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Abstract-Efficient and reliable methods that can find a small 
sample of informative genes amongst thousands are of great 
importance. In this area, much research is investigating the 
combination of advanced search strategies (to find subsets of 
features), and classification methods. We investigate a simple 
evolutionary algorithm/classifier combination on two 
microarray cancer datasets, where this combination is applied 
twice – once for feature selection, and once for further selection 
and classification. Our contribution are: (further) 
demonstration that a simple EA/classifier combination is capable 
of good feature discovery and classification performance with no 
initial dimensionality reduction; demonstration that a simple 
repeated EA/k-NN approach is capable of competitive or better 
performance than methods using more sophisticated pre-
processing and classifer methods; new and challenging results 
on two public datasets with clear explanation of experimental 
setup; review material on the EA/kNN area; and specific 
identification of genes that our work suggests are significant 
regarding colon cancer and prostate cancer.

I. INTRODUCTION

Microarray technology was first introduced by Pease et. al.

[1], and has become vital in profiling gene expression 

patterns. Microarray density has significantly increased since 

1994 and currently allows many thousands of genes to be 

assayed simultaneously. This vast amount of data leads to 

great statistical and analytical challenges.

Comparison of gene expression data between 

different samples (e.g. disease versus normal) can provide us 

with a deeper understanding of the disease and its 

development. Several gene expression profiles obtained from 

tumours such as colon [2], leukaemia [3], breast [4] and 

lymphoma [5] have been studied and compared to expression 

profiles of normal tissue. Such comparisons point towards 

genes that appear to be differently expressed in cancer and 

normal samples, which in turn fuels hypotheses towards 

deeper understanding of this complex disease and assists in 

drug discovery and early diagnosis.  However, expression 

data are highly redundant and noisy and most genes are 

(believed to be) uninformative with respect to the classes 

studied. Only a fraction of genes may present distinct profiles 

for different classes of samples. Tools which can deal with 

these issues are critically important, so that we can learn to 

robustly identify a subset of informative genes embedded in a 

large dataset that is contaminated with high-dimensional 

noise [6].  

‘Feature selection’ (FS) methods, in this context, 

search for informative sets of genes whose expression 

patterns are then used by a classification method to 

distinguish between different classes of samples. A number 

of heuristic approaches have been used for FS including 

sequential forward selection, branch and bound, and 

evolutionary algorithms [7, 8, 9] and many more recent 

works. It is becoming popular to use sophisticated nonlinear 

classifiers for the `classification’ phase, however we wish to 

put forward the argument that, in the combined feature 

selection/classification context, it is highly valuable to focus 

on methods in which the classification method is 

straightforward (e.g. k-NN, or a linear discriminant function), 

since this places a greater onus on the search method to find 

salient and significant gene subsets. In turn, this leads to gene 

selection results which are arguably more valuable in the 

context of gene targeting. In other words, the use of a highly 

competent nonlinear classification tool (e.g. an SVM or a 

multilayer perceptron) may skew the results in terms of the 

degree to which they point to significant genes, since the 

capability of the classifier can potentially cloud the effects of 

non-ideal `discovered’ gene subsets.  

Here we therefore focus on the use of an EA in 

combination with k-NN. In section II we provide a brief 

review, focussing on FS methods that combine EAs with k-

NN. In section III we describe our methods and experimental 

setup. In section IV we describe the datasets used in this 

paper and our experiments, as well as discuss previously 

reported results with these datasets. In section V we describe 

results. We conclude in section VI.  

II. BRIEF REVIEW OF RELATED WORK

The aim of feature selection (FS) is to identify a minimum set 

of non-redundant features that are useful for classification, 

attempting to exclude irrelevant, noisy and redundant 

features. When analysing microarray datasets, FS may help in 

providing a deeper understanding of the molecular basis of 

cancer and assist in drug discovery and early diagnosis.  

Also, Guyon et. al. [10] state that the numbers of features to 

measure need to be drastically reduced in order to reduce 

costs in clinical settings.   

