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1. Introduction 

The study of Natural Computation has borne several fruits for science, industry 
and commerce. By providing exemplary strategies for designing complex biologi-
cal organisms, nature has suggested ways in which we can explore design spaces 
and develop innovative new products. By exhibiting examples of effective co-
operation among organisms, nature has hinted at new ideas for search and control 
engineering. By showing us how highly interconnected networks of simple bio-
logical processing units can learn and adapt, nature has paved the way for our de-
velopment of computational systems that can discriminate between complex pat-
terns, and improve their abilities over time. And the list goes on.  

It is instructive to note that the methods we use that have been inspired by na-
ture are far more than simply ‘alternative approaches’ to the problems and applica-
tions that they address. In many domains, nature-inspired methods have broken 
through barriers in the erstwhile achievements and capabilities of ‘classical’ com-
puting. In many cases, the role of natural inspiration in such breakthroughs can be 
viewed as that of a strategic pointer, or a kind of ‘tie-breaker’. For example, there 
are many, many ways that one might build complex multi-parameter statistical 
models for general use in classification or prediction; however, nature has exten-
sive experience in a particular area of this design space, namely neural networks – 
this inspiration has guided much of the machine learning and pattern recognition 
community towards exploiting a particular style of statistical approach that has 
proved extremely successful. Similar can be said of the use of immune system 
metaphors to underpin the design of techniques that detect anomalous patterns in 
systems, or of evolutionary methods for design.  

Moreover, it seems clear that natural inspiration has in some cases led to the 
exploration of algorithms that would not necessarily have been adopted, but have 
nevertheless proven significantly more successful than alternative techniques. Par-
ticle swarm optimisation, for example, has been found enormously successful on a 
range of optimisation problems, despite its natural inspiration having little to do 
with solving an optimisation problem. Meanwhile, evolutionary computation, in 
its earliest days, was subjected to much scepticism and general lack of attention – 
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why should a method be viable for real-world problems when that method, in na-
ture, seems to take millions of years to achieve its ends?  What need is there for 
slow methods that rely on random mutation, when classical optimisation has a ma-
ture battery of sophisticated techniques with sound mathematical bases? Neverthe-
less, evolutionary methods are now firmly established, thanks to a long series of 
successful applications in which their performance is unmatched by classical tech-
niques.  

The idea of this chapter is to present and discuss a collection of exemplars of 
the claims we have made in this introduction. We will look at a handful of selected 
applications of natural computation, each chosen for a subset of reasons, such as 
level of general interest, or impact. We will consider some classic applications, 
which still serve as inspirational to current practitioners, and we will look at some 
newer areas, with exciting or profound prospects for the future. 

The applications are loosely clustered into four themes as follows. We start 
with applications under the banner of  ‘Strategies’, in which we look in detail at 
three examples in which natural computing methods have been used to produce 
novel and useful strategies for different enterprises. These include an evolution-
ary/neural hybrid method which led to the generation of an expert checkers player,  
the use genetic programming to discover rules for financial trading, and the eploi-
tation of a learning classifier system to generate novel strategies for fighter pilots. 
The next theme is ‘Science and engineering’ in which we consider applications 
that have wider significance for progress in one or more areas of science and engi-
neering, in areas (or in ways) that may not be traditionally associated with natural 
computing. Our two exemplars in this area are the use of multiobjective evolu-
tionary computation for a range of areas (often in the bio and analytical sciences) 
for closed-loop optimization, and the concept of innovization, which exploits mul-
tio-objective evolutionary computation in a way that leads to generic design in-
sights for mechanical engineering (and other) problems. We then move on to a 
‘Logistics’ theme, in which we exemplify how natural computing (largely, learn-
ing classifier systems and evolutionary computation) has provided us with suc-
cessful ways to address difficult logistics problems (we look at the case of a real-
world truck scheduling problem), as well as a way to design new fast algorithms 
for a range of logistics and combinatorial problems, via approaches we refer to as 
‘super-heuristics’ and/or ‘hyper-heuristics’. Finally, we consider the theme of ‘De-
sign’, and discuss three quite contrasting examples. These are, in turn, antenna de-
sign, Batik pattern design, and the emerging area of software design using natural 
computing methods.    

2  Strategies: Generating Expert Pilots, Players, and Traders 

Many problems in science and industry can be formulated as an attempt to find a 
good strategy. A strategy is, for our purposes, a set of rules (or an algorithm, or a 
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decision tree, and so forth) that sets out what to do in a variety of situations. Ex-
pert game players are experts, presumably, because they use good strategies. Simi-
lar is true for good pilots, and successful stock market traders, as well as myriad 
other professionals who are expert in their particular domain. It may well come as 
a surprise to some that humans do not have the last word on good strategy – 
strategies can be discovered by software which, in some cases, can outperform 
most or even all human experts in particular fields. In this section we will look at 
three examples of applications in which strategies have been developed via natural 
computing techniques, respectively for piloting fighter aircraft, for playing expert-
level checkers, and for trading on the stock market. 

2.1 Discovery of Novel Combat Maneuvers 

In the early 90s and beyond, building on funding support from NASA and the 
USAF, a diverse group of academics and engineers collaborated to explore the 
automated development of strategies for piloting fighter aircraft. A broad account 
of this work (as well as herein) is available as Smith et al (2002). The natural 
computing technology employed is termed ‘genetics based machine learning’ 
(GBML), the most common manifestation of which is the learning classifier sys-
tem – essentially a rule based system that adapts over time, with an evolutionary 
process central to the rule adaptation strategy. In this work, such an adaptive rule-
based system takes the role of a test pilot. In the remainder of this section we will 
cover some of the background and motivation for this application, as well as ex-
plain the computational techniques used, and present some of the interesting and 
novel results that emerged from this work. 

Background: New Aircraft and Novel Maneuvers 

As explained in Smith et al (2002), a standard approach, when developing a new 
fighter aircraft, is to make a prototype for experimentation by test pilots, who then 
explore the performance of the new aircraft and, importantly, are then able to de-
velop combat maneuver strategies in simulated combat scenarios. Without such 
testing, it is almost impossible to understand how a new aircraft will actually per-
form in action, which in turn depends, of course, on how it will be flown by ex-
perienced pilots. In particular, it is very important that pilots are able to develop 
effective and innovative combat strategies that exploit the technology in the new 
craft. Following such testing, issues in performance are then fed back into the de-
sign process, and perhaps the prototype will need to be re-engineered, and so 
forth. This testing process is obviously very expensive – costing the price of at 
least one prototype craft, and the time of highly-skilled pilots. One way to cut this 
cost includes using a real pilot, but to ‘fly’ a simulation of the new craft; another is 
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to resort to entirely analytical methods; however both of these approaches are 
problematic for different reasons (Smith et al, 2002). The idea of Smith et al’s re-
search is to explore a third approach, in which a machine learning system takes the 
place of a test pilot, and operates in the context of sophisticated flight simulations. 

To help better understand the motivation for this work, and grasp the im-
portance of developing novel maneuvers, it will be useful to recount some back-
ground in fighter aicraft piloting. This is adapted next from Smith et al (2002), 
while a comprehensive account is in  Shaw (1998). A relatively new aspect of 
modern fighter aircraft is the use of post-stall technology (PST). This refers to sys-
tems that enable the pilot to fly at extremely high angles of attack (the angle be-
tween the aircraft’s velocity and its nose-tail axis). Pilots have developed a range 
of combat maneuvers associated with PST flight, including, for example, the 
Herbst Maneuver, in which the aircraft quickly reverses direction via a combina-
tion of rolling and a high angle-of-attack. In another example, the Cobra Maneu-
ver, the aircraft makes a very quick pitch-up from horizontal to 30 degrees past 
vertical; the pilot then pitches the aircraft's nose down and resumes normal flight 
angles. This causes dramatic deceleration, meaning that a pursuing fighter will 
overshoot. The technologies that allow PST flight have led to the invention of 
these and several other maneuvers, as well as the prevalence of tactics that involve 
‘out-of-plane’ maneuvering, where the attacking aircraft flies in a continually 
changing maneuvering plane, invariably different from the plane of the target 
craft. This link between new technologies and new maneuvers is critical in the de-
sign and deployment of new aircraft, and is the focus of Smith et al’s work. The 
results that are described later involve experiments in which the attacking craft 
was an X-31 experimental fighter plane, with sophisticated PST capability, and 
where the target craft in the simulations was an F-18. 

Learning Classifier Systems 

Learning classifier systems (LCSs:  Holland et al, 1986; Grefenstette, 1988; Gold-
berg, 1989; Holland, 1992) use a collection of rules called classifiers in the form 
of state/action pairs. Each such pair indicates an action to take if the environment 
currently matches the ‘state’ part of the rule. An LCS operates in an environment 
according to its current set of classifiers, and uses reinforcement learning and 
other adaptation methods, in particular including genetic algorithms (GAs), to 
gradually adapt the rules over time. Classically, a classifier in an LCS represents 
states and actions as binary strings, but states may also contain ‘don’t care’ char-
acters (#s). For example, the string: “0 1 0  # 1 / 0 1 0”  is a classifier with the 
meaning: “If the environment is in state 0 1 0 0 1 or state 0 1 0 1 1, then perform 
action 0 1 0”. 
  In a typical LCS, each cycle begins with a message representing the state 
of the environment (as we will see, the environment in the fighter plane combat 
context is simply a characterisation of the relative positions and velocities of the 
aircraft in the simulation). The LCS then sees which of its classifiers match this 
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environmental message. There may of course be several, and some form of con-
flict resolution method must then be invoked to decide which classifier’s action 
will be executed. The action eventually chosen is then performed. This action may 
lead to a reward – i.e. some aspect of the environment becomes (more) favourable, 
and the classifier which led to this action receives an increment to its ‘fitness’ 
score. In some classifier systems, sophisticated credit allocation systems are in 
place to ensure that the most recent action does not necessarily receive all of the 
credit. After some specified number of cycles, the genetic algorithm is invoked. 
The GA population is formed from a subset of the classifiers, focussing on those 
with higher fitness. New classifiers are produced by standard genetic operations 
on selected classifiers (where, naturally, selection is biased by fitness), and these 
are then incorporated into the LCS, over-writing some of the less fit existing clas-
sifiers. Clearly, an LCS operates in a way that attempts to find – via the GA, 
which is in turn informed by the fitnesses of classifiers, which in turn are informed 
by experience in the environment – a good set of classifiers that achieves contin-
ual rewards in its environment. 

Implementation, experimentation details, and results 

The way that LCS technology has been used, with considerable and long-
established success in the domain of combat maneuver discovery (Smith & Dike, 
1995; Smith et al, 2002), is basically as follows. The task faced by the LCS is 
(typically) a one on one engagement for a specific amount of time, such as 30 sec-
onds. There is a specified initial configuration of positions and velocities, and the 
period is divided into periods of 0.1 seconds (i.e., each action of the classifier pilot 
must last for at least 0.1 seconds before another action can be performed). At each 
of the (typically) 300 timesteps during a simulation, each aircraft observes the cur-
rent configuration, and decides on an action. At the end of an engagement, a score 
can be calculated based on the relative probabilities of the two aircraft having 
damaged their opponents. 
 All Smith et al’s experiments employed AASPEM, the Air-to-Air System 
Performance Evaluation Model developed by the U.S. Government for computer 
simulation of air-to-air combat. The encoding of the state/action parts of a classi-
fier were as follows. The state part of a classifier comprised 20 bits: 6 bits were 
used to encode the two ‘aspect angles’ that gave the current relative positions of 
the aircraft in terms of their lines of sight. The remaining 14 bits were used to en-
code 7 parameters (hence, each discretised into 4 bins), namely: range, speed, 
delta speed, altitude, delta altitude, climb angle, opponent’s climb angle.  The ac-
tion part of a classifier comprised 8 bits, encoding 3 parameters:  a relative bank 
angle (3 bits), an angle of attack (3 bits) and a speed (2 bits). Speed, for example 
was either 100 knots (00), 200 knots (01), 350 knots (10) or 480 knots (11). The 
meaning of an action that specified (for example), relative bank angle of 30 de-
grees and speed of 200 knots, was to aim for these as desired targets. In all cases, 
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the simulation environment (i.e. the AASPEM system) would automatically inter-
pret these aims into realistic actions.  
 A set of such classifiers therefore represents a general strategy, and sub-
sets of related classifiers can potentially encode entire novel maneuvers. During a 
simulated engagement, the classifiers are run for 300 cycles, as described; when 
no classifier matches the current environmental configuration, a default action for 
straight, level flight is used. When more than one classifier is matched, the fittest 
one is chosen as the provider of the action. At the end of the 300 cycles, a fitness 
measure is calculated. Following experiment with various approaches, the most 
promising fitness measurement was found to be based on the difference between 
the self and the opponents’ ‘aspect angles’. This basically gives a score that is a 
linear function along the continuum from: self is aiming directly at opponent’s tail 
to opponent is aiming directly at self’s tail, with the former obviously preferred. 
The fitness assigned after an engagement was based on the average of this value 
over the entire engagement, and is assigned to every individual classifier that was 
active at any point during the engagement   
 Following a full engagement, the GA then operates over the whole popu-
lation of classifiers. Using a moderate selection pressure for parents, and standard 
crossover and mutation operations, a collection of new classifiers is generated. 
The fitness assigned to a new classifier is simply the average of its parents’ fit-
nesses. Typically, about half of the classifiers in a population were replaced with 
new classifiers. A learning run would continue with repeated such engagements 
(perhaps ~500), each resulting in fitness assignment and operation of the GA, 
leading to a revised set of classifiers for use in the next engagement. The starting 
configuration for all engagements in a single run was always one from the small 
set of tactically interesting  situations shown in figure 1. 
  
