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Abstract. We describe and evaluate a multi-objective optimisation (MOO)
algorithm that works within the Probability Collectives (PC) optimisa-
tion framework. PC is an alternative approach to optimization where
the optimization process focusses on finding an ideal distribution over
the solution space rather than an ideal solution. We describe one way in
which MOO can be done in the PC framework, via using a Pareto-based
ranking strategy as a single objective. We partially evaluate this via test-
ing on a number of problems, and compare the results with state of the
art alternatives. We find that this first multi-objective probability col-
lectives (MOPC) approach performs competitively, indicating both clear
promise, and clear room for improvement.

1 Introduction

1.1 Multi-Objective Optimisation

Multi-objective optimisation (MOO) continues to gain increasing attention [7],
as it becomes recognised that (a) a large number of real-world optimisation
problems are multi-objective; (b) the classical simplifying approach of combining
many objectives into one has several drawbacks [4]; (c) several efficient and
effective methods now exist that address MOO in a more principled way (e.g.
[32, 8, 21]).

A MOO problem is formally posed as arg minx∈X Gm(x), where Gm(x) is
an objective function and x is defined as a vector of decision variables (or a
solution) in the form x = (x1, x2.., xN ) from the set of solutions X. The aim is
to find the Pareto set which contains all the solutions that are not dominated
by any other solution. A solution x1 is said to be dominated by x2, if and only
if, x1 is as good as x2 in all objectives and x1 is strictly better then x2 in at
least one objective. A distinguishing feature of MOO is that the target is a set
of solutions rather than a single ‘best’.

The most effective MOO approaches to date are generally regarded to be
MOEAs (multi-objective evolutionary algorithms). EAs naturally maintain di-
versity (by working with a population of solutions), and many additional tech-
niques exist (e.g. [11, 14, 19]). MOEAs encompass a broad family of approaches
to MOO; particularly successful among them are those based on particle swarm



optimisation (PSO) [17, 20, 24], and others based on decomposing the MOO
problem into several different single-objective problems [16, 10]. In the former
approach, PSO is combined with the use of measures to maintain a diverse set
of ‘targets’, usually ensuring these are spread well across the developing Pareto
set. In the latter approach, the idea is to exploit the relationship between MOO
and single objective problems. Roughly speaking, different regions of the Pareto
set are optima of different weighted sums of the original objectives; such meth-
ods simultaneously progress several different single-objective searches, together
aiming to cover the Pareto set.

Meanwhile, an alternative framework for optimisation is Probability Collec-
tives (PC) [3, 29], distinguished by a focus on finding an ideal distribution over
solution space, rather than an ideal solution. This has similarities to estima-
tion of distribution algorithms (EDAs). However, EDAs operate by continually
updating a distribution guided by the results of sampling, with the goal of find-
ing optimal samples. PC, on the other hand, optimizes the distribution itself,
and this is reflected in a principled approach to the way that sample evalua-
tions influence the distribution. PC-based optimization is naturally well-suited
to maintaining diversity, as well as handling uncertainty and noise. Meanwhile,
PC shares with EDAs the clear advantages of using a distribution as the fo-
cus of search, rather than just concentrating (and perhaps being misled by) the
‘survivors’ represented by a current set of samples.

PC clearly has much potential for use in MOO. In this paper, we explore an
initial approach to adapting the PC framework for MOO, by formulating the
problem using a proxy single-objective, in a similar vein to PSO. It is revealing
to see how well this preliminary approach fares against state of the art MOO
methods. In the remainder, section 2 introduces Probability Collectives, section
3 introduces the proposed algorithm: Multi-Objective Probability Collectives
(MOPC), the experimental set-up and results are in section 4, and we conclude
in section 5 with conclusions and future work.

2 Probability Collectives

Probability Collectives (PC) is a framework for black-box optimisation with deep
theoretical connections to game theory, statistical physics [26], and optimisation
[28]. It has been applied so far to problems, ranging from sensor management
[25] to distributed flight control [2].

Typically a single-objective problem is solved by manipulating a vector of
decision variables x in an attempt to minimise a scalar function (G(x)). In PC,
however, optimisation is performed on probability distributions q(x) over the
decision variables, seeking a distribution highly peaked around values of the
decision variables that minimise G(x). This approach has various demonstrated
advantages; it is: easily parallelised (each variable’s distribution can be updated
independently [18]); applicable to continuous, discrete, or arbitrary spaces [3];
robust to noise and irregularity [9]; provides sensitivity information – a variable
with a peaky distribution can be deemed more important than one with a broad



distribution. The PC framework formally defines optimisation as in Equation 1.

arg min
qθ∈P

Eqθ (G(x)) (1)

where qθ is a parametric distribution over the decision variables x in the set
of all possible distributions P, minimising the expectation Eqθ (G(x)).