 The number of possible feature subsets grows 

exponentially with the number of features [11], making 

enumerative search infeasible.  The only practical solutions 
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are heuristic approaches, an example being the work of 

Raymer et. al. [12]. Another aspect is feature correlations;

most previous FS work ranks features without considering

this aspect [13, 14]. A benefit of approaches that use an EA

to search the space of feature subsets is that consideration of 

these inter-correlations is implicitly built into the search

strategy.

FS methods broadly fall into three types; the

wrapper approach, the filter approach and the hybrid

approach [11]. The wrapper approach seeks the best feature 

subset for use with a specific algorithm and the filter 

approach attempts to assess the merits of features from the 

data alone [15]. The hybrid approach attempts to do both, by

exploiting their different evaluation criteria in different

search stages [11].

Evolutionary algorithms [16, 17, 18, 19] have been

successfully applied to a broad spectrum of optimization

problems, including many pattern recognition and

classification tasks. When an EA is applied to gene

expression data, each individual (called a chromosome)

represents a specific set of genes, which constitutes a 

candidate solution to the discrimination problem [6]. The 

fitness of such a chromosome is usually the accuracy with 

which a given classification method can classify the data

using only the features specified in the chromosome.

 Meanwhile, the k-NN classifier, introduced by Fix 

& Hodges [20], is a fast and simple   classifier that is easy to

implement. It has been been demonstrated to have good

classification performance on a wide range of real-world

datasets [21]. The basic idea is to assign a class label to a test 

sample based upon the classes of the k most similar training

samples [22]. Because of its speed, good classification

performance and simplicity, k-NN is well suited as a 

classifier within the fitness function of an EA.
The basic idea of the hybrid EA/k-NN approach was 

(to our knowledge) first given in Siedlecki & Sklansky  [7],

which used the method illustrated in Figure 1. Here, we 

pretend that the data comprise only three samples, each 

containing six features. (a) The `original’ data – each row is a

sample consisting of features, where the class value (a or b in

this case) is shown in the last column. (b) The EA uses a 

straightforward binary chromosome – in this case, the

chromosome encodes the subset of features comprising

features 1, 3 and 6. (c) Here we see the features extracted 

from the data for each sample, as directed by the encoded

subset; (d) Finally, the chromosome is evaluated by running

k-NN on the data using the extracted subset of features and

obtaining the accuracy of classification on the training set. 

Each resulting subset is evaluated according to subset size

and classification accuracy on a set of testing data using a k-

NN. A small subset (with a small collection of “1”s) will

score well. Feature subsets that include too many features

and/or obtain poor classification performance get a poor 

fitness value and are unlikely to survive to the next

generation.
The findings of Siedlecki and Sklansky [7] were that

the time needed for finding near-optimal subsets of features

from large datasets could be much reduced by applying an

EA in combination with k-NN. This has inspired many to

extend and modify this basic idea and apply it to a range of

other classification problems [6, 8, 9, 23].

Of importance here, however, is work by Jirapech-

Umpai and Aitken [24] who used the RankGene software for

FS. Initially they applied their EA/k-NN method, without

prior FS, to Golub’s leukemia dataset [3] which contains

7070 genes. The initial number of randomly selected features 

in a chromosome was set to 10, and they used small

population sizes. Results show poor accuracy on the test set

(68% at  best), and their EA typically converged quickly.

(with such a large gene set and a small chromosome size, the 

risk of getting stuck in local optima is high. It would have

been interesting to change the termination criteria of the EA

and let the algorithm run for much longer.) However,

accuracy improved significantly when Rankgene was used 

for FS prior to classification. They found the 100 best genes

by using the RankGene. Using the EA/k-NN only on these

resulted in test set accuracy of 95%.

(a)

(b)

(c)

(d)

Figure 1. A simple example of how features are filtered out from the original 

dataset using a chromosome with a binary encoding. The features that are

filtered out are used for classification. The original data set only consists of 

6 features and 3 samples for clarification. See text in Section II for 

explanation.

