Biologically Inspired Computing:
Neural Computation

Lecture 4

Lecture 4

|. Lecture 3 — Revision
Il. Artificial Neural Networks (Part Il)

l. Multi-Layer Perceptrons
I. The Back-propagation Algorithm

Artificial Neural Networks

* Learning Paradigms
w(t+1) = w(t) + Aw(?)

Supervised Learning
l. Unsupervised Learning

Il. Reinforcement Learning

Two main forms of learning

* Supervised Learning
— Error-correcting learning

v'Perceptron
— delta rule

e Multi-Layer Perceptron (MLP)

— Back-propagation (generalized delta rule)

* Unsupervised Learning
— Hopfield Neural Network

— Perceptron

a

Inputs

ﬁ%@é%%%

X1
e Activation
\b— CAIS
Cell Bo dy
el

Artificial Neural Networks
Frank Rosenblatt (1957)

Synaptic
41 Weights

Wio = by
.

Function

Input
Signals
_NA—

Uy

Y
flw) —»
Wi Output
Summing
Junction

Integrate

= f(u,)= f{iwijjj

Perceptron algorithm in
pseudo-code

Start with random initial weights (e.g., uniform random in [-.3,.3])

Do
{
For All Patterns p
{
For All Output Nodes j
{

CalculateActivation(j)

Error j = TargetValue j for Pattern p - Activation j

For All Input Nodes i To Output Node j
{

DeltaWeight = LearningConstant * Error j * Activation i
Weight = Weight + DeltaWeight
}

}
}

Until "Error is sufficiently small" Or "Time-out"

Limitations of the Perceptron

* Can only represent linear separable
problems...

Decision
/ Boundary
/

(b)

FIGURE 3.9 (a) A pair of linearly separable patterns. (b) A pair of non-
linearly separable patterns.

Exclusive OR (XOR)

In Out !

01 1

10 | 0.4 0.1
11 O

00 O

Error-backpropagation ?

 What was needed, was an algorithm to train
Perceptrons with more than two layers

* Preferably also one that used continuous
activations and non-linear activation rules

* Such an algorithm was developed by
— Paul Werbos in 1974
— David Parker in 1982
— LeCun in 1984
— Rumelhart, Hinton, and Williams in 1986

Artificial Neural Networks

The Multi-Layer Perceptron (MLP)

- The XOR problem is solvable if
we add an extra “layer” to a

Perceptron
- i%’{’.\ >
_‘00\ A"t;o‘t“A&, - MLPs become more
¢ N S manageable, mathematically

and computationally, if we
formalise them into a standard
structure (or topology or
architecture)...

NAavmanAdA A~

The Multi-Layer Perceptron (MLP)

- Each node is connected to EVERY node in the adjacent
layers and NO nodes in the same or any other layers

The Multi-Layer Perceptron (MLP)

How do | represent the weights of a MLP in a matrix
notation?

The Multi-Layer Perceptron (MLP)

How do | represent the MLP using a matrix notation?

@,
<7
V 0
oSN
RS

X

SO
/|
O
(O

7
o V% X Wio Wi Wim
W\ A'!’A\ ‘}&5\ W = ;
R
) w, w, w
\\\ /\\ / - Vo0 1 _

Vi =f(Wi.X) =f(2j Wij..x]') ,j =1,..., nm.

BUT we have many layers....

The Multi-Layer Perceptron (MLP)

How do | represent the MLP using a matrix notation?

A7 A
: O ‘éo

2 /S ‘\ ‘4 WIO Wll Wlm
ANNALOA A“&. . W = :
A S '
\“ _WOO Wol Wom _

N
V.97

Wk is the synaptic
weight matrix of y = P(W* (W’ £1(W'x)))
layer k

Vi =f(Wi.X) =f(2j W,'J'..Xj) ,j =1,..., n.

How to train a Multi-Layer Perceptron (MLP)?

How do we find the weights needed to perform a particular
function?