 

 
Figure 1.  The matrix of initial conditions for the combat simulations. 
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The  conditions in figure 1 were designed to generate X-31 tactics results for a 
balanced set of relevant situations.   
 The early experiments described in Smith & Dike (1995) were much as 
just described, involving one-on-one combat, in which the LCS attempted to find 
novel maneuvers for the X-31, but the opponent F/A-18 aircraft used a fixed (al-
though suitably reactive and challenging) set of standard maneuvers embedded in 
AASPEM. In short, the opponent would always attempt to execute the fastest pos-
sibl turn that would leave it pointing directly at its opponent, at the same time at-
tempting to match the opponent’s altitude. 
 As reported in considerably more detail in Smith & Dike (1995), this 
setup led to the discovery of a wide variety of new and novel fighter maneuvers, 
which were evaluated in positive terms by real fighter test pilots. An example such 
maneuver is shown in figure 2. 
 
 

 
 
Figure 2. A example of a novel maneuver evolved by the learning classifier sys-
tem under the HSHP starting condition (see figure 1). The aircraft on the left is 
following a fixed, but reactive strategy; the aircraft on the right is following a 
strategy evolved by the LCS, which in turn is a new variation on the Herbst ma-
neuver. 
 
The strategy discovered by the LCS in figure 2 involves pitching upwards sharply, 
stalling, tipping over, and then engaging the opponent with a favourable relative 
position. This turns out to be a variation on the ‘Herbst maneuver’ mentioned ear-
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lier – in fact it was common for the LCS to rediscover exising maneuvers, as well 
as discover novel variations. 

In later work (Smith et al, 2000), both opponents were controlled by a 
separate LCS. As Smith et al (2002) describe, in this scenario, reminiscent of the 
continuous iterated prisoners’ dilemma (IPD), the resulting dynamic system has 
four potential attractors, the most attractive of which is an ‘arms race’ dynamic, in 
which each pilot continuously improves his strategies. Smith et al (2000) explored 
various setups and indeed found that an arms race effect reliably occurs under 
some conditions. 

Findings and Impact 

Smith & Dike (1995) and Smith et al (2000) contain and discuss several more ex-
amples of discovered maneuvers, including some revealing expositions of arms 
races that develop under the conditions of two LCSs in combat with each other.  
One clear result of this (still ongoing) work is the real impact it has had on its in-
dustrial collaborators. In general, the aerodynamics of a new aircraft can be under-
stood before the first prototype is flown; but, the complexities of piloting and 
combat, and consequently any real knowledge about the potential combat per-
formance with skilled pilots, are much more difficult to predict. Discovering suc-
cessful combat maneuvers in the way described has many advantages – in particu-
lar, without the cost of test pilot time or prototype construction, LCS experiments 
generate rich sources of information on combat advantages (or disadvantages) that 
can be fed back to designers, pilots and customers. The system described briefly 
here, and more fully in Smith et al (2000; 2002), and Smith & Dike (1995), has re-
sulted in several novel strategies that have been approved by test fighter pilots,   
and continue to provide useful results in a highly complex, real-world domain.   
 

2.2 Developing an Expert Checkers Player   

  
Our next example comes from the area of ‘computational intelligence’. The term 
“computational intelligence” has come to be associated largely with the major 
fruits of nature-inspired computing, particularly evolutionary, neural and fuzzy 
techniques. This is not be confused with the older, more well-established term 
“Artificial Intelligence”, which stands for the much wider enterprise of, by what-
ever means, designing algorithms and systems that perform functions that can be 
called “intelligent”. Artificial intelligence (AI) includes classic areas and tech-
niques such as expert systems, heuristic tree search, machine vision, natural lan-
guage processing, planning, and so forth, as well as the growing range of nature-
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inspired techniques. AI is concerned with everything from full-scale intelligent 
systems, through to the details of appropriate heuristics for edge detection in im-
ages from a narrow domain.  

Basically, almost any activity, other than those that are ‘‘easy” for computers to 
handle with standard techniques, can be labeled with the adjective “intelligent”. 
However, via natural computing, achievements have been made that will seem 
genuinely surprising to many people. It is no great surprise, for example, that 
computers can design, more successfully than humans, effective production 
schedules for factories with thousands of jobs per day. However it perhaps is sur-
prising that we can produce software that plays checkers at the level of an expert, 
without encoding any expert knowledge of the game.   
 

Blondie24 

During 1999, on an internet gaming site called “The Zone”, an online checkers 
player with the screen name Blondie24 regularly played against a pool of 165 hu-
man opponents, and achieved a rating of 2048, placing it well into the top half a 
percent of checkers players using that site. Blondie24 learned to play well at 
checkers, as did all of the good human players using that site (or otherwise). How-
ever, “she” was (and still is) a computer program.   

 In common with many successful artificial intelligence game playing pro-
grams, Blondie24 (Chellapilla & Fogel, 1999; 1999b; 2001; Fogel, 2002)  incor-
porates a minimax algorithm (Russell & Norvig, 2003) to traverse the game tree 
induced by the available moves from the current position. However, individual 
nodes in the tree are evaluated by an artificial neural network (ANN). The input to 
this ANN is a specialised representation of the current state of the game, and the 
output is a single value that is then used by the minimax algorithm. So far so clear 
– we can perhaps imagine that a well trained or well-designed ANN could be ca-
pable of returning values in this context that would translate to competent check-
ers playing. But how can we design, or train, such an ANN? In Blondie’s case, 
training was accomplished by using an evolutionary algorithm. A population of 
such ANNs played against each other, accumulating points over many games. The 
result of a game between two such ANNs comes down to a single value (per 
ANN) – either 1 (win), 0 (draw), or −2 (lose) – and the overarching evolutionary 
algorithm operates by regarding the fitness of an ANN as its total score after a 
number of games. In each ‘generation’ of this evolutionary algorithm, the ANNs 
with the lowest scores are eliminated, and new ones are generated by making mu-
tant copies of the better performers, and so it continues.   

For several reasons, Blondie24’s design and its success are both surprising and 
significant. Its prowess at checkers does not rely on tuition by human experts. In-
stead, it emerges from the evolutionary algorithm process, guided only by the 
bare, raw total of points earned after playing several games. If an individual had a 
fitness of 6, for example, it was considered better (and hence had more chance for 
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selection as a parent) than an individual with fitness 4. However this takes no ac-
count of the distribution of wins, losses and draws. The individual with fitness 6 
may have won 6 games and drawn 4, while the individual with fitness 4 may have 
won 8 games and lost 2.   

Guided only by this summary measure of performance, an evolutionary algo-
rithm was able to traverse the space of checkers-playing-ANNs (or, more cor-
rectly, ANNs for evaluating game positions in the context of minimax search) and 
emerge with expert-level players. It is worth covering in more detail the approach 
taken to generate Blondie24, which we do next, following the treatment provided 
in Chellapilla & Fogel (2001). 

 

Checkers: the game 

Checkers, known in some countries as ‘draughts’, involves an eight-by-eight 
board with squares of alternating colors, equivalent to a chessboard. Each player 
has 12 identical pieces, and the initial game position is as detailed in Figure 3.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The initial position in a game of checkers. The White player moves up-
wards, and the Black player moves downwards. 

 
When it is a player’s turn to move, the allowed moves are:  an individual piece can 
move diagonally forward by one square; or an individual may jump over an oppo-
nent’s checker into an empty square. Such a “jump” is only allowed if it takes two 
diagonal steps in the same direction, the first such step is occupied by an oppo-
nent’s piece, and the second step is currently empty. After a jump, the opponent’s 
piece is removed from play. 

If one or more jump moves are available, then it is mandatory for the player to 
make such a move. If an opponent manages to find itself in the final row (from 
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their side’s viewpoint), it becomes a “king” piece. It is then able to move either 
forward or backward, but otherwise follow the same rules. The object of the game 
is to reach a position in which your opponent has no possible moves – a common 
way in which this happens is for the opponent’s pieces to all have been removed. 
  

Representing the board and evaluating moves 

 
Chellapilla and Fogel (2001) used a straightforward and sensible approach to en-
coding a board position. The current state of the game is simply represented by a 
vector of 32 numbers, one for each board position. The numbers in a position are 
either  -K, -1, 0, 1, or K, where K represents a value assigned to a king. From the 
viewpoint of a given player, a 1 or a K at a given board position represent, respec-
tively, either a standard piece or a king at that position, while the negative values 
are used to represent the opponent’s pieces, and zero indicates an empty position. 
In Chellapilla and Fogel’s work, K was not preset. Rather than bias the process 
towards giving a king any particular relative value over an ordinary piece, the 
value of K was itself subject to evolution.   

When a move is to be made, Blondie24 operates by evaluating, in turn, each of 
its possible moves. Any such move leads to a future board position, and this future 
board position is evaluated by the ANN. The input to the ANN is therefore this 
32-dimensional vector. As is well known from ANN theory, any reasonable ANN 
architecture (in terms of the number of hidden layers and the numbers of nodes in 
each layer) might suffice in being capable of then performing the appropriate 
mapping from input vector to appropriate, useful output. The difficulty, as ever, is 
in choosing an appropriate training regime, that promotes learning of suitable fea-
tures and components of the problem state that are useful guides towards a proper 
evaluation. After initial experiments with a more straightforward neural network 
architecture (which did not encapsulate the spatial information that human players 
take for granted), Chellapilla and Fogel’s designed the architecture of the ANN in 
a way that highlighted potentially appropriate features. This was done as follows.  

Each 3x3 block on the board was represented by its own unit in the first hidden 
layer. That is, given any specific 3x3 block, one of the units in the first hidden 
layer received incoming connections from that specific set of 9 inputs from the in-
put layer (from the 9 parts of the vector corresponding to the component positions 
of that 3x3 block), and had no incoming connections from any of the other units. 
In this way, a specific signal emerging from this unit, for later processing in sub-
sequent layers, summarises the state of play in that specific 3x3 block.  The first 
hidden layer contained such a unit for each of the 36 different 3x3 blocks on the 
board.  In just the same way, each 4x4 block, 5x5 block, 6x6 block, 7x7 block, and 
8x8 block (of which there was of course just one) was represented in the first hid-
den layer by its own unit. This resulted in a set of 91 units which comprised the 
first hidden layer.  
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Figure 4. The architecture of the Blondie24 artificial neural network, 
 
 
The complete picture of the ANN’s architecture is given in Figure 4. Between 

the input layer, which simply carries 32 units, one per board position, and the first 
hidden layer, the connections are arranged according to the specific feature en-
coded by each of the units in hidden layer 1. Between the pairs of layers, the con-
nections are all complete – e.g. each unit in hidden layer 1 has a feedforward con-
nection to each unit in hidden layer 2, and similar for hidden layers 2 and 3, while 
every unit in hidden layer 3 is connected to the single output unit. The output unit 
receives an additional input, which is the sum of the 32 board positions. 

In total, including bias weights, there are 5046 connections in this network, 
each of which is a real-valued weight subject to the evolution process. In addition, 
every hidden layer unit has a bias input, which means an additional weight to be 
evolved. Each unit in the hidden layers operates in the standard way, common in 
most ANN applications, by calculating the weighted sum of its inputs and apply-
ing the hyperbolic tanget function, resulting in an output signal strictly between -1 
and 1.  From the perspective of the ANN ‘player’, this ultimate scalar value is di-
rectly used as an estimate of the value of this board position. The closer to 1, the 
better for the ANN. However, where the board position was actually a win for the 
ANN, the value was taken to be precisely 1, and if it was a win for the opponent 
the value was taken to be -1. 
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Evolving Checkers Players 

 
The process begins with a population of 15 such ANNs, which are initialized ran-
domly. Every connection weight and bias value is given a value chosen uniformly 
at random from the interval [-0.2, 0.2], and with K set initially at 2.0. In common 
with the practice of evolutionary programming and evolution strategies, each indi-
vidual in the population also contained a vector of step size parameters. For every 
connection weight, and every corresponding bias unit, there was also a step-size 
parameter governing the range of mutations that would be applied to that parame-
ter. That is, when a weight or bias parameter was mutated, this was done by add-
ing a Gaussian perturbation whose mean was 0 and whose variance was provided 
by the associated step size parameter in the chromosome. The step-sizes were ini-
tially all set at 0.05, and then subject to evolution along with the other parameters.  

