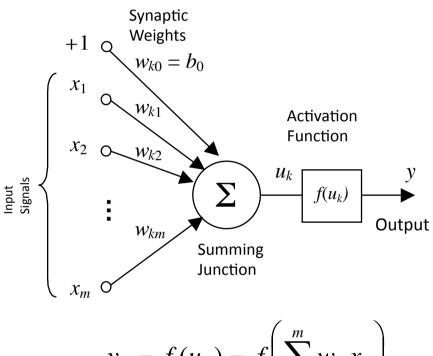
Two main forms of learning

- Supervised Learning
 - Error-correcting learning
 - ✓ Perceptron
 - delta rule
 - Multi-Layer Perceptron (MLP)
 - Back-propagation (generalized delta rule)
- Unsupervised Learning
 - Hopfield Neural Network

Artificial Neural Networks

- Frank Rosenblatt (1957)
 - Perceptron





Perceptron algorithm in pseudo-code

```
Start with random initial weights (e.g., uniform random in [-.3,.3])
Do
  For All Patterns p
    For All Output Nodes j
      CalculateActivation(j)
      Error j = TargetValue j for Pattern p - Activation j
      For All Input Nodes i To Output Node j
        DeltaWeight = LearningConstant * Error j * Activation i
        Weight = Weight + DeltaWeight
Until "Error is sufficiently small" Or "Time-out"
```

Limitations of the Perceptron

Can only represent linear separable problems...

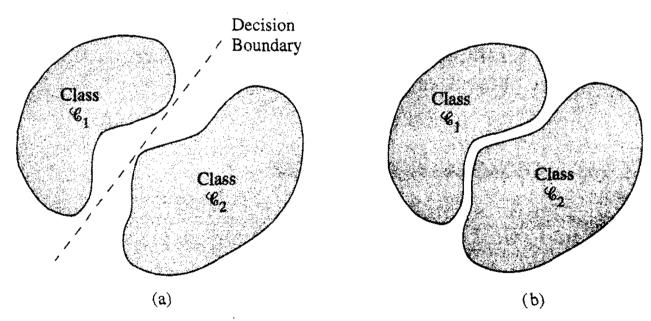


FIGURE 3.9 (a) A pair of linearly separable patterns. (b) A pair of non-linearly separable patterns.

Exclusive OR (XOR)

In	Out		
0 1	1		
10	1	0.4	$\setminus 0.1$
1 1	0		
0 0	0	0	1

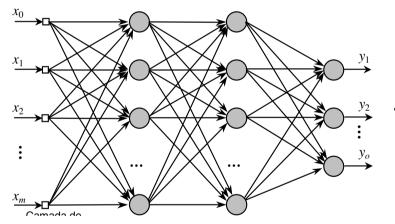
Error-backpropagation?

- What was needed, was an algorithm to train Perceptrons with more than two layers
- Preferably also one that used continuous activations and non-linear activation rules
- Such an algorithm was developed by
 - Paul Werbos in 1974
 - David Parker in 1982
 - LeCun in 1984
 - Rumelhart, Hinton, and Williams in 1986

Artificial Neural Networks

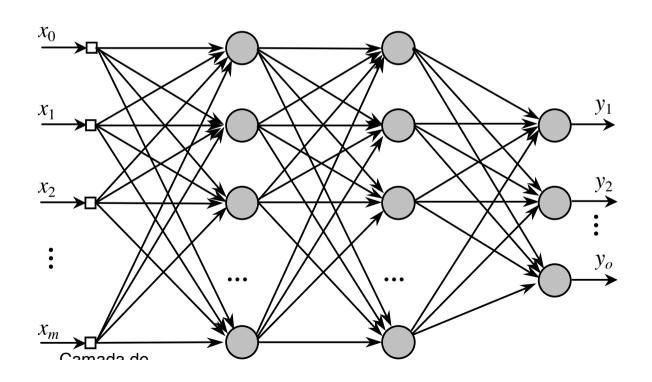
The Multi-Layer Perceptron (MLP)