The problem lies in determining an error at the hidden nodes

We have no desired value at the hidden nodes with which to
compare their actual output and determine an error

We have a desired output which can deliver an error at the
output nodes but how should this error be divided up amongst
the hidden nodes?

| One or more
x(1)!

(). layers of Output

— hidden —» neuron

neurons J

Multi-layer Feedforward Network

The Back-Propagation Algorithm

" |n 1986 Rumelhart, Hinton and Williams proposed a
“Generalised Delta Rule”

= also known as Error Back-Propagation or Gradient
Descent Learning

= This rule, as its name implies, is an extension of the
Delta Rule or “Widrow-Hoff Rule”

i | Oneormore |
X(f)! - |
(). layers of Output |) di1)
hidden [~neuon f—p
neurons J -

—> Functional signal propagation
~<---- Error backpropagation

Multi-layer Feedforward Network

S o

The Back-Propagation Algorithm:

Feed inputs forward through network
Determine error at outputs

Feed error backwards towards inputs
Determine weight adjustments

Repeat for next input pattern

Repeat until all errors acceptably small

+1 +1 +1
[]

B\ \

B OEHBOTS

X0

‘ \\\\\\
% () "“\v > b
RN R ¢
\\\ /\\\\ / 4 —> Functional signal propagation
U ~<---- Error backpropagation

The backprop trick

* To find the error value for a given node h in
a hidden layer, ...

* Simply take the weighted sum of the errors
of all nodes connected from node h

* ji.e., of all nodes that have an incoming

connection from node h: ~ Toredsel
61 62 63 6n

This is backpropgation of errors

O, = W;0; T W0, T w;0;+ ... +w

Characteristics of backpropagation

* Any number of layers

* Only feedforward, no cycles (though a more
general versions does allow this)

e Use continuous nodes
— Must have differentiable activation rule
— Typically, logistic: S-shape between 0 and 1

* |nitial weights are random

The gradient descent makes sense
mathematically

t does not guarantee
nigh performance

t does not prevent
ocal minima

Error Surface

Error

focal

FRLTFIIFHITAPR piare R

glabal

PRLTPTIFHE4PH

A Weight

Logistic function

e S-shaped between O and 1

e Approaches a linear function
around x =0 |

* |ts rate-of-change (derivative)o'%
for a node with a given
activation is:

activation x (1 -
activation)

Backpropagation algorithm in rules

* weight change = some small constant x error
X iInput activation

* For an output node, the error is:

error = (target activation - output activation) x
output activation x (1 - output activation)

 For a hidden node, the error is:

error = weighted sum of to-node errors x hidden
activation x (1 - hidden activation)

Weight change and momentum

backpropagation algorithm often takes a long
time to learn

So, the learning rule is often augmented with a
so called momentum term

This consist in adding a fraction of the old
weight change

The learning rule then looks like:

weight change = some small constant x error x input
activation + momentum constant x old weight

change

Backpropagation in equations |

If j is a node in an output layer, the error o; is:
0,=(t;-a) afa;-1)
where a: is the activation of node j

t; is its target activation value, and

6j its error value

Backpropagation in equations Il

* |fjis a node in a hidden layer, and if there are
k nodes 1, 2, ..., k, that receive a connection

from j, the error o; is:
* 8;=(wy;0;+w,;0, +... + W, 0,) a;(a;-1)

* where the weights w,;, w,;, ..., w,; belong to
the connections from hidden node j to nodes
1, 2, ..., k.

Backpropagation in equations Il

The backpropagation learning rule (applied at
time t) is:

Aw,(t) = uoa; + PAw,(t-1)
where Aw; (t) is the change in the weight
from node j to node j at time ¢,

The learning constant u is typically chosen
rather small (e.g., 0.05).

The momentum term f is typically chosen
around 0.5.