Whenever an ANN was selected as a parent, its offspring was generated as fol-
lows: first, each of the step size parameters was mutated, by multiplying it with a 
random number from a specific exponential distribution, and every weight and 
bias parameter was mutated by adding a Gaussian perturbation whose step size 
was the associated step size parameter, as indicated. Finally, recall that each indi-
vidual also carries its own value for K, which is also subject to evolution. This was 
mutated by adding a perturbation chosen uniformly at random from the set {–0.1, 
0, 0.1}, but was protected from moving below 1 or above 3. 

During the evolution process, Each ANN played one game each against five 
opponents, selected uniformly from the population. With the scoring for individual 
games as indicated, the ANN would therefore accumulate a score over these five 
games ranging from –10,(all losses) to 5 (all wins). A game was declared as a 
draw (zero points) if it lasted for 100 moves. Essentially, in each generation each 
ANN took part in around 10 games, and the top 15 (in terms of points received) 
became parents for the next generation. Each individual game was played using a 
minimax alpha-beta search set to 4-ply (with extended ply in a number of special 
cases). After 840 generations in which evolving ANNs played against each other, 
the best resulting ANN was then harvested and recruited to play against human 
opponents on the internet gaming site “The Zone”. In the next subsection, we 
summarise the surprising and remarkable resulting performance of this ANN. 
 

Humans vs Evolved ANNs 
  
Over a two-month period, the evolved ANN, eventually named “Blondie24” 
(which was successful in attracting opponents)  played 165 games against human 
opponents at “The Zone”, although opponents were not aware they were playing 
against a computer program. In these games, the ANN used an 8-ply search,  and 
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faced a variety of opponents. The ANN’s performance placed it at better than 
99.6% of all the (rated) players using the site. On one occasion, the ANN beat an 
expert-level player (with a rating of 2173, just below the master level of 2200) 
who was ranked 98th of over 80,000 registered players. 
 Chellapilla & Fogel (2001) performed some comprehensive control ex-
periments, which showed that the evolved ANN operated with a clear advantage 
over a system that simply used the piece differential as the basis for choosing 
moves in an 8-play approach. In particular, they compared the ANN with a piece-
differential based player, on the basis of using equal CPU time in their lookahead 
search at each move; this disadvantages the ANN, since it has over 5,000 weight 
parameters involved in its heuristic calculation, so the piece-differential player can 
look further ahead in the time available. These experiments showed conclusively 
that the evolved ANN was a significantly better player in both equal-ply and equal 
CPU-time conditions.  
 The achievement of Blondie24 is remarkable from many viewpoints: par-
ticularly the essential simplicity of its approach, the fact that the search landscape 
for the evolutionary algorithm was so huge, and the fact that fitness assessment 
was a relatively coarse measure of a network’s performance. A straightforward as-
sessment of Blondie24’s ‘message’ to us is that it exemplifies the flexibility and 
potential of evolutionary search, even when this is recruited to search a coarse-
grained 10,000-dimensional landscape (the evolution strategy that was employed 
optimised both a weight and a step-size parameter for each connection). Achieving 
expert level performance (over 2,000 points) is considerably superior to most hu-
mans. Perhaps not surprisingly, this is also certainly superior to a simpler (but 
seminal) approach in this area by Samuel (1959), which attempted to derive, by an 
iterative learning process, a polynomial board rating function. Chellapilla and 
Fogel (2001) note that this was considered to rate below 1600 in the opinion of the 
American Checkers Federation Games Editor.  

The world champion checkers program, Chinook (Schaeffer et al, 1996), 
is rated at over 2800, over 100 points above its closest human competitors  
(Schaeffer, 1996). In fact it is now known that Chinook can never be defeated in 
`go-as-you-please’ checkers, in which there are no restrictions on the initial 
moves. The chief difference between Blondie24 and Chinook is the amount of 
built-in specialised knowledge. In Chinook, the level of such knowledge is very 
substantial indeed; in Blondie24 it is virtually none. Along with many other ele-
ments informed by careful expert knowledge and tuning, Chinook incorporates a 
database of  games from previous grand masters and a complete endgame database 
for all cases that start from ten pieces or fewer.  Blondie24 and Chinook represent 
entirely different artifical intelligence approaches to designining a game-playing 
program. It is not difficult to argue that the approach taken by Blondie24 is the 
more interesting and impactful – from no prior knowledge, other than a built-in 
awareness of the rules of the game, an expert level player emerged from the evolu-
tionary process, providing a very tough, usually unsurmountable challenge to all 
but a very small percentage of human players. 

Finally, since the checkers research, Chellapilla & Fogel’s approach was 
extended to address chess, by combining the co-evolutionary spatial neural net-
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work approach with domain-specific knowledge (Fogel et al, 2004; 2006). The re-
sult was an evolved chess player that earned wins over Fritz 8, which was the 5th 
best computer program in the world at that time.  

2.3 Discovering Financial Trading Rules   

  
Financial markets are complex and ever-changing environments in which groups 
of individuals, companies and other investors are always competing for profit.  
There are many opportunities in this area for machine learning and optimization 
methods, and consequently a variety of natural computation approaches, to be ex-
ploited, and a chapter in this volume is indeed devoted to this topic. In this section, 
we focus on one specific thread of research in this area – which has a simply 
grasped approach and a straightforward task to solve. This is the use of genetic 
programming to discover new and valuable rules for financial trading. 

 It is now common to see applications of evolutionary computation applied to 
the financial markets (Brabazon & O’Neil, 2005; this volume). Genetic Program-
ming (GP) (Koza, 1992; Angeline, 1996; Banzhaf et al, 1998) is particularly 
prominent in terms of the degree to which it has recently been applied in finance 
(Chen & Yeh, 1996; Fyfe et al, 1999; Allen & Karjaleinen, 1999; Marney et al, 
2001; Chen, 2002; Cheng & Khai, 2002; Farnsworth et al, 2004; Potvin et al, 
2004). In this section we focus on the specific area in finance known as technical 
analysis (Pring, 1980; Ruggiero, 1997; Murphy, 1999; Lo et al, 2000). Technical 
analysis is a set of techniques that forecast the future direction of stock prices via 
the study of historical data. Many different methods and tools are used, all of 
which rely on the principle that price patterns and trends exist in markets, and that 
these can be identified and exploited. 

Common tools in technical analysis include indicators such as moving aver-
ages (the mean value of the price for a given stock or index over a given recent 
time period), relative strength indicators (a function of the ratio of recent upward 
movements to recent downward movements). There have been a number of at-
tempts to use GP in technical analysis for learning technical trading rules, and a 
typical strategy is for such a GP-produced rule to be a combination of technical 
indicator ‘primitives’ with other mathematical operations. Such a rule is often 
called a ‘signal’. E.g. GP may be employed to find both a good buy signal and a 
good sell signal – that is, one rule which, if its output is above 0, indicates that it is 
a good time to buy, and a different rule indicating when it is a good time to sell. 

 Early attempts to use GP in technical trading analysis were by Chen and Yeh 
(1996) and Allen and Karjalainen (1999). However, although GP could produce 
profitable rules for the stock exchange markets, their performance did not show 
any benefit when compared to the standard buy-and-hold approach. ‘Buy-and-
hold’ simply means, for a given period, buying the stock at the beginning of the 
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period, and selling at the end – hence, always a good idea in a market that gener-
ally moves up during the period.  

More recent applications of GP in this context have been more encouraging 
(Marney et al, 2000; 2001; Neely, 2001). We will look in particular at Becker & 
Seshadri’s work (2003a; 2003b; 2003c) which found GP-evolved technical trading 
rules that outperformed buy-and-hold (at least if dividends are excluded from 
stock returns). In turm, their approach was founded in Allen & Karjeleinen (1999), 
with various modifications. After giving some detail of the overall approach, we 
summarise from further experiments from Lohpetch & Corne (2009; 2010) that 
probed certain boundaries of the technique and examined its robustness.   

 

Becker & Seshadri’s approach to evolving trading rules 
  

Becker & Seshadri (2003a; 2003b; 2003c), based on Allen & Karjeleinen (1999) 
used a fairly standard GP approach and found  rules that significantly outperformed 
buy-and-hold on average over a 12-year test period of trading with the Standard & 
Poors (S&P500) index. Their GP’s function set contained the standard arithmetic, 
Boolean and relational operators, and the terminal set included some basic techni-
cal indicators. An example of a specific rule found by their method is in Figure 5. 
 
 
 

 
 

Figure 5. Example of a trading rule found by Becke & Seshadri’s GP approach. 

 
The rule in figure 5 has the following basic interpretation  “ the 3-month mov-

ing average (MA-3) is less than the lower trend line (t) and the 2-month moving 
average (MA-2) is less than the 10-month moving average (MA-10) and the lower 
trend line (t) is greater than the second previous 3-month moving average maxima 
(MX-2)” . This signals trading behaviour in the following way: If the trader is  cur-
rently out of the market (no stocks invested in the S&P500), and the rule evaluates 
to true, then buy; if the trader is currently in the market, and the rule becomes 
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false, then sell.. This procedure assumes a fixed amount to invest (e.g. $1,000) 
whenever there is a buy signal.  

In the remainder of this subsection we explain the approach in more detail, 
and try to emphasise the key points that are necessary to replicate similar perform-
ance. In passing we note the main ways in which Becker & Seshadri modified the 
original approach of Allen & Karjeleinen. These were: monthly trading decisions 
rather than daily trading; a reduced function set in the GP approach; a larger ter-
minal set in the GP approach (with more technical indicators); the use of a com-
plexity-penalising element to avoid over-fitting; and finally, modifying fitness 
function to consider the number of periods with well-performing returns, rather 
than just the total return over the test period. In combination, these methods en-
abled Becker & Seshadri to find rules that outperformed buy and hold for the pe-
riod they tested, when trading on the S&P500 index. It is an open question as to 
which modifications were most important to this achievement, however Lohpetch 
& Corne (2010) begins to answer that question, as we will see, by showing (as is 
intuitiely the case) that it is increasingly easier to find good rules as we change the 
trading interval from daily to weekly, and then to monthly.  

In the following, we exclusively use S&P500 data (as did Allen & Kar-
jeleinen (1999) and Becker & Seshadri (2003a; b; c); so, our ‘portfolio’ is   the 
fixed set of 500 stocks in the S&P500 index, which, aggregate to provide daily 
price indicators.     

 

Function and Terminal Sets used by Becker & Seshadri 

 
In Becker & Seshadri’s GP approach, the function set comprises simply the Boo-
lean operators and, or and not, and the relational operators > and <. The terminal 
set comprises the following, in which ‘period’ was always month in Becker & Se-
shadri’s work, but later we discuss Lohpetch & Corne (2010)  in which it could be 
day, week or month in different experiments. 
 

• opening, closing, high and low prices for the current period; 
• 2,3,5 and 10-period moving averages; 
• Rate of change indicator: 3-period and 12-period; 
• Price Resistance indicators: the two previous 3-period moving average 

minima, and the two previous 3-period moving average maxima; 
• Trend Line Indicators: a lower resistance line based on the slope of the 

two previous minima; an upper resistance line based on the slope of the 
two previous maxima. 

 
The n-period moving average at period m is the mean of the closing prices of the n 
previous months (included m). The n-period rate of change indicator measured at 
period m  is: (c(m) −c(m−(n−1))×100)/c(m−(n−1)), where c(x) indicates the closing 
price for period x. Previous maxima MX1 and MX2 are obtained by considering 
the 3-period moving averages at each point in the previous 12 periods. Of the two 
highest values, that closest in time to the current period is MX1, and the other is 
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MX2. the two previous minima are similarly defined. Finally, to identify trend line 
indicators, the two previous maxima are used to define a line in the obvious way, 
and the extrapolation of that line from the current period becomes the upper trend 
line indicator; the lower trend line indicator is defined similarly, using the two pre-
vious minima. 
 

Becker & Seshadri’s Fitness Function 
 
The fitness function has three main elements. First is the so-called ‘excess return’, 
indicating how much would have been earned by using the trading rule, in excess 
of the return that would have been obtained from a buy-and-hold strategy. The 
other elements of the fitness function were introduced by Becker and Seshadri to 
avoid overfitting. These were: a factor that promoted fitness for trading rules that 
were less complex (e.g., with reference to figure 5, a less complex rule is one in 
which the tree has smaller depth); and, a factor that considered ‘performance con-
sistency’ (PC), favouring rules that generally were used often, each time providing 
a good return, rather than rules that were very fortunate in only brief periods.   