 The XOR problem is solvable if we add an extra "layer" to a Perceptron

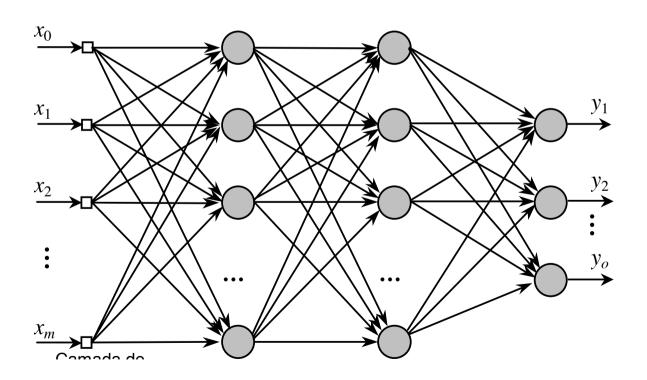


MLPs become more manageable, mathematically and computationally, if we formalise them into a standard structure (or topology or architecture)...

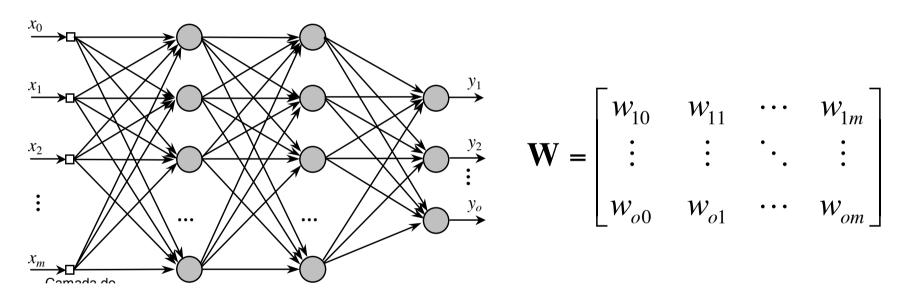
- Each node is connected to EVERY node in the adjacent layers and NO nodes in the same or any other layers



How do I represent the weights of a MLP in a matrix notation?



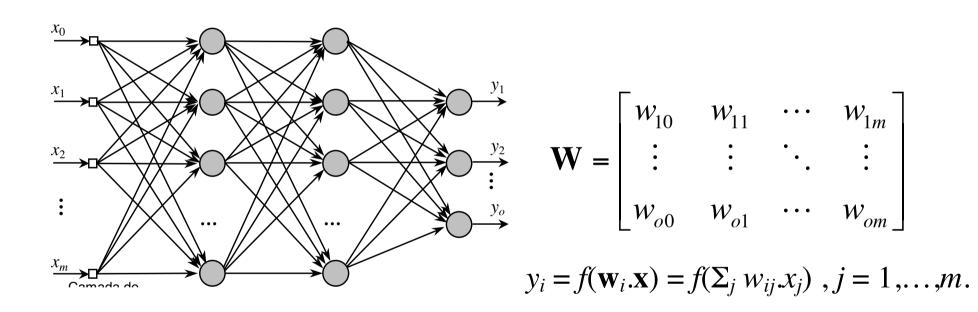
How do I represent the MLP using a matrix notation?



$$y_i = f(\mathbf{w}_i.\mathbf{x}) = f(\Sigma_j w_{ij}.x_j), j = 1,...,m.$$

BUT we have many layers....

How do I represent the MLP using a matrix notation?

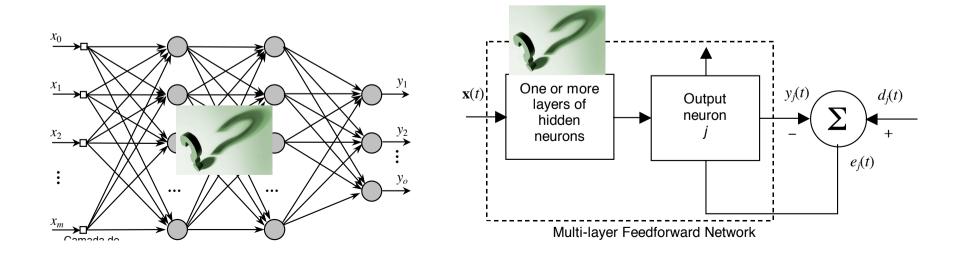


W^k is the synaptic weight matrix of layer k

$$\mathbf{y} = \mathbf{f}^3(\mathbf{W}^3 \mathbf{f}^2(\mathbf{W}^2 \mathbf{f}^1(\mathbf{W}^1 \mathbf{x})))$$

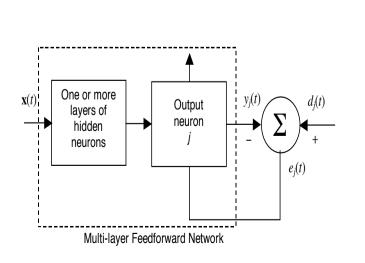
How to train a Multi-Layer Perceptron (MLP)?