NetTalk: Backpropagation’s ‘killer-app’

e Text-to-speech converter
* Developed by Sejnowski and Rosenberg (1987)

(Sejnowski & Rosenberg, 1987 “Parallel Networks
that Learn to Pronounce English Text”, Complex
Systems 1, 145-168)

e Connectionism’s answer to DECTalk

* Learned to pronounce text with an error score
comparable to DECTalk

* Was trained, not programmed
* |nput was letter-in-context, output phoneme

NetTalk: Backpropagation’s ‘killer-app’

* Project for pronouncing English text: for each
character, the network should give the code of
the corresponding phoneme:

— A stream of words is given to the network, along with
the phoneme pronunciation of each in symbolic form

— A speech generation device is used to convert the
phonemes to sound

* The same character is pronounced differently in
different contexts: Head, Beach, Leech, Sketch

NetTalk: Backpropagation’s ‘killer-app’

\Z\ Qutput units

/ - \ (phoneme code)

Hidden units

I

(—This[1|EI | e input

Input is rolling sequence of 7 characters

7 x 29 possible characters = 203 binary inputs

80 neurons in one hidden layer

26 output neurons (one for each phoneme code)
16,240 weights in the first layer; 2,080 in the second

= 203-80-26 two-layer network

NetTalk: Backpropagation’s ‘killer-app’

® Training set: database of 1,024 words

= After 10 eRochs the network obtains intelligible
speech; after 50 epochs 95% accuracy is achieved
generalization: 78% accuracy on continuation of training text

Since three characters on each side are not always enough
to determine the correct pronunciation, 100% accuracy
cannot be obtained

®m The learning process
Gradually performs better and better discrimination

Sounds like a child learning to talk

damaging network produced graceful degradation, with rapid
recovery on retraining

® Analysis of the hidden neurons reveals that some of
them represent meaningful properties of the input
(e.g., vowels vs. consonants)

http://homepages.cae.wisc.edu/~ece539/data

The Back-Propagation Algorithm

= Batch Learning

- sum the weight updates for each input pattern and
apply them after a complete set of training patterns
has been presented (after one “epoch of training”)

- therefore, adjustments to the synaptic weights are
made on an epoch-by-epoch basis

+1 - +1 - +1

\\\v= X\\a\
NN \
X

—> Functional signal propagation
~<---- Error backpropagation

The Back-Propagation Algorithm

"= On-Line Learning
- update weights as each input pattern is presented

- therefore, adjustments to the synaptic weights are
made on an example-by-example basis

+1 - +1 - +1

RR

: SOOI N

CXYY X ‘
A‘Y‘}\\‘ * X V2 > — >
] V" v.v\%‘ V“V‘ : _ //
PN AR
\ \\\\ / \‘ 3 —> Functional signal propagation
‘ ‘\‘ ~<---- Error backpropagation
N

e
R

Input layer
First hidden Second Output layer
hidden layer

Despite its popularity backpropagation has some
disadvantages

* Learning is slow

* New learning will rapidly overwrite old
representations, unless these are interleaved
(i.e., repeated) with the new patterns

* This makes it hard to keep networks up-to-
date with new information (e.g., dollar rate)

* This also makes it very implausible from as a
psychological model of human memory

Good points

Easy to use
— Few parameters to set
— Algorithm is easy to implement

Can be applied to a wide range of data
Is very popular

Has contributed greatly to the ‘new
connectionism’ (second wave)

Conclusion

* Error-correcting learning has been very
important in the brief history of
connectionism

* Despite its limited plausibility as a
psychological model of learning and memory,
it is nevertheless used widely (also in

psychology)

Lecture 4

|. Lecture 3 — Revision

Il. Artificial Neural Networks (Part I1)

l. Multi-Layer Perceptron
I. The Back-propagation Algorithm

Lecture 4

Reading list/Homework

- Take a look at Chapter 4 (“Multilayer Perceptrons”)
from the book:

“Neural Networks and Learning Machines” (3rd Edit"l;“os%)s'
by Simon O. Haykin (Nov 28, 2008) PR

- Answer questions 17 to 20 from the Tutorial material

37

Lecture 5

What’s next?

Artificial Neural Networks
(Part Ill)