It is also very well known that stochastic search 

methods, especially when applied to truly complex and 

difficult problems, will return different results in different

runs. In the FS context (which has already appeared in papers 

we have discussed), this ends up being of benefit, since we 

can analyse the genes found in terms of their frequency of 

occurrence in the best subsets of repeated runs. We can have

some degree of confidence that very frequently occurring
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genes are significant in terms of the disease (or other 

mechanism) under study.  

Our basic idea in this work is to focus on EA/k-NN

as the method, and to accommodate the findings that prior 

selection is good by also using EA/k-NN for this (the prior 

FS) step. We also exploit the fact that repeated-run analysis 

can yield significant results, and do this by obtaining subsets 

of frequently-appearing genes and again testing their k-NN

accuracy. In using k-NN throughout we  avoid a more 

sophisticated classifier (than k-NN) that might otherwise 

achieve good performance in spite of non-ideal significance 

in the gene subset. 

III. METHODS

Our hybrid EA/KNN approach, uses the EA as a stochastic 

search algorithm and  k-NN as a classifier.  The overall 

approach is explained in figure 1. All experiments herein 

were carried out using Matlab and the Genetic Algorithm and 

Direct Search (GADS) toolbox. We describe next the 

chromosome representation, the fitness evaluation method 

and the mutation method; for readers also intending to use the 

GADS toolbox, we provide helpful detail on how these were 

implemented into the GADS toolbox.  

Our encoding differed from the binary encoding 

referred to figure 1. We chose instead to explicitly represent a 

subset of features as variable length (up to a maximum) list of 

integers, each pointing directly to a specific feature. Hence, 

the list ``23, 55, 1281’’ would encode the subset comprising 

features (genes) 23, 55 and 1281. Integers in this list were 

allowed to range from 0 to ngenes, where ngenes is simply 

the total number of genes in the dataset. A `0’ indicated `no’ 

gene. The initial chromosome only contains non-zero values. 

This encoding had the benefit of limiting a priori the size of a 

feature subset, and the related benefit of scalability – i.e. 

when dealing with microarray datasets with many thousands 

of features, the binary chromosome of figure 1 would need to 

contain many thousands of bits.  

The fitness function includes the k-NN classifier. In 

all experiments reported in this paper, we use the value k=3,

which was determined from preliminary experiments. These 

experiments involved testing, on one of the datasets, values 

of k from 2 to 10 in steps of 1, in order to ascertain if one of 

these values of k provided consistently fair classification 

results. Three-fold cross-validation was used in all cases. 

Fitness was calculated by using the following function 

(expressed here in Matlab syntax): 

fitness=((100-class_acc)/100)+((n/N)/ );

where class_acc gives the mean classification performance 

over the three three-fold cross-validation runs, n is the size of 

the gene subset encoded by this chromosome, N is the 

maximum chromosome length (the largest a feature subset 

could be), and is a parameter controlling the tradeoff 

between preference for accuracy and preference for small 

subset sizes.

The mutation rate was set to 0.3 for all experiments. 

When a chromosome was selected for mutation, there was a 

30% chance of mutating a randomly chosen gene into a 

randomly chosen non-zero value, and a 70% chance of 

mutating a gene to 0 (i.e. removing it from the encoded 

subset).

For each dataset, we investigated a two-phase 

approach. In phase A, the EA/k-NN hybrid was run on the 

raw data, finding and evaluating subsets of the entire 

collection of genes for that dataset. We recorded the results 

from this phase, which are indicative of the performance of a 

`basic’ EA/k-NN approach. However, we also collected those 

genes that appeared in the final populations of repeated phase 

A experiments, resulting in a large yet much reduced subset 

of the genes in the original data. In phase B, we simply ran 

the EA/k-NN approach (otherwise unaltered), on this reduced 

subset. In other words, phase B represents a normal EA/k-NN 

run, but which makes use of phase A as an a priori FS 

method. We record results from both phases, as well as the 

results of selected investigations of the various gene subsets 

found. This is all described in more detail below. 