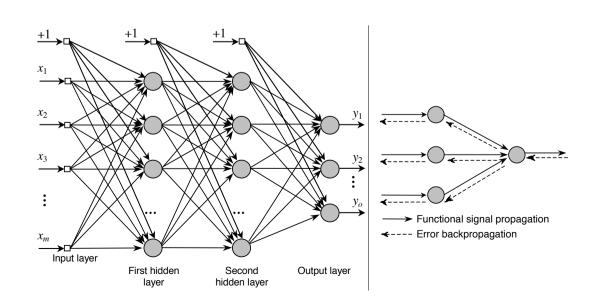
- How do we find the weights needed to perform a particular function?
- The problem lies in determining an error at the hidden nodes
- We have no desired value at the hidden nodes with which to compare their actual output and determine an error
- We have a desired output which can deliver an error at the output nodes but how should this error be divided up amongst the hidden nodes?



The Back-Propagation Algorithm

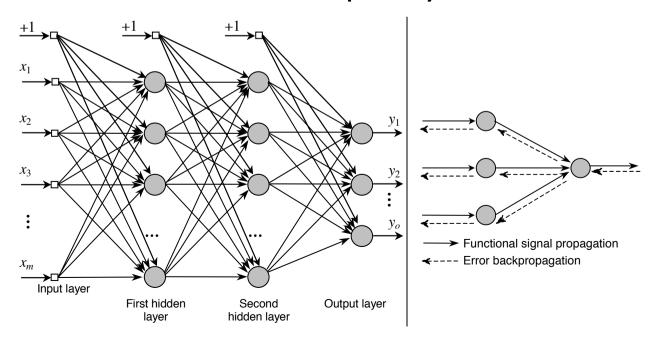
- In 1986 Rumelhart, Hinton and Williams proposed a "Generalised Delta Rule"
- also known as Error Back-Propagation or Gradient Descent Learning
- This rule, as its name implies, is an extension of the Delta Rule or "Widrow-Hoff Rule"





The Back-Propagation Algorithm:

- 1. Feed inputs forward through network
- 2. Determine error at outputs
- 3. Feed error backwards towards inputs
- 4. Determine weight adjustments
- 5. Repeat for next input pattern
- 6. Repeat until all errors acceptably small



The backprop trick

- To find the error value for a given node h in a hidden layer, ...
- Simply take the weighted sum of the errors of all nodes connected from node h
- i.e., of all nodes that have an incoming connection from node h: $\begin{array}{c}
 \text{To-nodes of } h \\
 \delta_1 \quad \delta_2 \quad \delta_3
 \end{array}$

This is backpropgation of errors

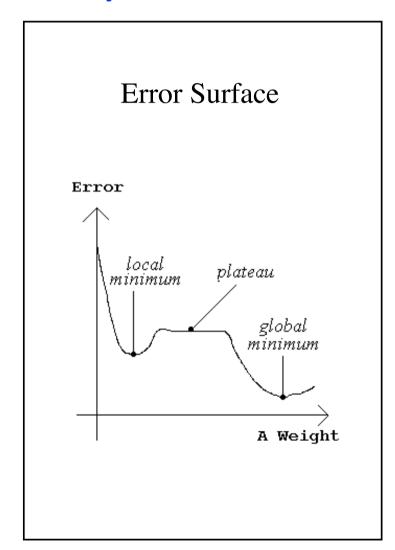
$$\delta_{\mathbf{h}} = w_1 \delta_1 + w_2 \delta_2 + w_3 \delta_3 + \dots + w_n \delta_n \qquad \qquad \bigvee_{\text{Node } h}$$