In more detail, the excess return is simply  bhrrE −= , where r is the return on 

an investment of $1,000, and rbh is the corresponding return that would have been 
achieved using a buy and hold strategy. To calculate r, Allen & Karjeleinen (1999) 
and Becker & Seshadri (2003a; b; c) used: 
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in which: 1loglog −−= ttt PPr , indicating  the continuously compounded re-

turn, where Pt is the price at time t. The term Ib(t) is the buy signal, either 1 (the 
rule indicates buy at time t) or 0. The sell signal, Is(t), is analogously defined. So, 
first component gives the return on investment from the times when the investor is 
in the market, and the second component, rf(t) indicates the risk-free return which 
would otherwise be available, which is taken for any particular day t from pub-
lished US Treasury bill data (these data are available from 
http://research.stlouisfed.org/fred/data/irates/tb3ms). The second component there-
fore represents time out of the market, in which it is assumed that the investor’s 
funds are earning a standard risk-free interest. Finally, the third component is a cor-
rection for transaction costs, estimating the compounded loss from the expenditure 
on transactions; a single transaction is assumed to cost 0.25% of the traded volum – 
e.g. $2.50 for a transaction of volume $1,000. The number of transactions actioned 
during the period by the rule is n.  

The second main part of the fitness function, rbh, is calculated as: 
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in which rt is as indicated above. This calculates the return over the period from 
risk-free investment in US Treasury bills, involving a single buy transaction. 
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 Becker & Seshadri’s complexity-penalising adjustment works as follows: 
Given a rule that has depth depth and fitness value (excess return) f, the adjusted 
fitness becomes 5f/max(5,depth). This involves the constant 5 as a relatively arbi-
trary desired maimal depth, and in the trading rule evolution context, there has been 
little paramertic investiagtion around this value so far. The other of Becker & Se-
shadri’s modification to the excess return fitness function, Performance Consis-
tency (PC) works as follows. The excess return E is calculated for each successive 
group of K windows of a certain length covering the entire test period.  

The value returned is simply the number of these periods for which E was 
greater than both the corresponding buy and hold return (from investing in the in-
dex over that period) and the risk-free return during that period. For example, if the 
rule is evaluated over a 5 year test period, the PC version of the fitness function 
might use 12-month windows. Clearly there are five such windows in the test pe-
riod, and the fitness value returned will simply be an integer between 0 (the rule did 
not outperform buy and gold and risk-free investment in any of the five windows) 
and 5 (the rule was more successful than both buy-and-hold and risk-free return in 
all of the windows).  

At last, the above background enables us to state the fitness function used (with 
minor variations in each case) in Becker & Seshadri (2003a; b; c) and Lohpetch & 
Corne (2009; 2010). The fitness of a GP tree of depth d in these studies was the 
performance-consistency based fitness (i.e. a number from 0 to X, where there were 
X windows covering the test data period), adjusted to penalise undue complexity in 
by 5f/max(5,d), in which f  is the number of the X windows in which both the corre-
sponding buy and hold return and the risk-free return were outperformed by the 
rule. 
 

Some illustrative results  
 
We report here some results that show how this approach performs on various win-
dows of time when trading with the S&P500 index. The results we show are some 
of those from Lohpetch & Corne (2010), and the subset of those that were obtained 
under the same test conditions as used by Becker & Seshadri (i.e. monthly trading 
for a specific training and test window) are quite indicative of Becker & Seshadri’s 
own results. However, it is worth first discussing some fruther details of the way 
that the genetic programming method was set up for the experiments.  

Although perhaps not always the case, it seems that the precise choice of 
mutation and crossover methods makes little real difference in this application; the 
chance of evolving effective trading rules seems clearly related to a good choice of 
function and terminal sets for the expression trees, as well as a wise choice of fit-
ness function. Although, as we will see later, the frequency of trading is a signifi-
cant factor. Meanwhile, Lohpetch & Corne (2009; 2010) used standard mutation 
operators, as described by Angeline (1996), namely grow, switch, shrink, and cycle 
mutation, and used standard subtree-swap crossover (Koza, 1992). Finally, we note 
that, in the experiments whose results we summarise next, the population was ini-
tialized by growing trees to a maximum depth of 5, however no constraint was 
placed on tree size beyond the initial generation, other than the pressure towards 
less complex trees which is a part of  the fitness function. 
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We can now show some results that indicate the performance achievable 
by such a GP system as described in the last section. In the experiments summa-
rised here, from Lohpetch & Corne (2009; 2010), a population size of 500 was 
used, and other relatively standard GP settings, with a run continued for 50 genera-
tions. Here we show results for each of daily, weekly and monthly trading, and we 
find that outperfomance of buy-and-hold can indeed be achieved even for daily 
trading, but as we move from monthly to daily trading the performance of evolved 
rules becomes increasingly dependent on prevailing market conditions. The data 
used is the S&P500 index from 1960 onwards. In Becker & Seshadri’s demonstra-
tion of outperforming buy-and-hold, only monthly trading was used, and their re-
sults arise from training the rules over the1960—1991, and evaluating them on a 
test period spanning 1992—2003. This corresponds to “MonthlySplit1” in the fol-
lowing, however it is clear from Lohpetch & Corne (2009) that more robust per-
formance is obtained when a validation period is used. The following illustrative 
results therefore reflect a training/validation/test regime in which the GP training 
run evaluated fitness on the training period only, but the rule that achieved the best 
performance on a validation period was harvested, and this was the rule evaluated 
on the test period.  

Results for four different monthly trading data splits are summarized below. 
The splits themselves are as follows, in which N gives the length of the validation 
period in years, immediately following the training period, and K  gives the length 
of the test period in years, again immediately following the validation period. 
 

• MonthlySplit1: 31 yrs training; N=12, K=5 
• MonthlySplit2: 31 yrs training, N=8, K=8 
• MonthlySplit3: 31 yrs training, N=9, K=9 
• MonthlySplit4: 25 yrs training, N=12, K=12 

  
Corresponding splits for the weekly and daily trading experiments are also su-
marised here very briefly (for details see Lohpetch & Corne (2010)). Four different 
weekly trading and daily trading data splits were also investigated, roughly corre-
sponding to the monthly data splits in terms of the number of data points in each 
split. E.g. WeeklySplit1 involved 366 weks trading, 158 weeks validation and 157 
weeks testing. Similarly, the training periods for the daily splits were approxi-
mately one year in length. The four different weekly and daily splits started at dif-
ferent times spread evenly between 1960 and 1996.  

Figure 6 shows the four Monthly data splits aligned against the S&P 500 
index for the period 1960—2008.  Note that the market movements were net posi-
tive in each part of each split, indicating that outperforming buy-and-hold was in all 
cases a challenge.    
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Figure 6. The S&P500 index over the period 1960—2008, illustrating the four data splits 
for the case of monthly trading. 

 

In Lohpetch & Corne’s experiments (2010), they also explored different lengths 
of window for the Performance Consistency element of the fitness function. In 
Becker and Seshadri’s work, the Performance Consistency approach clearly results 
in improved performance, however they only reported on the use of 12-month win-
dows. Lohpetch & Corne experimented with different lengths for these windows 
for each trading situation, namely: 6, 12, 18 and 24 months periods for monthly 
trading; 12 and 24 weeks for weekly trading, and 12 and 24 days for daily trading.  

For each trading period (monthly, weekly, daily), Lohpetch & Corne did 10 
runs for each combination of data split and consistency of performance period. The 
outcome of the 10 runs is summarised in Tables 1—3, simply as the number of 
times that the result outperformed buy-and-hold.   
 

Table 1. Summary of results for  monthly trading 

Data split PC 
Period 

Trials 
outperforming 
buy-and-hold. 

PC 
Period 

Trials outperforming 
buy-and-hold. 

Monthly Split1 6 10 out of 10 12 10 out of 10 

Monthly Split2 6 9 out of 10 12 10 out of 10 

Monthly Split3 6 10 out of 10 12 9 out of 10 

Monthly Split4 6 10 out of 10 12 10 out of 10 

Monthly Split1 18 10 out of 10 24 10 out of 10 

Monthly Split2 18 8 out of 10 24 10 out of 10 

Monthly Split3 18 8 out of 10 24 7 out of 10 

Monthly Split4 18 10 out of 10 24 10 out of 10 

          1965        1970         1975        1980        1985       1990         1995         2000        2005 
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As Table 1 shows, monthly splits 1 and 4 were clearly well-disposed to good 
performance, but performance was also rather robust on the other monthly splits. 
Note that outperforming buy and hold would seem to be more likely, according to a 
priori intuition, when the performance of buy-and-hold in the test period is rela-
tively weak, but this is not the case for Monthly splits 1 and 4 (see Figure 6). The 
results are quite impressive from many points of view. In many cases, ten tests out 
of ten showed that a simple trading rule evolved by genetic programming was able 
to outperform buy-and-hold in an upwardly moving market. 

 

Table 2. Summary results for weekly trading 

Data split PC 
Period 

Trials 
outperforming  
buy-and-hold. 

PC 
Period 

Trials outperforming  
buy-and-hold. 

Weekly 
Split1 12 

2 out of 10 
24 

7 out of 10 

Weekly 
Split2 12 10 out of 10 24 5 out of 10 

Weekly 
Split3 12 4 out of 10 24 4 out of 10 

Weekly 
Split4 12 

10 out of 10 
24 

10 out of 10 

 
 
Table 2 shows the results, summarized in the same way, for the case of weekly 

trading, and Table 3 presents the corresponding results for the case of daily trading. 
These clearly show increasingly less robust results. It certainly seems that this rela-
tively straightforward GP method can find robust rules for weekly trading that out-
perform buy-and-hold in some circumstances (splits 2 and 4), with less reliable per-
formance in other cases.  However, Lohpetch & Corne (2009; 2010) were not able 
to discern any pattern that explains this from analyses of the data splits. Finallly, for 
daily trading, Table 3 shows that outperforming buy-and-hold is less likely, with 
strong performance in only one of the four data splits, and very poor performance 
in two of the data splits.   

 

Table 3. Summary of results for  daily trading 

Data split PC 
Period 

Trials 
outperforming  
buy-and-hold. 

PC 
Period 

Trials outperforming  
buy-and-hold. 

Daily 
Split1 12 

0 out of 10 
24 

0 out of 10 

Daily 
Split2 12 0 out of 10 24 0 out of 10 

Daily 
Split3 12 10 out of 10 24 9 out of 10 

Daily 
Split4 12 

2 out of 10 
24 4 out of 10 
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A Brief Discussion 

The investigation of genetic programming in financial applications, and in particu-
lar the use of it to discover technical trading rules, remains an active thread of re-
search in both industry and academia. In the published academic research, it was 
commonly found in earlier studies that rules found by genetic programming were 
profitable, but usually not competitive with straightforward “buy and hold” strate-
gies. However, as we have seen, the situation is changing and it now seems that 
progress is being made in finding ways to use genetic programming to produce ef-
fective and interesting rules that might be used by individual traders. There are sev-
eral caveats, and of course this enterprise is only one thread of work in a wide area 
that also involves natural language understanding and many other areas of machine 
learning  (for example, to spot ideal trading opportunities based on the latest online 
news). However this work represents another example of the way in which natural 
computation can help us generate strategies for complex situations which are com-
petetive with those we design ourselves.  