PC does not prescribe a specific approach for minimising this expectation.
Many alternatives are discussed in [27]. From hereon, we follow one such ap-
proach in which, based on considering the expectation of all possible distri-
butions[22], EP(G(x)), one solution is the point-wise limit of the Boltzmann
distributions shown in Equation 2.

p∗(x) = lim
β→∞

pβ(x) (2)

where pβ(x) is defined as exp[−βG(x)]. So, as β tends towards ∞ the dis-
tributions of pβ become peaked around the solutions that minimise G(x). To
find p∗(x), a parametrised distribution qθ is used to approximate the Boltzmann
distributions, and fitted to the Boltzmann distribution pβ by minimising the
Kullback-Leibler (KL) divergence [13] in Equation 3.

Eqθ (G(x)) = −KL(pβ‖qθ) = −
∫
pβ ln

(
pβ

qθ

)
dx (3)

By minimising the KL Divergence, qθ will approximate the “target” of pβ(x).
The β term is used as a regularization parameter controlling the evolution of
the distribution towards areas of decision space minimising G(x). The high-level
algorithm we use can now be presented in Alg. 1. We formulate the minimisation

Algorithm 1 PC Optimisation
1: Initialise β to be βmin
2: Initialise the number of evaluations to 0
3: repeat
4: Draw a set D from X using uniform distribution on the first run or qθ thereafter
5: Evaluate G(x) for each sample drawn
6: Find qθ by minimising the KL Divergence
7: Update β
8: Update evaluations
9: until (evaluations > maximum evaluations)

of KL divergence as cross-entropy minimisation [23] using a single multivariate
Gaussian density with mean µ and covariance σ. Means µ and co-variances σ
are updated from samples as follows:

µ =
∑
D s

ixi∑
D s

i
; σ =

∑
D s

i(xi − µ)(xi − µ)T∑
D s

i
(4)



where si is defined as p(xi) and xi is the ith sample in the sample set D. Recall
that p(xi) is defined using a Boltzmann distribution exp[−βG(xi)].

Note that there are close parallels with Expectation Maximisation (EM). The
difference from EM is the inclusion of the si term which is driven by β included
in the Boltzmann distribution. We can regard β as parametrising a trade-off;
when small, the parametric distribution tends to fit the samples, regardless of
G(x). As β tends towards infinity, the focus shifts towards samples with the best
G(x) by producing a highly peaked distribution.

3 Multi-Objective Probability Collectives

Multi-Objective Probability Collectives (MOPC) is implemented here by using
a single-objective ‘proxy’ – i.e. a single-objective score that attempts to evaluate
a solution’s quality for inclusion in the Pareto set. For this purpose we adopt the
maximin function from [17]. There are alternatives, such as Average Ranking
or others detailed in [5, 1], however our choice of maximin is based on promis-
ing performance within a PSO based MOO strategy [17]. Broad pseudocode for
MOPC is shown in Alg. 2. In MOPC, β is replaced by T , defined as 1

β for con-

Algorithm 2 MOPC Optimisation
1: Initialise the archive set A to empty, T to Tstart and calculate Tdecay and the

number of evaluations to 0
2: Initialise the set of MOPC Particles P
3: repeat
4: for all MOPC Particles do
5: Update MOPC Particle using A (see algorithm 3)
6: Increment the number of evaluations taken
7: end for
8: if (T > Tend) then Decrement T end if
9: until (evaluations > maximum evaluations)

10: Output the non-dominated set from archive set A

venience. Firstly, MOPC initialises an archive A to keep track of the developing
Pareto set, which in our current implementation is maintained in the same way
as the Crowding Archive used in NSGAII [8]. Next, MOPC initialises T and a
counter for number of evaluations. MOPC calculates the decay rate for T based
on Tstart, Tend, the maximum number of evaluations allowed E, the number of
particles |P | and the number of samples taken on each iteration |D|.

Tdecay =
Tend
Tstart

|P |∗|D|
E

(5)

MOPC then repeatedly updates each of the particle’s parametric distribu-
tions while reducing T until the maximum number of evaluations is reached. The



output of MOPC is the archive A. Details of line 7 of Alg. 2 are given by Alg.
3. In Alg. 3, each particle performs its own PC optimisation. First, samples are

Algorithm 3 Update MOPC Particle
1: if first run then
2: Draw and evaluate a set of samples D from X using a uniform distribution for

the first run and qθ thereafter
3: end if
4: Add the samples taken in D to a local cache L
5: Calculate maximin for the members of L ∪A
6: Find the new qθ (using L) by minimising the KL Divergence (Eqs. 3, 4)
7: Add the samples from D that are not dominated to the archive A

drawn from qθ (initially, a uniform distribution), and then added to local cache
L to enable previously used samples to be reused when upating the parametric
distribution; members of L ∪A are then evaluated using fmaximin (Eqn 6):

fmaximin(x) = max
j=1,2..|L∪A|;x 6=xj

( min
m=1,..,M

(Gi(x)−Gi(xj))) (6)

where m is the objective function, xj is the jth sample in the set and
fmaximin(x) is the fitness value for the sample x. This returns a value indi-
cating how much x is dominated by the other samples. When fmaximin(x) is
< 0| = 0| > 0, x is non-dominated | weakly-dominated | dominated. Hence, the
distribution is driven towards non-dominated solutions. Distribution qθ is the
updated, and finally, non-dominated samples from D are archived.