IV. EXPERIMENTS

Experiments were carried out on two cancer-related 

microarray datasets: colon  [2] and prostate [25]. Initially a 

number of runs were carried out in order to find suitable 

parameters.  Each dataset was divided into training/testing 

samples so that 75% of the data was used for training/testing 

and 25% of the data was used for validation. The relative 

proportions of the two classes in the dataset (cancer, non-

cancer) was kept as equal as possible in each set. Accuracy 

was calculated by using the standard 3-fold cross validation 

procedure.

Two experiments (A and B) were carried out on 

each of the datasets. The colon cancer dataset was shuffled 

between experiments in order to get a reasonable distribution 

of samples in the training/test and validation datasets. The 

prostate cancer dataset did not need to be shuffled.   

A. Experiments 1A and 1B: prostate cancer

The prostate dataset [25] involves 12600 genes, derived from 

52 prostate cancer samples and 50 normal samples. The 

training set contained 75 samples (the first 39 cancer and the 

first 36 normal samples). This was further divided into `folds’ 

for 3-fold cross validation, each containing 25 samples (13 

cancer and 12 normal). The remaining 27 samples were used 

as the validation set. 

B. Experiment 1A (EA/k-NN on all 12600 genes)

The EA/k-NN algorithm was run ten times using the whole 

dataset. The EA settings were: 400 generations, chromosome 

length 400, population size 80, elite count of 2 (the best 2 

chromosomes from a generation were always copied directly 

into the next generation), roulette wheel selection and single-

point crossover, where each crossover resulted in the 

generation of two children. The k value for the k-NN
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classifier was 3, as determined from preliminary 

experimentation. The mean 3-fold cross-validation accuracies 

from these ten runs are listed in Table I. Final best subsets 

from each run varied in size between 20 and 48. These were 

pooled to obtain a new larger subset which only contained the 

best solutions. This contained 245 unique genes.  

C. Experiment 1B (EA/k-NN run on 245 genes)

Experiment 1B ran  the EA/k-NN using only the 245 genes of 

the final subset from experiment 1A. The parameters were as 

in experiment 1A, except for generations (100), chromosome 

length (100), and population size (30). Ten runs were carried 

out, resulting in gene subset sizes ranging from 7-11.  These 

were pooled to form a subset of size 20. We noted that three 

of these 20 were in eight or more of the original subsets.  

These were further analysed.

D. Experiments 2A and 2B: colon cancer 

The colon cancer dataset contains 2000 features and 62 

samples (40 cancer and 22 normal) [2]. The dataset was 

shuffled and then divided into four subsets of similar sizes. 

Three, of the subsets (45 samples) were used for the 3-fold 

cross-validation as training and testing samples (train on two 

samples, test on one). The fourth subset (10 cancer, 7 

normal)) was used as the validation set. The settings were: 

chromosome length 200, population size 30, single point 

cross-over, 500 generations, roulette wheel selection, elite 

count of 2, and mutation rate 0.3. 

E. Experiment 2A (EA/k-NN on all 2000 genes) 

The EA/k-NN was run ten times on the original colon cancer 

dataset. The best final subsets of genes from the 

corresponding runs were combined, yielding a set of 151 

unique genes. All parameters apart from two were kept the 

same as for the prostate cancer data. Since the colon cancer 

dataset is much smaller. the chromosome size was cut to 200 

and the population size was cut to 30. The k value for the k-

NN classifier was kept constant as 3 for all runs.   

F. Experiment 2B (EA/k-NN run on 151 genes)
Experiment 2B ran the EA/k-NN using only the 151 genes 

that were included in the final subset from experiment 2A. 

Two parameters from experiment 2A were modified: 

chromosome length (70), and number of generations (100). 

Eight runs were carried out. A new subset was formed from 

the resulting final subsets, which contained 37 genes. Some 

additional experiments were done including the most 

frequently selected genes derived from the eight runs.  