We should also note that the approach described in this section is far from the 
last word in the application of genetic programming to the specific area of technical 
trading. We have taken pains to describe a classic approach, and shown that it can 
indeed find robustly profitable trading rules under a range of conditions – however 
several more sophisticated ways to use GP in this area also exist. For example, 
rather than simply evolve a single rule that encapsulates both a buy and sell signal, 
different rules can be evolved separately for buying and selling. Also, we note that 
interested researchers may pick up code for evolving technical trading rules (writ-
ten by Dome Lohpetch) from the following site: 

  http://www.macs.hw.ac.uk/~dwcorne/gptrcode/. 
It is also worth mentioning alternative directions which attempt to gain on 

buy-and-hold by including risk metrics in the rules (or in their evaluation). Typi-
cally, a risk measure such as the Sharpe ratio (Sharpe, 1996) is used to normalize 
the estimate of financial return, effectively downgrading the performance of rules 
that promote trading in volatile conditions, promoting rules more likely to be ap-
plied by investors. For example, in attempting to build on work by Fyfe et al 
(1999), Marney et al (2000; 2001) included the use of metrics for calculating risk, 
although still did not outperform buy-and-hold. More recently, Marney et al 
(2005) used the Sharpe ratio and found that a technical trading rule that easily out-
performed simple buy and hold in terms of unadjusted returns, but not in terms of 
risk-adjusted returns. There is clearly much work still to do until techniques exist 
in the research literature that can robustly outperform buy-and-hold in a way that 
satisfies risk-conscious traders, although the progress and effort in this direction 
makes it clear that this will be achieved, as well as suggesting that private and un-
published research in commercial organizations has almost certainly achieved this 
already with appropriate use of genetic programming and similar technologies.  
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3. Examples of Natural Computing’s ‘Outreach’ elsewhere in 
Science and Engineering 

In this section we select two areas of natural computation which have wider impli-
cation for significant areas of science and technology. Mostly, an application of a 
natural computing technique may produce excellent results in its domain, and the 
impact of those results, though potentially significant, tend to remain solidly 
within that domain. Progress in general financial mathematics, for example, will 
not be revolutionised by the trading application we discussed in section 2. How-
ever,  sometimes an exemplar application will open up previously unconsidered 
possibilities in a whole subfield of science. In this section we discuss two exam-
ples in which we can see such broader consequences. The first is the use of 
(mostly) multi-objective evolutionary computation in the area of closed-loop op-
timisation, in order to optimise a range of processes and products in the biosci-
ences, process industries and other areas.  In this arena, evolutionary computing 
was never an `obvious’ technique to try, given the potential cost in time, however 
it’s use has time and again proven worthy, and this in turn leads directly to better 
and faster processes and products emerging from, for example, the use of the in-
struments that have been configured via evolutionary techniques. The second exe-
ple area we look at in this section is the concept of innovization, which exploits 
multi-objective evolutionary computation in a way that leads to generic design in-
sights for mechanical engineering (and other) problems. In multi-objective prob-
lems (see Deb, 2001; Corne et al, 2003) the result of solving the problem is a (usu-
ally) large collection of diverse solutions, each optimal in a sense, but traversing a 
Pareto surface of optimal from (for example) highly reliable and high cost solu-
tions to exceptionally cheap but less reliable ones. The notion of innovization is to 
exploit the prowess of evolutionary computing in obtaining such a diverse set, by 
further analysing this collection of designs to find, as it turns out, previously un-
known generic design rules which seem to be true of all ‘optimal’ designs, wher-
ever they sit on this Pareto surface. A well designed natural computing approach 
to a specific problem in mechanical engineering, for example, thereby leads to 
new design principles that can have much wider impact than simply solving the 
given problem. 

3.1 Applications in Analytical Science: Closed-Loop 
Evolutionary Multiobjective Optimization 

Knowles (2009) provides a detailed and comprehensive summary of historical ori-
gins and current work in the broad area of closed-loop optimisation using evolu-
tionary multiobjective algorithms. We provide a similar but more brief treatment 
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here, including a summary of two of the several interesting modern case studies 
covered in Knowles (2009).  

As Knowles (2009) points out, the idea of using an evolution-inspired 
technique for producing solutions to optimization problems has been explored for 
around 60 years so far, starting in the 1950s. The celebrated British statistician 
George E.P. Box used the term ‘closed-loop’ in describing the kind of evolution 
experiments that were first investigated, while Ingo Rechenbrg (a pioneer in evo-
lutionary computation) used the phrase ‘evolutionary experimentation’. In closed-
loop evolution-inspired optimisation, the evolution process is a combination of 
computation and physical experiment. The evaluation of candidate design solu-
tions is done in the real world by conducting physical experiments. Much of the 
pioneering work in evolutionary computation (by Rechenberg and his team) was 
of this kind. In much more recent times, the closed-loop approach has been used, 
commonly with much success, in evolvable hardware research (see chapter in this 
volume), in evolutionary robotics research, as well as in microbiology and bio-
chemistry. In this section, some brief example case studies are described, to illus-
trate the increasingly wide emerging impact of this technique at the evolu-
tion/engineering interface.  

With a focus on closed-loop evolutionary multiobjective optimization 
(CL-EMO) in particular, we look at two cases (i) instrument optimization in ana-
lytical biochemistry; (ii) on-chip synthetic biomolecule design; these are described 
in greater detail in Knowles (2009) as well as further references detailed later, and 
along with other quite different examples. However, before these case notes, we 
will briefly look at the historical development and fundamental concepts in 
closed-loop optimization and CL-EMO.   

Historic Highlights in Closed-Loop Optimization 

In Berlin in the 1960s, Rechenberg, Schwefel, and Bienert conducted a series of 
studies in engineering and fluid dynamics, in which they tested the idea of using a 
process inspired by evolution to search for new and successful designs. Their 
work clearly demonstrated that complex design engineering problems (including: 
the optimal shape of a fluid-bearing pipe, and the design of a supersonic jet noz-
zle) could be addressed in this way with rampant success (see Chapter 8 of Fogel 
(1998), as well as Rechenberg (1964; 2000). The design process itself was found 
to be efficient and scalable, and the results were highly effective. Rechenberg and 
his team were using an early example of an evolutionary algorithm, but in which 
only the selection and variation steps were done by a microprocessor; the rest, the 
evaluation of candidate designs, was done by constructing prototype designs and 
performing experiments to test their properties.  Innovative solutions were found 
to all of the engineering design problems that they studied.  

Pre-dating Rechenberg’s work, a similar principle was used by George Box, 
who introduced ‘evolutionary operation’ (EVOP) in 1957. This was also an ex-
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perimental method  of optimization, which Box (1957) envisaged being used regu-
larly in factories and similar processing facilities. Box’s ‘closed-loop’ scheme in-
volved some human input, and was somewhat more deterministic than the ap-
proach taken in Berlin, but, just as Rechenberg’s work, was inspired by principles 
from natural evolution. Box’s methods were both successful and very influential 
(Hunter & Kittrell, 1966), remaining in use today. Meanwhile, the work of Re-
chenberg’s team was the beginning of the field of evolution strategies, one of the 
foundation stones of the current field of evolutionary computation.   

Since these early studies, however, evolutionary computation as a whole has 
largely been concerned with entirely in silico optimisation. The great majority of 
growth in this research area, as well as in industrial practice, concerns applications 
that involve convenient and entirely computational estimations of the fitness of 
computational abstractions of solutions. This is fine for a vast collection of scenar-
ios, but there remains a need – in fact a quickly expanding one – for applications 
in which it makes sense for designs to be realised and evaluated physically 
throughout the simulated evolution process.   

Research in evolvable hardware shows that, if the evolution processs is given 
direct access to a complex physical structure, designs can be evolved that use en-
tirely different proinciples than would be used by human designers, often exploit-
ing aspects of the physics of the structures involved that are unfamiliar to human 
experts, or simply too difficult to use as part of the design process. Thompson & 
Layzell’s work with Field Programmable Gate Arrays is exemplary of this. 
Meanwhile, evolutionary robotics projects have often relied upon the controllers 
being evolved in real time within physical robots, while they are performing real 
tasks in a real environment (Nolfi & Floreano, 2004;  Trianni et al, 2006). The 
benefits of such evolution experiments, exposed to and exploiting the true physics 
of the designs being evolved, are not just confined to evolutionary robotics, e.g.  
Davies et al (2000), Evans et al (2001).  

Later, we describe three further and recent uses of closed-loop evolutionary op-
timization, from recent work in which the third author (JDK) has been involved.  
Each is a scenario where direct experimental evaluation of solutions is either the 
only option or is clearly preferable to simulation. Also they each involve multiob-
jective evolution, a notable advance of the last twenty years (Fonseca & Fleming, 
1995; Coello, 2000; 2006; Deb, 2001; Corne et al, 2003) which was not available 
to Box or Rechenberg. One of the several benefits of a multi-objective approach in 
these scenarios is that the different design objectives may simply be stated, with-
out any need to define normalizations, weights or priorities that mangle them into 
a single scalar (and usually misleading) measure of quality. 

At this point, it is worth noting that there is widespread use of certain statistical 
methods in industry, for the types of problems that we are considering in the 
‘closed loop’ setting. The techniques employed are referred to as design of ex-
periments (DoE) approaches, or sometimes experimental design (ED) based ap-
proaches (Fisher, 1971; Chernoff, 1972; Myers & Montgomery, 1995; Box et al, 
2005). Such methods emphasise rational reasoning from all the information ob-
tained so far, as opposed to more randomized exploration. Standard DoE is typi-
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cally used for probing low-dimensional parameter spaces using few experiments, 
while evolutionary algorithms are typically used for optimization in high-
dimensional spaces, using many evaluations, and optimize many different types of 
structure, including permutations, graphs, networks, and so on. However, there is 
an increasingly disappearing divide between the two types of approach, especially 
since the advent of sequential DoE, which incorpates aspects of evolutionary 
computing.  The closed-loop optimization scenarios considered in this section lie 
between these niches, and benefit from aspects of both approaches.   

 
 

Fundamentals of Closed-Loop Evolutionary Multiobjective Optimiza-
tion  

 
In closed-loop EMO, candidate solutions to a problem are generated by an algo-
rithm in computer simulation, but their evaluation is achieved by physical experi-
ment. Evaluations are fed back to the algorithm and its generation of subsequent 
solutions is a function of these. Thus the process has the form of a closed loop, be-
ing at least partially sequential. Closed-loop problems can be defined generally as 
multiobjective optimization problems in which, essentially, we need to find some 
ideal solution vector x, which simultaneously minimizes each of a collection of k 
objective functions f1(x),  f1(x), … fk(x). Typically, a single physical experiment 
g(x) yields the k measurements f1(x),  f1(x), … fk(x). That is, the k objectives are k 
different measurements that are made as the result of a single experiment, all of 
which we need to optimize in some way. Typically, at least some of the objectives 
will be in conflict (Brockhoff & Zitzler, 2006), and no single solution is a mini-
mizer of all functions. Rather, the improvement of one objective is only possible 
by sacrificing, or trading off, quality in some other objective.  The solutions corre-
sponding to optimal values of the k objectives are known as the Pareto set, and 
when plotted in objective space, form the Pareto front (see Figure 7). 
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Figure 7: An illustration of a Pareto front for a typical optimization problem with two ob-
jectives,both of which have to be minimized. Eacg of the solutions on the Pareto Front (PF) 
are optimal in the Pareto tradeoff sense. E.g. for any solution on the PF, no silution exists 
which is improved in one objective without being degraded on another objective. Often, 
some solutions on PFs are ‘unsupported’ – these are valid optimal solutions in the Pareto 
tradeoff sense, but for any linear combination of the objectives that might be used in a sin-
gle-objective simplification of the problem, they would not be optimal.   

 
 

 
 Since solving such a vector optimization problem usually leads to a set of solu-

tions, rather than a single one, there is, in most practical applications, a need for 
decision making to select one solution from this set. This aspect of multi-objective 
optimization is important and well-studied (Fonseca & Fleming, 1998; Miettenen, 
1999; Branke & Deb, 2005, and we will not cover the various alternative ap-
proaches here.  Suffice to say that in the experiences detailed later, the EMO algo-
rithms were designed to find whole Pareto fronts, with the expectation that a hu-
man decision maker would make the final decision using the information 
incorporated in the output Pareto front.  

 
 

Example 1: Instrument Optimization in BioAnalytical  Chemistry  
 
Modern biotechnology and bioanalytics often involves large-scale experiments 
which impose heavy demands on sophisticated laboratory instruments. To achieve 
timely throughput, these experiments often necessitate using configurations of in-

Objective 1 

Objective 2 
Solutions on the  
Pareto front 

Unsupported solutions 
(in a concave region) 

Dominated solutions 
 (not on the Front) 
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struments that go beyond the manufacturer’s recommended settings. This situation 
happened in the ‘HUSERMET’ project, which was a collaboration between sev-
eral UK health authorities, two pharmaceutical companies, and the University of 
Manchester, undertaken between 2006 and 2009 (www.husermet.org). In this pro-
ject, human blood samples were collected from around 2000 people over a three 
year period, with te aim of understand ovarian cancer and Alzheimer’s disease in 
terms of the variations in metabolites (the chemical products of metabolism) pre-
sent in patients suffering from, or free from, these diseases. The samples were ana-
lysed with the help of various modern technologies for characterizing complex 
samples, including laboratory instruments that performed gas-chromatography 
mass spectrometry. The configuration of such instruments is always subject to a 
degree of optimization in order to ensure that the analytes being detected can be 
seen, with maximal sharpness and minimal noise. This optimization is usually 
(though not always) ad hoc, subject to much domain knowledge.   

In the HUSERMET project, the need for a better instrument configuration op-
timization process arises from: the unusually large number and diversity of me-
tabolites to be detected (aound 2,000),  the potential to vary around 10 interacting 
instrument parameters, and the significantly conflicting nature of the optimization 
objectives.  Instrument settings were needed that allowed fast processing of sam-
ples (preferably well under an hour), which conflicts with the desire to maximize 
the detection of the full complement of metabolites at low noise.  

 Optimizations of two instruments have been reported in detail in O’Hagan et 
al, 2005; 2007), respectively. The former study successfully used the evolutionary 
multiobjective algorithm PESA-II (Corne et al, 2001), but that study also directly 
inspired the development of the ParEGO algorithm (Knowles, 2006), a multiob-
jective algorithm that is a hybrid of a surrogate modeling approach and an evolu-
tionary algorithm. ParEGO was then used in the second study successfully, and 
settings derived from the evolutionary algorithms in both cases were subsequently 
used for the instruments to process the tasks of the HUSERMET project.  