Characteristics of backpropagation

- Any number of layers
- Only feedforward, no cycles (though a more general versions does allow this)
- Use continuous nodes
 - Must have differentiable activation rule
 - Typically, logistic: S-shape between 0 and 1
- Initial weights are random

The gradient descent makes sense mathematically

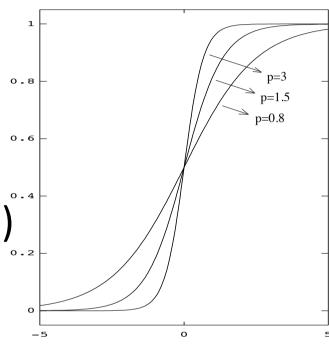
- It does not guarantee high performance
- It does not prevent local minima



Logistic function

- S-shaped between 0 and 1
- Approaches a linear function around x = 0
- Its rate-of-change (derivative) for a node with a given activation is:

activation \times (1 - activation)



Backpropagation algorithm in rules

- weight change = some small constant × error
 x input activation
- For an output node, the error is:

```
error = (target activation - output activation) \times output activation \times (1 - output activation)
```

For a hidden node, the error is:

```
error = weighted sum of to-node errors \times hidden activation \times (1 - hidden activation)
```

Weight change and momentum

- backpropagation algorithm often takes a long time to learn
- So, the learning rule is often augmented with a so called momentum term
- This consist in adding a fraction of the old weight change
- The learning rule then looks like:

weight change = some small constant × error × input activation + momentum constant × old weight change

Backpropagation in equations I

• If j is a node in an output layer, the error δ_j is: $\delta_i = (t_i - a_i) \ a_i(a_i - 1)$

- where a_j is the activation of node j
- t_i is its target activation value, and
- δ_j its error value

Backpropagation in equations II

- If j is a node in a hidden layer, and if there are k nodes 1, 2, ..., k, that receive a connection from j, the error δ_j is:
- $\delta_j = (w_{1j}\delta_1 + w_{2j}\delta_1 + ... + w_{kj}\delta_k) a_j(a_j-1)$
- where the weights w_{1j} , w_{2j} , ..., w_{kj} belong to the connections from hidden node j to nodes 1, 2, ..., k.

Backpropagation in equations III

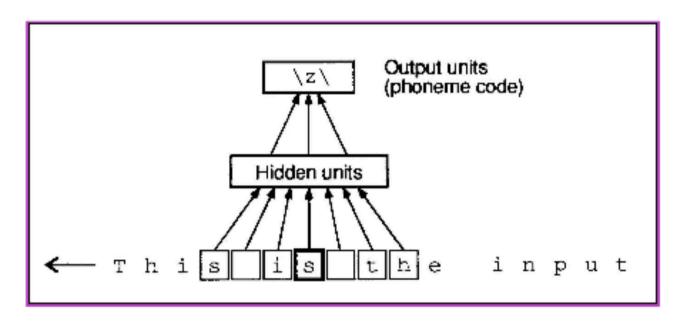
 The backpropagation learning rule (applied at time t) is:

$$\Delta w_{ji}(t) = \mu \, \delta_j a_i + \beta \Delta w_{ji}(t-1)$$

- where $\Delta w_{ji}(t)$ is the change in the weight from node i to node j at time t,
- The learning constant μ is typically chosen rather small (e.g., 0.05).
- The momentum term β is typically chosen around 0.5.

- Text-to-speech converter
- Developed by Sejnowski and Rosenberg (1987)
- (Sejnowski & Rosenberg, 1987 "Parallel Networks that Learn to Pronounce English Text", Complex Systems 1, 145-168)
- Connectionism's answer to DECTalk
- Learned to pronounce text with an error score comparable to DECTalk
- Was trained, not programmed
- Input was letter-in-context, output phoneme

- Project for pronouncing English text: for each character, the network should give the code of the corresponding phoneme:
 - A stream of words is given to the network, along with the phoneme pronunciation of each in symbolic form
 - A speech generation device is used to convert the phonemes to sound
- The same character is pronounced differently in different contexts: Head, Beach, Leech, Sketch