G. Comparative results on the prostate dataset

Before we present and discuss the results, we briefly review 

here the findings obtained so far in other research using these 

datasets (mainly using more sophisticated classifer methods 

than k-NN).

Topon and Iba [26] applied a Probabilistic Model 

Building Genetic Algorithm (PMBGA), with Support Vector 

Machine as a classifier, to the prostate cancer dataset, after a 

preprocessing method to the dataset which reduced the 

number of genes in the dataset to 5966. They calculated the 

training accuracy by using Leave-One-Out-Cross validation 

(LOOCV). The dataset was normalized and divided into 

training and test sets, each containing 50% of the total 

samples. They collected 177 different subsets. Their best 

gene subset returned a test set accuracy of 94,12%, including 

24 genes.  The smallest subset that they found contains only 6 

genes that returned a 82.35% testing accuracy.

The average test set accuracy returned directly by 

RPMBGA (using 50% of the samples for training and 50% 

for testing) is 84.29+/-4.57 with the average number of 

selected genes being 17.14+/-7.40.  

Singh et. al. [25] combined signal/noise statistics 

and the k-Nearest Neighbor classifier. This enabled them to 

find a 16-gene subset that returned 93.12% training accuracy 

using all 102 samples.  Singh et. al. [25] say that models that 

utilized 4 or more genes classified samples with >90% 

accuracy.

We note that both sources found so far which 

provide results on the prostate data set are problematic in 

terms of direct comparison. The Singh et. al. [25] 

experiments used all the data for training, but we prefer to 

use the more favoured approach in which test accuracy on a 

previously unseen validation set gives a better estimate of 

performance on unseen data. Meanwhile, Topon & Iba [26] 

use a 50/50 train/test split,  but we prefer manifold cross-

validation since it provides more reliable estimates of 

performance on unseen data. Tentative and qualified 

comparisons of our results with these are nevertheless 

possible.   

H. Comparative results on the colon dataset

 Li. et. al. [23] divided the total of 62 samples in the colon 

dataset into 42 training (the 42 first samples) and 20 testing 

samples. They ran an EA multiple times using 3-NN as the 

classifier in the fitness function, obtaining in all a total of 

6388 subsets containing 50 genes each. The frequency of 

each gene was calculated and a ranked list of the most 

frequently selected genes was formed. The top ranked genes 

were used to form the “best subsets” of genes. Using this 

method, their best test accuracy for such a 50-gene subset 

was 65%.

Liu et. al. [27] obtained a classification accuracy of 

91.94% on the colon cancer dataset using their LOOCV 

method. They state  “85.48% predictive accuracy is the best 

classification result obtained in Dettling et al. (2003) [28],

where they used various boosting algorithms and adopted 

leave-one-out cross validation (LOOCV).” Again, the results 

are not compatible with our experimental design – we have 

eschewed LOOCV owing to its computational complexity on 

large datasets (at least in terms of features), and we prefer 

more manifold cross-validation than used by many other 

researchers. However, we note again that qualified 

comparisons can be made. 
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V. RESULTS 

A. Prostate cancer: Results and Analysis

Results from experiments 1A and 1B are in Table I. Ten 

subsets including an average number of 28 genes, were found 

by applying the EA/k-NN method to the original 12600 

genes. The average test set accuracy was 87.04%. This 

improved to 88.88% when the EA/k-NN was applied in two 

phases, in which the first phase was used to reduce the 

features down from 1260 to of 245 genes. The number of 

selected genes was reduced to an average of 9 genes in each 

subset in the second phase. The union of all these subsets 

yielded a set of 20 unique genes. The classification accuracy 

on the validation set using these 20 genes was 88.88%.  This 

is slightly better than the best of Topon and Iba’s results 

using RPMBGA, but not as good as their results using 

LOOCV, and also not as good as Singh et al’s results. 

However, as indicated, none of these results is comparable. 