The major challenge in that project was the limited number of function evalua-
tions that could be done. A function evaluation ties up an expensive instrument for 
an appreciable time, when it could otherwise be used more directly furthering the 
project’s needs. This was even more bothersome, given the need to try to optimize 
three objectives simultaneously (chromatogram peaks, signal/noise ratio and sam-
ple throughput). Only one instrument was available, and a single analysis of a se-
rum sample takes between 15 minutes and over an hour. The optimization process 
used 400 evaluations in total, with the EAs controlling the instrument settings and 
loading samples through a robotic interface that was designed especially for the 
optimization process. In figure 8 we can see some chromatograms, which indicate 
the instrument’s performance characteristics before (upper) and after (lower) op-
timization. The optimized result achieved approximately three-fold increases in 
the quantity of peaks visible, whilst at the same time maintaining the signal/noise 
ration at low levels, and achieving throughput of samples in around 20 minutes. 
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Figure 8: Chromatograms indicating detection performance of the instrument op-
timized in the HUSERMET project. (a) from the initial generation of search; (b) 
towards the end of the search process. In (b), both the number of peaks and the 
range of retention times over which peaks are detected have improved, while 
maintaining noise at low levels.
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Example 2: Evolving Real DNA on Custom Microarrays  
 

Another example covered in more detail in Knowles (2009) concerns the design of 
pharmacologically-active, highly-targeted macromolecules. This is a significant 
goal in modern medicine, especially in the context of ab initio design, where we 
seek a molecule with specific properties and activity, but have little or nothing to 
go on (in the sense of existing molecules with similar properties). In recent re-
search, novel microarray-based technology has been used in the automation of 
such ab initio molecule design. Experimental biotecthnology platforms are now 
available which can synthesise, and then experimentally test in a variety of ways, 
any specifed DNA sequence. Being able to synthesize any given sequence, and 
subject it various tests, means there is far less need for computational models 
which, in the current state of the art, are far from good enough (or fast enough) to 
support such a process. 

 The microarray used in the work described next (and more fully in Knowles 
(2009) and references therein) is the so-called CustomArray technology, available 
from Combimatrix Corp, which can be used to synthesise up to 90,000 specific 
bespoke DNA sequences of up to 40 bases lomg in a single experiment. Once the 
sequences have been synthesized. they can be tested for a variety of properties, but 
usually the main property of interest is the ability to bind to a particular target 
molecule. In the testing (or assay) process for binding ability, the chip holding the 
sequences is ‘washed’ with a solution containing the target molecule, and some 
form of fluorescent tagging is used so that binding can be observed; further auto-
mated processes can then estimate the strength of binding.  

Short strands of DNA (or RNA), which bind strongly to specific targets are 
called aptamers, and hundreds of these have been developed for a wide variety of 
applications. Before the recent microarray-based work at Manchester (which is 
what we are discussing here, with full details in Knight et al (2008)), new aptam-
ers were almost always discovered by a method called SELEX (Tuerk & Gold, 
1990), or in vivo selection, in which the DNA strands are evolved in a test tube by 
repeated rounds of high-pressure selection and random mutation. As indicated, 
however, in the microarray approach we know precisely the sequence information 
for every sequence tested, and can even exactly specify mutations or other varia-
tions to perform. This is not the case in SELEX, and one of the many benefits for 
the microarray approach is that it allows extremely richer possibilities for borrow-
ing and exploiting algorithms from evolutionary computation, machine learning 
and statistics. 

Knight et al (2008) reports the first use of an evolutionary algorithm to produce 
a DNA aptamer on the B3 Combimatrix platform. This happened after ten genera-
tions of evolution, eventually discovering several 30-base long strands that bound  
very strongly to the target molecule, allophycocyanin. The work in Knight et al 
(2008) used a DNA chip that could hold 6,000 strands. With 90,000 strands on a 
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chip now possible in more modern technology, one main challenge (from the op-
timization perspective) is to determine the best way to exploit such massive popu-
lation sizes. Wedge et al (2009) have recently explored such questions in in silico 
simulations using contrived search landscapes, as well as real trials on the DNA 
landscape, revealing, among other findings, that higher than standard mutation 
rates consistently outperformed a range of other setups. This echoes findings in 
Corne et al (2003b), which also explored large population sizes and contrived in 
silico landscapes, partly to inform the (as then) emerging field of closed loop pro-
tein evolution. 
 

 
Some Concluding Notes on CL-EMO 
 
For the examples described above, and several more in which CL-EMO has been 
used, building accurate computational models that could usefully replace real ex-
periments is practically infeasible.  The closed-loop alternative offers a more effi-
cient and effective way towards the discovery of innovative solutions, easily mak-
ing up for the time and expense of tying down the physical kit for the 
experimental period. One question often worth asking, however, is whether we 
need to automate the optimization process at all in such scenarios. There is a proc-
essing step in which a computational process (here, e.g. an evolutionary multiob-
jective optimization algorithm) considers the latest experimental evaluation re-
sults, and outputs sample designs for the next sequence of physical evaluations – 
but this operation could easily be done instead by a domain expert.  On the other 
hand, though, there are several objections to such human involvement: even ex-
perts can over-interpret results that are affected by noise or similar factors; simi-
larly, humans are very prone to reason on the basis of simple models, ignoring in-
teractions between parameters. Meanwhile there is always a very real danger of 
experts preferring solutions that are (or are close to) known designs.   

 Problems where accurate computer modeling is infeasible, and for which 
closed-loop optimization is the efficient solution, are really quite common. For the 
moment, the main focus of the third author is on problems in modern biology, 
where there is a growing take-up of multiobjective optimization. Meanwhile, 
many other substantial areas are able to benefit greatly from CL-EMO; apart from 
drug discovery and development, large-scale problems such as flood defence de-
sign, forest fire control strategies, the location of renewable energy plants, and the 
task of genetically engineering more pest-resistant food crops and energy crops, 
can all be seen, to varying degrees, as closed-loop problems.   
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3.2 Innovization 

In this section we describe a new idea, innovization, introduced in Deb & Sriniva-
san (2005; 2006), which (typically) exploits multiobjective evolutionary computa-
tion to find new and innovative design principles. Although optimization algo-
rithms are routinely used to find an optimal solution corresponding to an 
optimization problem, the task of innovization stretches the scope beyond an op-
timization task and attempts to unveil new and innovative design principles relat-
ing to decision variables and objectives, so that a deeper understanding of the 
problem can be obtained. 

Innovation is a common goal for engineers and designers, but there are actually 
very few (arguably no) systematic procedures for reliably achieving innovations. 
Goldberg (2002) however suggests that a ‘competent’ genetic algorithm can be an 
effective way to achieve an innovative design (and indeed there are numerous ex-
amples of innovative designs being discovered by evolutionary computation, in-
cluding some discussed elsewhere in this chapter). However, the idea of innoviza-
tion (Deb & Srinivasan, 2005; 2006) extends this argument considerably, and 
gives a systematic procedure that can  arrive at a deeper understanding of a given 
engineering design problem. This systematic procedure may lead to the discovery 
of new design principles – in particular, principles which are common to the di-
verse collection of optimal trade-off solutions. Such common principles may in 
many cases provide a reliable recipe for solving given instances of the problem at 
hand. In this section we will explain the innovization procedure, and illustrate it 
with two examples in engineering design. The material in this section borrows 
much from Deb & Srinvasan (2005), which intrdocued this idea, and contains sev-
eral more examples. However, before looking at the procedure and examples, it 
will be helpful to recall some basics about the usually conflicting nature of objec-
tives in the design process. 

  
 
Multiple Conflicting Objectives in Design 

 
The central idea in innovization involves the presence of at least two conflicting 
objectives for the design problem at hand. This is far from a limiting constraint – 
as argued in many places (see in particular Corne et al (2003) for an introductory 
account of this argument), almost all realistic problems naturally involve several 
objectives. 

Consider a typical design problem with two or more conflicting goals, such as 
an engine or generator whose mass needs to be minimized, but whose output 
needs to be maximized. Such a two-objective optimization task results in a set of 
Pareto-optimal solutions (see Figure 7). One of the ‘extreme’ solutions will be the 
best if we are only interested in mass, while the other extreme solution will be 
ideal for the output consideration, and there will usually be several solutions inbe-
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tween these extremes, also optimal in a sense, all of which share the property that, 
if they are better than another Pareto optimal solution in one objective, they will 
be worse in the other. The intermediate solutions are invariably good compromises 
within the extremes, and the solution that may eventually be chosen by the de-
signer will often be among these, and its choice will often by helpfully informed 
by the knowledge that the designer obtains by viewing the shape and the nature of 
the tradeoffs displayed by the entire set of solutions that form the discovered 
Pareto front. However, what is of particular interest here is that this set of solu-
tions will typically be very diverse, but all sharing the property of Pareto optimal-
ity. The idea of innovization arises from the attempt to see whether this property 
of Pareto-optimality, for any given problem, is manifest in concrete features that 
the diverse solutions share. Another aspect of this is that the process of obtaining 
such a wide variety of solutions is itself a significant investment in computation 
time; innovization is a way to exploit this significant investment by performing a 
posterior analysis of the obtained set of trade-off solutions, which may result in a 
set of ‘innovized’ principles relating to the given design problem. 

 In designing an electrical motor, for example, this posterior analysis might re-
veal a feature of the diameter of a certain component and the power output that is 
shared by all of the Pareto-optimal solutions but not other solutions. Any such re-
lationships discovered would  clearly be of great importance to a designer, and 
perhaps point towards a recipe for future design tasks in the same domain, as well 
as spark new theoretical insights into the problem. These are just two of a range of 
benefits that so-called ‘innovized principles’ could lead to, as discussed further in 
Deb & Srinivasan (2005), along with convincing argument that we can often ex-
pect such principles to exist. 

  
 

How to Innovize 
 
The innovization procedure proposed by Deb & Srinivasan (2005) consists of two 
phases: in the first phase, the idea is to simply try to obtain the Pareto optimal so-
lutions of the design problem in question.  In the second phase, they then analyse 
the solutions and extract innovized principles. The first phase is not as straight-
forward as it sounds, since, of course, we usually can never guarantee that we 
have found true optima  for a realistic problem, unless we have performed an ex-
haustive search. However, the idea of the first phase is to do as well as we can in a 
reasonable time, since it is expected that the chance of obtaining valid principles 
of Pareto-optimality is improved if we have true (or very close to true) Pareto-
optimal solutions. In Deb & Srinivasan’s procedure, this centrally involves mak-
ing use of NSGA-II (Deb et al, 2002) (one of the most prominent and effective 
evolutionary multiobjective optimisation algorithms) as the main engine in finding 
the Pareto front, but initially informed by a single objective method that has been 
used to find the extreme points on the Pareto front, and followed by various appli-
cations of a local search method and the Normal Constraint Method (NCM) (Mes-
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sac & Mattson, 2004) to locally improve the output solutions from NSGA-II as far 
as possible.  

The second phase of innovization is then the nalysis of the assumed Pareto op-
timal solutions that emerge from the first phase. There is no fixed recipe for this 
process, other than to employ the usual common sense and expertise that under-
pins a data mining and knowledge discovery task in searching for commonality 
principles among these solutions that may become plausible innovized relation-
ships. Deb and Srinivasan (2005) also pursue ‘higher level innovizations’ after this 
phase, which involve returning to the original problem, but investigating different 
areas of the design space by looking at neighbouring problems (e.g. with different 
boundaries and constraints on the design task); this then enables new principles to 
be discovered that are likely to be at a higher level than previously, mapping de-
sign constraints to design recipes.  

We now describe just two from the increasing collection of results of this above 
innovization procedure in engineering design applications. These were first de-
scribed in Deb & Srinivasan (2005), among several other examples.   

 
Example 1: Gear Train Design 
 
Deb & Srinivasan (2005) give the example of the design of a compound gear train, 
in which a specific gear ratio between the driver and driven shafts is desired. The 
problem is illustrated in Figure 9, and is a modification to a problem solved else-
where (Kannan & Kramer, 1994; Deb, 1997). The objective is to set the number of 
teeth in each of the four gears in a way that minimizes the error between the ob-
tained gear ratio and a required gear ratio of 6.931:1, while also minimizing the 
maximum size of the four gears.  
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Figure 9: A gear train with four gears (circles). The task is to achieve as close as 
possible a gear ratio of 6.931:1 between the driver and follower, while minimizing 
the sizes of each gear.   
 
The diameter of a gear is proportional to the (integer) number of teeth, so these 
objectives can be formalised in terms of four integer decision variables: x = (x1, x2, 
x3 x4) referring respectively to the numbers of teeth in gears Td (driver), Tb, Ta and 
Tf (follower). The problem is then o minimize both f1 and f2 below: 
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The constraints ensure that the difference between the designed gear ratio and the 
desired gear ratio is no more than 50%. After phase one of the innovization proce-
dure, a collection of assumed Pareto optimal solutions was obtained. Table 4 
shows the two exreme solutions. 
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Table 4: the extreme solutions obtained for the gear train design problem in Deb & 

Srinivasan (2005). 
 