4 Experiments and Results

We first explore the behaviour of MOPC on the DEB2 problem in [6], which
was specificially designed to present difficult challenges for MOO, arising from
multimodality (multiple suboptimal Pareto sets) and deception (structures in the
search space that tend to mislead optimisation algorithms towards non-optimal
areas). We then consider the set of unconstrained 2-objective problems from the
CEC 2009 competition [31]. The DEB2 problem is defined by:

minimise G1(x1, x2) = x1 minimise G2(x1, x2) =
g(x2)
x1

(7)

where g(x2) = 2.0 − exp
(
−
(
x2−0.2
0.004

)2) − 0.8 exp
(
−
(
x2−0.6

0.4

)2)
and x1 and x2

are defined in the range [0.1, 1.0]. DEB2 is convenient for preliminary explo-
ration since it is two-dimensional and so suitable for visualisation. It has a local
minimum around x2 ≈ 0.6 and a global minimum around x2 ≈ 0.2, facilitating
comparison of the relative behaviour of MOPC with other methods.



In these experiments, all the algorithms used 35,000 evaluations for DEB2
and 300,000 evaluations for the CEC2009 problems, and we present means
and standard deviations over 30 independent runs. MOPC used 50 particles,
|A| = 100, |D| = 20, |L| = 400, Tstart = 1 and Tend = 0.0001. NSGAII,
MOEA/D-DE and SMPSO implementations where taken from the jMetal frame-
work (jmetal.sourceforge.net/v.2.2), all with archive sizes of 100 and other
parameters were set as defined in the CEC2009 paper for MOEA/D [30] or as
default in JMetal.

4.1 Investigating MOPC on the DEB2 Problem

Measure MOPC MOEA/D-DE[15] NSGAII[8] SMPSO[21]

HV 0.81956 (0.00317) 0.73897 (0.08384) 0.77543 (0.07794) 0.82331 (0.00003)

IGD 0.05354 (0.04774) 0.15857 (0.13238) 0.09122 (0.12665) 0.01161 (0.00006)

SPREAD 0.43821 (0.15238) 0.87355 (0.14272) 0.44967 (0.08857) 0.10700 (0.01550)

Table 1: Comparison between MOPC, NSGAII and MOEAD on the DEB2 prob-
lem

Table 1 gives means and standard deviations of hypervolume, spread and IGD
on DEB2. MOPC and SMPSO outperform MOEA/D and NSGAII, approaching
the maximum achievable hypervolume (0.82628), while MOEA/D and NSGAII
seem prone to fall into the local minima at x2 ≈ 0.6. But, SMPSO achieves
better spread than MOPC. Recall that MOPC uses the maximin function and
hence should prompt a more uniform spread. To explore this, Figure 1 shows
the results of single runs of MOPC and NSGAII. MOPC finds the Pareto set in
the small region x2 ≈ 0.2, and its dynamics can be seen in Figure 2, showing
the evolution of the parametric distribution after 1, 10, 20 and 35 (the final)
generations.

Fig. 1: Decision and objective space for MOPC results on DEB2.



Fig. 2: Parametric distributions of qθ during optimisation of the DEB2 at itera-
tions 1, 10, 20 and 35.

Initially centred (by definition of the algorithm), from 10 to 20 iterations the
distribution slides to the left and down towards the local minima (of weakly non-
dominated solutions) where x1 = 0.1 and x2 = 0.6. Over time, it focuses in two
areas where x2 is approx. 0.2 and along the entire length of x1, which corresponds
to the Pareto set, and the area of weakly non-dominated solutions where x1 is
0.1. This attraction to weakly non-dominated solutions stymies progression of
this part of the Pareto set (this can be seen in Figure 1 (b) where the solutions
do not exactly match the benchmark set between 0.1 and 0.2).

Overall, the results show that MOPC can find the Pareto set in a small area
of the decision space when local minimum exist. Also, MOPC outperforms the
MOEA/D and NSGAII implementations tested, but an attraction to weakly non-
dominated regions may compromise performance on higher dimensional prob-
lems. To investigate this concern, the next section presents experimental results
on 30-dimensional problems taken from the CEC 2009 competition [31].