But, as a very rough rule, all else being similar, we could 

expect to achieve better (worse) performance than a 

previously reported method if the previous method used 

smaller (larger) training set sizes. In the Topon and Iba, and 

Singh et al, comparisons, we would therefore expect worse 

performance in each case, so the comparison against 

RPMBGA is promising with respect to the potential for our 

approach.

In the ten subsets generated from experiment 1B, 

three of the genes were more frequently selected than the 

other 17. These were:  31444_s_at (9 of 10 subsets),

35905_s_at (8 of 10) and 216_at (8 of 10).    Table II also 

shows the individual performance of each of these genes 

alone (i.e. as a singleton subset) on the validation set. 

Performance using different combinations of these three 

genes is given in Table III.

Genes 35905_s_at and 216_at  return the best 

classification of 88.89% accuracy,  regardless of whether 

gene 31444_s_at is included. This accuracy is competetive 

with other test accuracies reported for these data, and is 

remarkable in arising from a subset of just 2 genes. 

Meanwhile, gene 216_at has the highest individual 

classification accuracy of 77.78%.

TABLE I. THE AVERAGE TRAINING AND TEST ACCURACY AS WELL AS THE 

AVERAGE NUMBER OF GENES DERIVED FROM EXPERIMENTS 1A AND 1B

RESPECTIVELY.  THE AVERAGE VALUES ARE CALCULATED OVER THE 

RESULTS OBTAINED FROM TEN GA/KNN RUNS ON THE ORIGINAL SUBSET OF 

12600 GENES AND THE DERIVED SUBSET OF 245 GENES RESPECTIVELY. THE

TRAINING ACCURACY WAS OBTAINED BY APPLYING GA/KNN WITH  3-FOLD

CROSS-VALIDATION AND THE TEST ACCURACY WAS MEASURED BY USING 

KNN TO CLASSIFY THE VALIDATION SAMPLES .

Expt 1A Expt 1B 

Avg training 

accuracy /Std: 
97.2000

+/- 1.1675 

98.66

+/- 0
Avg test 

accuracy /Std: 
87.0370

+/-  4.3649 

88.88

+/-  0
Avg number of 

genes /Std: 
27.6000

+/-  8.3560 

8.6000

+/- 1.8379

TABLE II. A RANKED LIST OF THE GENES WHICH WERE THE MOST 

FREQUENTLY SELECTED IN THE FINAL SUBSETS OF EXPERIMENT 1B. THE

CLASSIFICATION ACCURACY USING ONE OF THE THREE GENES SINGLY, IS

ILLUSTRATED IN THE THIRD COLUMN OF THE TABLE.

Rank Gene Test Acc. 
1 3144_s 74.0741 % 

2 216_at 77.7778 % 

3 35905_s_t 59.2593 % 

TABLE III.   THE TABLE SHOWS THE TEST ACCURACIES THAT WERE OBTAINED 

WHEN THE VALIDATION SET WAS CLASSIFIED BY K-NN USING DIFFERENT 

SUBSET VARIANTS INCLUDING THE THREE MOST FREQUENTLY SELECTED 

GENES. THE CLASSIFICATION ACCURACY USING ALL THREE GENES IS 

ILLUSTRATED, AS WELL AS THE CLASSIFICATION ACCURACY USING TWO OUT 

OF THREE GENES.

Subset of genes: Test Accuracy  
31444_s_at,   35905_s_at , 

216_at

88.8889  % 

31444_s_at ,  35905_s_a 66.6667 % 

31444_s_at ,  216_at 85.1852  % 

35905_s_at,  216_at 88.8889 % 

B. Brief Analysis of Selected Genes 

Gene 216_at is prostaglandin D2 synthase  which has been 

identified as differentially expressed in androgen ablation-

resistant prostate cancer [29]. This `androgen ablation’ 

therapy is very common in the treatment of prostate cancer. 