Solution Td Tb Ta Tf f1 f2 

Minimum error 20 13 53 34 ~0.00023 53 
Minimum maximal gear size 12 12 22 23 3.4171 23 
 
 
Phase two of the process then revealed several interesting principles relating to the 
problem, covering the whole set of Pareto optimal solutions, which we summarise 
from Deb & Srinvasan’s account as follows:   

First, In order to minimize the maximal gear size, gears Td and Tb need to have 
almost the smallest allowable number of teeth. To get as close as possible to the 
desired ratio (with error less than 0.1), the Tb and Td values need to grow some-
what, but still remain close to their lower bounds. Another finding is that the 
maximum allowed gear size always occurs in a Pareto-optimal solution, either for 
Ta or for Tf.  It is also noted that two distinct types of solutions emerged: (a) gear-
trains with very low error (very close to the desired gear ratio of 6.931:1), in 
which there is a great variety of ways in which the numbers on teeth in the four 
gears combine to almost achieve the 6.931 ratio in the first objective; (b) gear-
trains with a comparatively large error, with identical first and second-stage ratios 
(except the one with the largest error). Although a large error can happen for many 
different combinations of errors in the two stages, the pressure of the second ob-
jective causes both stages of gear-ratios to be identical. Finally, regarding small-
error gear trains, half of them have a larger first stage ratio than second stage, and 
half have a larger second-stage ratio. 

This is a fairly simple and straioghtforward example, although it brings out 
several interesting properties of optimal solutions of this type of gear-train design 
problem which are difficult, if not impossible, to infer from the statement of the 
problem. One implication, for example, concerning recipes for gear train design, is 
that the process could be guided according to how important it is to closely meet 
the constraint. If a low error is desired, then it is clearly important to examine 
many possible combinations of gear sizes. If a higher error can be allowed, then 
solutions with minimal size strongly tend to have equal first-stage and second-
stage ratios.  

 
 

Example 2: Welded Beam Design 
 

This is a much-studied problem in the context of single-objective optimization 
(Reklaitis et al, 1983), in which a beam needs to be welded onto another beam and 
must carry a certain load F, as illustrated in Figure 10. 
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Figure 10: the welded beam design problem. 
 
 

The problem is to establish the four design parameters (beam thickness and width, 
respectively b and t, length and thickness of weld, respectively l and h) in a way 
that minimises the cost of the beam, and also minimises the vertical deflection at 
the end of the beam. The overhanging portion of the beam has a fixed length of 14 
inches, and is subject to a force F of 6,000lb. Clearly, an ideal design in terms of 
cost will be less rigid and hence not ideal in terms of deflection, and vice versa. A 
formulation of this problem (Deb & Kumar, 1995; Deb, 2000) gives the objectives 
as follows, where x indicates the vector of design parameters: 
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The first constraint specifies that the shear stress at the support location is below 
the allowable shear stress of the material (13,600 psi); the second ensures that the 
normal stress at the same location is below the material’s allowable yield strength 
(30,000 psi); the third ensures the obvious practical consideration that the weld is 
not thicker than the beam, and the fourth ensures that the applied load F is below 
the allowable buckling load of the beam. The highly nonlinear stress and buckling 
terms are as follows (Reklaitis et al, 1983):   
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Following phase one of the innovization procedure, a set of Pareto optimal solu-
tions was obtained, and Table 5 shows the extreme points of this Pareto set, along 
with an interesting intermediate point which Deb and Srinivasan refer to as T, 
which comes into the innovized principles discussed next.   
 
Table 5: the two extreme solutions and an interesting intermediate solution T obtained by 
Deb & Srinivasan (2005) for the wedled beam design problem. The units of the design pa-
rameters are inches. 

 
Solution h l t b f1 f2 

Minimum cost 0.2443 6.2151 8.2986 0.2443 2.3815 0.0157 
Minimum deflection 1.5574 0.5434 10.000 5.000 36.4403 0.00044 
Intermediate sol’n T 0.2326 5.3305 10.000 0.2356 2.5094 0.0093 
 
 
Deb & Srinivasan’s analysis of the many Pareto solutions obtained (spread liber-
ally between those shown in Table 5) revealed the following innovized principles: 

First, two distinct behaviors were found: from the intermediate transition solu-
tion T (shown in Table 5) towards higher-deflection solutions, the objectives be-
have differently than in the rest of the trade-off region. For small-defllection solu-
tions, the relationship between the objectives was almost polynomial, with f1 being 
roughly proportional to 1/f2

0.89.   Next,  it was found that, for all Pareto-optimal so-
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lutions, the shear stress constraint is active. In the small-deflection (large-cost) 
cases, the chosen bending strength (30,000 psi) and allowable buckling load 
(6,000 lb) are quite large compared to the developed stress and applied load. Any 
Pareto-optimal solution must achieve the maximum shear stress value (13,600 
psi). So, to improve the designs in this region without sacrificing deflection, it 
would be necessary to use a material with a larger shear strength capacity. A third 
overall principle found was that the transition point (T) between two trade-off be-
haviours is related closely to the buckling constraint. Designs with larger deflec-
tion (or smaller cost) reduce the buckling load capacity. When buckling load ca-
pacity becomes equal to the allowable limit (6,000 lb), no further reduction is 
allowed. After this point (towards small-deflection solutions), the beam thickness 
must reduce in inverse proportion to the with deflection objective in order to retain 
optimality.   

Next, for small-deflection solutions, the beam width remains constant. This in-
dicates that for most Pareto-optimal solutions, the width must be set to its upper 
limit. Although the beam width has opposie effects on cost and deflection, it is in-
volved in the active shear stress constraint, and since shear stress reduces as beam 
width increases, it can be argued that fixing beam width to its upper limit would 
make a design optimal. Thus, if in practice the cost objective is not paramount, so-
lutions may be explored which have a fixed width (the maximum 10in in this 
case), thereby simplifying the inventory. However, along the Pareto tradeoff sur-
face, the weld length increases with increasing deflection, and the weld thickness 
decreases with increasing deflection. Deb & Srinivasan (2005) noted that these 
phenomena are counter-intuitive and difficult to explain from the problem formu-
lation. However, the innovized principles for arriving at optimal solutions seem to 
be as follows: for a reduced cost solution, keep beam width t fixed to its upper 
limit, increase weld length l, and reduce beam and weld thickness (h and b). This 
‘recipe’ is valid while the applied load is strictly smaller than the allowable buck-
ling load. 

Beyond that point, any reduction in cost must come from reducing beam width 
below its upper limit, increasing beam thickness, and adjusting the weld parame-
ters so as to make the buckling and shear stress constraints active.  Finally, the 
minimum cost solution occurs when the bending stress equals the allowable 
strength (30,000 psi), at which point all four constraints become active. 

Finally, to achieve very low cost solutions, the innovized principles are dffer-
ent: for a reduced cost solution, we need a smaller beam width, but larger beam 
thickness and weld parameters. 

Deb & Srinvasan report a higher level run of the innovization procedure for this 
case, in which innovization was redone separately for different values of the three 
allowable limits in the first, second and fourth constraints above. It was clear that 
all three cases produced similar dual behavior (different characteristics on either 
side of a single transition point) to that observed in the original case. All other in-
novized principles mentioned above (such as the constant nature of beam width, 
beam thickness being smaller with increasing deflection, and so on) remained 
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valid,. And significant further insights were obtained into the overall design prob-
lem, detailed in full in Deb & Srinivasan (2005). 

  
Innovization: Concluding Notes 
 
When we face an optimization problem with at least two conflicting objectives, 
the set of optimal solutions is very diverse. Having found such a set effectively 
and efficiently using evolutionary multiobjective optimization (judiciously com-
bined with other methods that help locally optimise), the notion of innovization is 
to analyse this set of solutions to see if there are commonalities and patterns that 
might translate into general design principles for the problem at hand. It turns out 
that this is true, and interesting new principles (difficult or impossible to have 
been obtained otherwise) have emerged from several studies to date. The emerg-
ing truth seems to be that solutions along a Pareto front do often seem to share 
similarities that seem to be principles of optimality for the problem at hand, irre-
spective of location on the Pareto front.  

 In this section we have borrowed results from just two case studies to illustrate 
the innovization principle. Deb & Srinivasan (2005) show several more examples, 
including spring design and multiple-disk clutch brake design, while one more re-
cent study (Datta & Deb, 2009) displays an excellent example of the potential im-
pact of innovization (and hence indirectly, of evolutionary multiobjective optimi-
zation) by finding new innovized principles for the setup parameters of a turning 
process using a lathe and cutting tool that are overwhelmingly common in industry 
workshops. Finally, there is no particular reason to believe that innovization is 
constrained to engineering design. It will be interesting to see future applications 
of this idea in other design fields, such as electrical circuits, optical systems, 
communication networks, and the many other areas in which evolutionary mul-
tiobjective optimization is increasingly used. 

 

4.  Logistics and Combinatorics Made Easy: Robust Solutions 
and New Algorithms via Natural Computation 

In this section we consider two areas which exemplify how natural computing 
(largely, learning classifier systems and evolutionary computation) has provided 
us with highly successful ways to address difficult logistics problems. Logistics 
usually relates to scheduling and timetabling problems of various kinds, but we 
also include here the closely related and general field of combinatorial problems in 
which a discrete collection of items of some kind must be arranged in an optimal 
way. There are innumerable examples of natural computing applications in this 
domain, and our first case is simply a selection of one (of several possibilities) that 
combines the attributes of: ‘interesting’, ‘`real-world’, and difficult’ (we look at 
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the case of a real-world truck scheduling problem). We then move on to perhaps a 
more profound area that has emerged from the late 1990s, in which, rather than 
use evolutionary computing to solve ‘one problem at a time’, we consider the use 
of natural computing to discover new algorithms which can then in turn be used 
on entire classes of problems, solving them efficiently and effectively. This is an 
area within the emerging field of ‘hyper-heuristics’, but with the particular focus 
on designing new algorithms which we refer to as ‘super-heuristics’.    

4.1 Safe Streets via Robust Route Optimization 

In this section we describe an application of natural computation in a critical sea-
sonal logistical task, covered more fully in Handa et al (2006). Local Authorities 
in countries such as the UK, with marginal winter climates, are responsible for the 
precautionary gritting/salting of the road network in order to allow safer travel in 
icy conditions. This winter road maintenance task is extremely  challenging as 
well as critically important to the locality, with a potentially major impact on both 
business and day to day life.  

 As Handa et al (2006) note, in the case of the UK, there are around 3,000 pre-
cautionary gritting routes that cover about 120,000 km (30% of the entire UK road 
network). On  nights with forecasted snow or ice, these routes need to be treated 
so as to ensure the safety of road  users. This typically costs between £200 to £800 
per km or road (Cornford & Thornes, 1996). Accurate road surface temperature 
prediction is required, in order to decide which roads need to be treated, however 
this decision can often be uncertain. Optimization of the route to be traveled by 
the gritting/salting trucks also plays a crucial role here. The consequences of a 
wrong decision – not treating a road that eventually becomes dangerous – are seri-
ous, but if grit or salt is spread when it is not actually required, there are obvious 
financial and environmental drawbacks. The goal of gritting route optimization is 
to minimize the financial and environmental costs, while ensuring that roads that 
need treatment will be gritted in time. Further, it is essential that gritting routes are 
planned in advance, to enable effective use of limited resources (e.g., trucks and 
salt). 

 Mostly, the design of gritting routes relies heavily on local knowledge and ex-
perience. A ‘static,’ often paper-based, approach is typically used to optimize grit-
ting routes, staying within constraints imposed by the road network itself, vehicle 
capacities, the number of vehicles and the available personnel. In this section, we 
describe the application of an evolutionary algorithm to this task. Covered in more 
detail in Handa et al (2006), we discuss here a Salting Route Optimization (SRO) 
system that combines evolutionary algorithms with the latest version of the Road 
Weather Information System (XRWIS) commonly used by local authorities.    
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The Salting Route Optimization (SRO) System  
 

A very important aspect of the SRO we discuss here is its integration with 
XRWIS, which, recently trialled by the UK Highways Agency, is a high-
resolution route-based forecast system which predicts road temperature for a 24-
hour period. XRWIS models surface temperature and condition at thousands of 
sites in the road  network. Data are collected along each gritting/salting route by 
conducting a survey of the ‘sky-view factor’ (a measure of the degree of sky ob-
struction by buildings and trees) (Chapman et al, 2002). This is then combined 
with other geographic, land-use, and updated meteorological data to predict road 
conditions at typical spatial and temporal resolutions of 20 metres and 20 minutes 
respectively. The output is displayed as a colour-coded map of forecast road tem-
peratures and conditions that is then disseminated to highway engineers.    