4.2 MOPC Performance on the CEC 2009 problems

Again, our comparative algorithms are SMPSO [21], MOEA/D [15] and NSGA-II
[8]; these are respectvely: an exemplar of the high-performing family of MOEAs
based on particle swarm optimisation, the (arguably) state of the art MOEA/D
in terms of performance (also an exemplar of the approach to MOO of performing



simultaneous single-objective searches in different ‘directions’, and, finally, the
well known accepted benchmark method for MOEAs. They are compared in
terms of the IGD metric, which measures the distance from the known Pareto
front of the problem in hand. Though not ideal as a comparison metric on MOO
[12], this was the chosen metric for the CEC 2009 competition.

Problem MOPC MOEA/D-DE[15] NSGAII[8] SMPSO[21]

UF1 0.02417 (0.00355) 0.00855 (0.01438) 0.08803 (0.02916) 0.06279 (0.00663)

UF2 0.03857 (0.00147) 0.03397 (0.00038) 0.03831 (0.00102) 0.04393 (0.00157)

UF3 0.17403 (0.01925) 0.01467 (0.01238) 0.15237 (0.03909) 0.12459 (0.03697)

UF4 0.11505 (0.00605) 0.08440 (0.01070) 0.08314 (0.00356) 0.10830 (0.00463)

UF5 0.50165 (0.02940) 0.73351 (0.11537) 0.37613 (0.07276) 0.74538 (0.15191)

UF6 0.11150 (0.01554) 0.11250 (0.05029) 0.12647 (0.05887) 0.33251 (0.03695)

UF7 0.05208 (0.00297) 0.03880 (0.00020) 0.04878 (0.00280) 0.04810 (0.00139)

UF8 0.36911 (0.01215) 0.39651 (0.10624) 0.15329 (0.00682) 0.23546 (0.01406)

UF9 0.15139 (0.00443) 0.39029 (0.03152) 0.17136 (0.01193) 0.18704 (0.02434)

UF10 0.44892 (0.01813) 0.71918 (0.17908) 0.29066 (0.03195) 0.28438 (0.02143)

Table 2: Comparison of IGD for MOPC, MOEAD, NSGAII and SMPSO on
CEC2009

The results in Table 2 were produced using the JMetal implementations. We
observed that the IGD metric in JMetal was different from that used in the CEC
competition, and we note there are several other differences between the jMetal
implementation of MOEA/D to the one used in the CEC 2009 competition[30],
so, we do not compare our results with those published for the CEC 2009 com-
petition, and consider instead a self-contained comparison among the algorithms
described herein.

A broad analysis considering the mean IGD values (lower is better), finds that
none of the four algorithms clearly dominates the others. When we consider mean
rank of performance over the 10 cases, where 1 is best and 4 is worst, these are
respectively 2.2, 2.3, 2.7 and 2.8 for NSGA-II, MOEA/D, MOPC and SMPSO,
however this obscures a wide variation in relative performance, Focusing on
MOPC, we find its mean is better than MOEA/D in 4 of the 10 cases, better
than NSGA-II in 3 of the 10, and better than SMPSO in 5 of the 10. Finally we
note there was no attempt to optimise or understand the parameters of MOPC
in this initial study.

As a preliminary approach to MOO within the PC framework, it is clear
that MOPC indicates some promise for this line of research, showing an ability
to outperform, at least in a minority of cases, state of the art MOEAs.

5 Conclusions, Discussion and Future Work

We presented MOPC, a first attempt to design a MOO algorithm within the PC
framework. First we explored MOPC on the hard but low-dimensional DEB2



problem, finding that it could approximate the Pareto set well, outperforming
NSGAII and MOEA/D, but bettered by SMPSO. We attributed the gap between
MOPC and SMPSO to the minimax fitness function, which does not differentiate
ideally in the relative selection pressure towards strongly and weakly dominated
areas of objective space. On the CEC 2009 problems, MOPC remained promis-
ing, outperforming each comparative methods on at least some of the problems.
Considering that MOPC is a first approach to MOO within the PC framework,
it is clear that its competitive performance against state of the art MOEAs
indicates some promise for the PC strategy in multi-objective optimisation.

Regarding future work, it seems plausible that an approach based on decom-
position (as in MOEA/D), is likely to perform well within the PC framework. For
example, MOEA/D pursues several single objective optimisation in several well-
spread ‘directions’ at once, where a direction corresponds to a specific weighted
sum of the original objectives; this can be done in the PC framework by mapping
each such direction to a separate PC-based single-objective optimization. A re-
lated highly promising direction is the incorporation of local search, whereby PC
provides the global search strategy, but each sample is locally optimzed before
the distributions are updated. Finally, a further promising thread is to extend the
parametric representation used here to a more complex representation (such as
mixtures of multivariate Gaussians) to allow a greater diversity of distributions
to be modelled by a single particle.
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