However, virtually all prostate cancers respond to this but 

eventually develop resistance. Holzbeierlein et. al. [29] 

identified 645 differentially expressed genes in patients 

undergoing treatment and patients that had developed 

resistance, by applying a hierarchical clustering method to a 
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dataset consisting of 63,175 probes. The prostaglandin D2 

synthase was amongst these 645 which are believed to play a 

part in the mechanisms of androgen ablation therapy 

resistance.

Gene  31444_s_at  (also present in Topon & Iba’s 

final subset of 17 genes) is Annexin II (lipocortin II). The 

expression of Annexin II has been found to be lost or reduced 

in prostate cancer. This may contribute to the development 

and progression of prostate cancer [30].   

Gene 35905_s_at  is  a glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH). In the link:  -- 

http://www.researchd.com/miscabs/trk5g4.htm -- we find the 

quote: “During the last decade, many findings have been 

made concerning the role of GAPDH in different pathologies 

including prostate cancer progression”. Epner & Coffey [31] 

concluded that multiple forms of GAPDH might play diverse 

roles in normal prostate tissue and in prostate cancer.  

C. Colon cancer: Results and Analysis 

The average results from eight runs in experiments 2A and 

2B are in Table IV. When the 3-NN classifier was tested on 

the 151 genes collected from phase 1, it could classify 14 out 

of 17 (82.35%) samples in the validation set. When the subset 

of 151 genes was used as the initial gene pool for experiment 

2B, the average taccuracies over eight runs again improved, 

and final gene subsets were again significantly reduced.  

TABLE IV.  THE AVERAGE TRAINING ACCURACY WAS CALCULATED OVER 

EIGHT RUNS OF APPLYING EA/KNN WITH 3-FOLD CROSS-VALIDATION TO THE 

TRAINING DATA (45 SAMPLES). THE ORIGINAL GENE POOL IN EXPERIMENT 2A

INCLUDED ALL 2000 GENES IN THE DATASET. THE ORIGINAL GENE POOL FOR 

EXPERIMENT 2B CONSISTED OF A SET OF 151 GENES WHICH WERE DERIVED 

FROM EXPERIMENT 2A.  THE TEST ACCURACY WAS MEASURED BY APPLYING 

3-NN TO THE VALIDATION SAMPLE (17 SAMPLES).

Experiment 

2A

Experiment 

2B 
Avg training 

accuracy /Std: 

95.8334

+/- 3.0138 

 97.2223 

  +/-1.5713 

Avg test accuracy / 

Std:

76.4706

+/-  10.8920 

   78.6765 

+/-  8.8585 

Avg number of 

genes/ Std: 

21.1250

+/- 6.2892 

9.7500

 +/-  2.2520 

When the eight subsets derived from experiment 2B 

were combined and repeated genes were removed, the 

remaining subset included 37 genes. The validation set was 

classified with the 3-NN classifier including only the 

expression values from these 37 genes. The accuracy was 

94.12%, which is higher than the test accuracies on any of the 

eight subsets that the set of 37 genes was built from. 

 This result seems better than those reported 

previously on this dataset. Although our results are not 

directly comparable, as noted before we can make qualified 

comparisons.  It is very interesting that using EA/k-NN alone 

combined with some straightforward analysis we have found 

a subset whose validation set accuracy is better than test 

accuracies reported in previous work on these data. 

TABLE V. A RANKED LIST OF THE GENES WHICH WERE THE MOST 

FREQUENTLY SELECTED IN THE FINAL SUBSETS OF EXPERIMENT 2B. THE

THIRD COLUMN SHOWS THE OBTAINED TEST ACCURACY WHEN EACH OF THE 

GENES WAS USED SINGLY BY THE KNN CLASSIFIER TO CLASSIFY THE 

VALIDATION SET.

Rank Gene Test 

accuracy
1 T72175 52.9412 % 

2 T52342 47.0588 % 

3 J00231, 47.0588 % 

4 X60489,

T58861

64.7059 % 

64.7059 % 

TABLE VI. TEST ACCURACY ON VALIDATION SET WHEN USING ONLY THE 

MOST FREQUENTLY SELECTED GENES FROM EXPERIMENT 2B. 