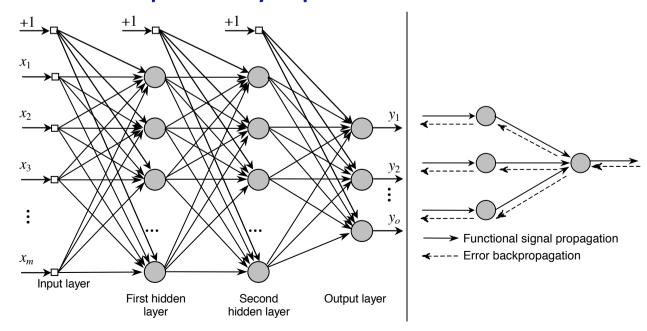
- Input is rolling sequence of 7 characters
- 7 x 29 possible characters = 203 binary inputs
- 80 neurons in one hidden layer
- 26 output neurons (one for each phoneme code)
- 16,240 weights in the first layer; 2,080 in the second
- → 203-80-26 two-layer network

- Training set: database of 1,024 words
- After 10 epochs the network obtains intelligible speech; after 50 epochs 95% accuracy is achieved
 - □ generalization: 78% accuracy on continuation of training text
 - Since three characters on each side are not always enough to determine the correct pronunciation, 100% accuracy cannot be obtained
- The learning process
 - Gradually performs better and better discrimination
 - Sounds like a child learning to talk
 - damaging network produced graceful degradation, with rapid recovery on retraining
- Analysis of the hidden neurons reveals that some of them represent meaningful properties of the input (e.g., vowels vs. consonants)

The Back-Propagation Algorithm

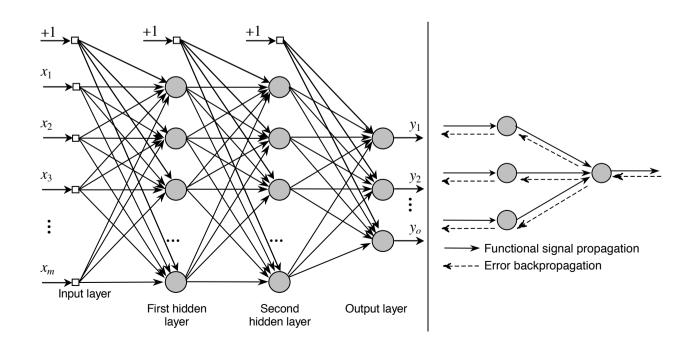
Batch Learning

- sum the weight updates for each input pattern and apply them after a complete set of training patterns has been presented (after one "epoch of training")
- therefore, adjustments to the synaptic weights are made on an epoch-by-epoch basis



The Back-Propagation Algorithm

- On-Line Learning
 - update weights as each input pattern is presented
 - therefore, adjustments to the synaptic weights are made on an example-by-example basis



Despite its popularity backpropagation has some disadvantages

- Learning is slow
- New learning will rapidly overwrite old representations, unless these are interleaved (i.e., repeated) with the new patterns
- This makes it hard to keep networks up-todate with new information (e.g., dollar rate)
- This also makes it very implausible from as a psychological model of human memory

Good points

- Easy to use
 - Few parameters to set
 - Algorithm is easy to implement
- Can be applied to a wide range of data
- Is very popular
- Has contributed greatly to the 'new connectionism' (second wave)

Conclusion

- Error-correcting learning has been very important in the brief history of connectionism
- Despite its limited plausibility as a psychological model of learning and memory, it is nevertheless used widely (also in psychology)

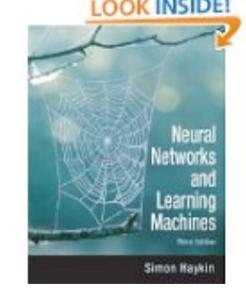
- Lecture 3 Revision
- II. Artificial Neural Networks (Part II)
 - I. Multi-Layer Perceptron
 - I. The Back-propagation Algorithm

Reading list/Homework

Take a look at Chapter 4 ("Multilayer Perceptrons")
from the book:

"Neural Networks and Learning Machines" (3rd Edition)

by Simon O. Haykin (Nov 28, 2008)



- Answer questions 17 to 20 from the Tutorial material

What's next?

Artificial Neural Networks
(Part III)