Genes Test

accuracy
T72175, T52342, J00231,  X60489, 

T58861

76.4706 % 

J00231, X60489, T58861 58.8235  % 

T72175, T52342 47.0588  % 

The eight subsets generated in experiment 2B had 

many genes in common. T72175 was the most frequent, in all 

8 sets. T52342 was in 7 out of 8 subsets.  Each of J00231,

X60489 and T58861 were  in 4 of 8 subsets, and UMGAP

was in three subsets. Additional tests were carried out on the 

validation set using these five genes. The genes were ranked 

based upon how well they could classify the samples in the 

validation set (Table IV). Test accuracy using each of the 

genes singly is also illustrated in the table.  

The best test accuracy (94.12%) was obtained when 

all the unique genes from expt 2B were pooled to form a 

subset of 37 genes. The highest test accuracy obtained for 

two of the eight subsets was 88.23% including 9 and 13 

genes respectively. The 3-NN classifier returned a test 

accuracy of only 76.47% when only the five frequent genes 

were included (see Table VI). Combined, the two top ranked 

genes (T72175, T52342)  achieved only 47.05%. 

D. Brief Analysis of Selected Genes 

Unlike in the prostate cancer experiments, in this case the 

small collection of most frequently occurring genes do not in 

themselves constitute a particularly high-accuracy feature set 

(Column 1 in Table VI). We nevertheless providing brief 

notes of annotation for each of these five genes. It is notable 

that not all of these genes have been previously indicated as 

significant for colon cancer. 
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T72175:  immunoglobulin kappa constant  ; 

J00231:   immunoglobulin gamma 3 ; 

T58861 is a ribosomal protein L30. Ribosomal Protein genes 

have been found to be over-expressed in colorectal tumors 

[32]. ;  

T52342 :   Human tra1 mRNA for human homologue of 

murine tumor rejection antigen gp96. ; 

X60489: Human mRNA for elongation factor-1-beta  

VI. DISCUSSION/CONCLUSION

 Many methods have been explored which combine feature 

selection and classification, in order to analyse and interpret 

highly significant data (such as microarray datasets), that are 

overwhelmingly blessed with features, most of which are 

believed to be redundant and/or insignificant in relation to the 

precise issue under study. It has generally been found (and is 

not surprising) that prior feature selection is beneficial before 

running either classification methods on the selected features, 

or running a further `combined’ feature 

selection/classification method.  In this paper we have 

explored the simple notion of using a combined EA/k-NN

approach for both prior feature selection and a second feature 

selection/classification phase. By combining this strategy 

with further straightforward analysis of features (genes) that 

occur often in repeated experiments, we are able to find gene 

subsets whose test set accuracy (taking into account the 

different designs of previously reported experiments on the 

same data) is highly competitive. This is both useful from the 

viewpoint of building predictive models, as well as useful 

from the viewpoint of finding potentially significant genes.  

In particular, we argue that by eschewing a sophisticated 

nonlinear classification method, success using the k-NN

classifier is likely to be more dependent on finding significant 

subsets. Further, owing to the generally good performance of  

EA/k-NN when used once, without any initial dimensionality 

reduction, we can have some confidence that its use purely as 

a feature selection technique is likely to yield a `good’ 

reduced set of genes in this sense. 

 The basic performance of EA/k-NN in this two-

phase sense appears validated since it has led directly to the 

identification of a 2-gene subset that has 88.89% accuracy on 

the validation set for prostate cancer, and on the colon cancer 

dataset it has yielded a 37-gene subset with 94.23% test set 

performance. These results are highly competitive with those 

in recent published work on the same datasets, taking into 

account the experimental setups. Finally, we have identified 

three genes in relation to prostate cancer, and five genes in 

relation to colon cancer, which respectively support previous 

findings and suggest putative targets for further research. 
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