In the SRO, XRWIS provides forecast temperature distributions over 
time that are then input to an evolutionary algorithm module. Each temperature  
distributions (different distributions for different future timepoints), along with 
commercially available routing data, is transformed into an instance of a capaci-
tated arc routing problem (CARP) (Lacomme et al, 2004). That is, each tempera-
ture distribution suggests a specific set of roads on the network that need to be 
treated. The CARP is then defined as the need to find routes that serve this spe-
cific set of roads in a reasonable time-frame, using no more than the available ve-
hicle numbers and capacities, and ideally minimizing the number of vehicles used. 
An important point is that each timepoint leads to a different CARP instance, since 
the set of roads that require treatment may be different. The overall goal of the 
SRO system is to find a suitable series of salting routes which ensure that the 
roads that require treatment are treated in time, but also ensuring that the routes do 
not vary too much, which in turn causes consdierable confusion and distraction to 
the workforce. In this sense, the SRO system finds a robust solution, which en-
sures to cover the most important sections of the road network. 

Given the series of CARP instances, the evolutionary algorithm module  finds 
solutions that are simultaneously good for all or many of these instances. In par-
ticular, a specially designed memetic algorithm is used (a combination of evolu-
tionary and local search) as described next. In this approach, the fitness of a solu-
tion is calculated according to the entire ensemble of CARP instances. Howeve, at 
each generation, the operators and local search processes concentrate on a specific 
instance. The different instances are weighted, and this weighting controls the se-
lection of the instance in each generation, in a way described in the following.   

 
Robust Solutions for Salting Route Optimization  

 
Searching for robust solutions is currently a significant topic in the field of opti-
mization in uncertain environments, since in many problems the decision variables 
or environmental parameters are subject to noise. In this case, Handa et al (2006) 
required that solutions to the different CARP instances be as similar to each other 
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as possible (so that daily changes in the temperature distribution do not lead to 
significant disturbance in the route to be followed), while at the same time requir-
ing good performance in terms of the costs of the routes. Handa et al modelled a 
robust SRO solution as one which optimised the following: 
 

∫= daapaXEXF )(),()(  

 
in which X and a indicate route design variables (routes and possible tempera-
tures), E(X, a) indicates the distance cost of gritting routes X given temperature a. 
while p(a) indicates the probability of temperature a. Hence, the idea is to find 
ideal gritting routes for each temperature distribution, but weighted by the prior 
probabilities of the forecast temperatures.  

Although the distribution in temperature will vary daily across a road network, 
warmer (colder) sections are usually warmer (colder) than the rest of the network. 
So, even on cold nights, some warmer sections may not require salting, whereas 
colder sections may need treatment even in relatively warm conditions. The fitness 
function, as stated above, is impossible to compute exactly since its components 
are largely unknown; instead it is approximated by using a number of typical tem-
perature distributions. Considering this and other issues, the fitness function used 
by Handa et al (2006) was as follows, given a set of temperature distributions Ae:  
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in which E*(ai) represents the difficulty of finding a good route for temperature 
distribution ai,, and the wi are weights, summing to 1, which balance the impor-
tance of different temperature distributions during the optimisation process. The 
weights are adapted during evolution in a way that maintains a focus on the routes 
that are proving more costly, while the E*(ai) values are lower bounds on the cost 
of the routes for each temperature distribution ai, actually pre-determined by prior 
runs of the memetic algorithm for this purpose described in Handa et al (2005).   
 Handa et al (2006) used a permutation-based encoding as follows. An in-
dividual solution comprised a paermutation of arc IDs (road sections), interspersed 
with symbols representing individual trucks. For example, the individual: 
 

2 6 s1 5 4 7 1 s2 8 3 
 

indicates a gritting route for two trucks; truck 1’s route is road sections 5, 4, 7  and 
1 (in that order), and truck 2’s route is road sections 8, 3, 2 and 6 (note the wrap-
around involved in the interpretation.  

At each generation of the memetic algorithm, crossover (the EAX operator 
proposed by Nagata and Kobayashi (1997)), and local search methods are applied 
with regard to only one CARP instance (that is, one temperature distribution) in 
every generation. That is, the for example, the local search is guided by the fitness 
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according to the selected instance only. The choice of instance is made stochasti-
cally according to the current weights of the temperature distributions. However, 
between generations, the fitness of each solution is calculated according to the en-
semble of instances using the fitness function described, and this then guides the 
selection of parents for the next generation. 

  
Comparisons and Conclusions  

 
In experiments by Handa et al (2006) to test and validate this approach, robust so-
lutions were evolved by using 10 different  temperature distributions, and these 
were then compared  with the routes currently used by South Gloucestershire 
Council in the UK.  

Figure 11 shows an example of routes found for a cold day, comparing the 
SRO system’s routes (on the left) with the existing routes (on the right).  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 11. Left: routes optimised by the SRO system for a cold day in South 
Gloucestershire; Right: existing routes obtained by human experts. 

 
 

In comparison with the routes that were in use at the time, the robust solutions de-
livered by the SRO were able to provide more than 10% savings in terms of total 
distance travelled by the available trucks.  

 The SRO system was developed for finding optimized robust solutions for 
salting trucks, and as such it is an excellent example of an important real-world 
combinatorial problem that can be solved effectively via a system with natural 
computation at the core. In this case, especially given the integration with the 
XRWIS, the system can be regarded as proof of concept for similar tasks that need 
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careful planning in relation to weather conditions, such as waste collection and 
parcel delivery.   

4.2 Hyper and Super Heuristics 

In this section we briely consider a fairly new method in search and optimization, 
variously called hyper-heuristics or, as an emerging term in the community refer-
ring to a specific brand of approach, super-heuristics. In the context of selected 
applications of natural computation, the special aspect of super heuristics is that 
they represent the use of a good global optimization or learning method – hence, 
typically evolutionary computation or a learning classifier system – to discover 
new algorithms that solve problems of a given kind. This is as opposed to, and 
substantially more general than, using optimization or learning to solve a single 
problem instance.  

 In very broad terms, the general notion of hyper-heuristics refers to the idea of 
using an algorithm that manipulates a set of heuristics in order to solve a given 
problem. This is indeed a very common activity these days, and can be seen in 
many published applications of evolutionary algorithms, and of meta-heuristics in 
general (including, for example, tabu search and simulated annealing). Typically, 
such an approach is sometimes called a hyper-heuristic in the case that the encdo-
ing used involves lowe level heuristics in an integrated way. That is, rather than an 
encoding of a solution being a direct representation of a solution, the encoding is 
instead an indirect representation (we will later look at examples). The interesting 
point is that, in some cases, an encoded solution for a given problem can actually 
be interpreted as an algorithm that can be applied to a large collection of instances 
of that problem, not just the instance currently being solved. In many so-called 
‘hyper-heuristic’ applications, this reuasbility of the encoding of a solution is only 
a side effect. When the term ‘super-heuristic’ is used herein, this is meant to refer 
to the idea that evolving new general and reusable algorithms (for classes of in-
stances, rather than a ingle instance of interest), is the specific goal of the process. 
However we note that ‘super-heuristics’ seems to have been first used in the litera-
ture by Lau & Ho (1999), to denote something more akin to standard hyperheuris-
tics, in which a set of heuristics are engineered by higher level algorithms in order 
to solve a specific problem instance. In this section, we describe the ideas, amid 
some examples and historical notes. For alternative and more detailed accounts, 
we recommend a 2003 book chapter (Burke et al, 2003), or the current Wikipedia 
article on hyper-heuristics.   
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Potential Impact of Super-Heuristics 

The impact and importance of super-heuristics  is partly evidenced by a negative 
point:  despite a large collection of case studies, standard applications of meta-
heuristics tend to be ‘one-off’ and resource-intensive.  For example, a particle-
swarm optimisation method developed to solve a small company’s daily process 
scheduling problems may seem successful on its own terms, but its existence does 
not necessarily accelerate the potential for other companies with similar (but not 
the same) problems to develop similar solutions . And, typically, the solution itself 
may be resource intensive, tying up considerable computing resources every 
morning.  Also, the devlopment of this solution will have typically been influ-
enced by a perceived goal for producing solutions as optimal as possible, despite 
the fact that daily uncertainties and perturbations to the production process under-
line this opimality – i.e. a large number of “reasonably good” solutions will have 
worked just as well.   

In contrast, super-heuristics seem to open up the possibility for producing solu-
tions that, though having an initial cost in development time, are much more flexi-
ble. The ‘solution’ in this context would be a fast, constructive algorithm that 
tends to work well (as well as run much more quickly than a typical metaheuristic 
implementation) on the problems typically faced by the company, and may well 
generalise to similar problems more successfully and easily than the metah-
heuristic approach.    

Hyperheuristics: further notions and examples  

Suppose we have an instance of a problem to solve. In particular, it is  easier to 
think in terms of combinatorial and logistics problems, the kind in which we might 
build a solution step by step by making a series of decisions. For example, if we 
have a collection of student examinations to timetable, first we might find a room 
and a time for the largest exam; then we might decide which exam to look at next, 
then we might decide where to place this next exam, and so on. For such problem 
domains there is usually an available collection of  ‘low level’ heuristics. For ex-
ample, in timetabling a common heuristic is to first sort the events that have to be 
timetabled according to some measure of difficulty. There are several such meas-
ures, based on the fact that some events are more difficult to place than others (e.g. 
can only fit in a small number of rooms, and potentially clash with many of the 
other events). One way to do timetabling constructively (such algorithms are often 
called ‘greedy’) is to repeatedly choose an event to timetable based on a difficulty 
measure, and then timetable it by finding a place and a time that suits. Each poten-
tial difficulty measure can be considered a different heuristic. Similarly, deciding 
where and when to place the event are also activities that can be based on a range 
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of specialised heuristics. Very similar can be said of other, if not all, logistic or 
combinatorial problems.  

 With independent roots in the field of automated planning and scheduling 
systems (Minton, 1988; Gratch et al, 1993; Cross & Walker, 1994), an early and 
influential example of the hyper-heuristic approach being used for solving specific 
problem instances (i.e. one at a time) is concerned with open-shop schedulling 
problems in Fang et al (1994). In Fang et al’s work, several low level heuristics 
were considered, all of which were relevant to the problem of ‘open-shop’ sched-
uling, in which there are, say, j jobs that need to be scheduled, each consisting of a 
certain number of tasks. Each such task must use a specific resource (usually 
called a machine) for a specific amount of time, although the tasks that comprise a 
given job may be done  in any order (when the order of tasks within a job is con-
strained, it is a job-shop problem). For example, PCs may arrive at a processing 
centre with the operating system installed, and need to have a number of applica-
tions installed (for which order of installation is unimportant) by a number of ex-
perts, each expert in the installation of a particular application. Each ‘job’ is a PC, 
which may have its own individual specification and subset of applications that 
need to be installed; this amounts to an open shop scheduling problem.  

 Fang et al (1994) used an evolutionary algorithm which constructed solutions 
as follows. A chromosome was a series of pairs of integers [t0,h0,t1,h1,...] inter-
preted from left to right, meaning: for each i, ‘consider the ti-th uncompleted job 
(always interpretable, when treating the list of uncompleted jobs as circular) and 
use heuristic hi to select a task to insert into the growing schedule in the earliest 
place where it will fit’. Examples of the lower level heuristics used are:  
 

• choose the task with the largest processing time;   
• choose the task with the shortest processing time;   
• find the tasks that can start earliest (there may be more than one) and 

choose the one with largest processing time;  
• find the tasks that can be inserted into a gap in the schedule so far, and 

pick one that best fills this gap   
 
This approach, was called ‘evolving heuristic choice’, and led to excellent re-

sults on benchmark problems, including some new best results at the time of pub-
lication, and it marked the beginning of a wave of interest in what were later 
temed ‘hyper-heuristic’ approaches. An example following this work was that of 
Hart and Ross (1998), who looked at job-shop scheduling problems (where the or-
dering of tasks within a job is pre-determined – e.g., in our software installation 
example, it could well be the case that applications need to be installed in a certain 
order). Their approach relied on the fact that there is always an optimal schedule 
which is ‘active’, meaning that to get any task completed sooner you would need 
to change the order in which tasks from different jobs get processed on one or 
more of the machines, Meanwhile, a well-known heuristic algorithm was ex-
ploited (due to Giffler and Thompson (1960)) that generates active schedules. We 
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now follow the explanation by Hart & Ross (1998) and in Burke et al (2003), in 
explaining their approach. Giffler & Thomson’s  active-schedule generation algo-
rithm is as follows: 

 
1. let C = the set of all tasks that can be scheduled next  
2. let t = the minimum completion time of tasks in C,and let m= machine on 

which it would be achieved  
3. let G =the set of tasks in C that are to run on m whose start time is < t  
4. choose a member of G, insert it in the schedule  
5. go to step 1.  
 

In step 4 there is a choice to be made, which was exploited in Hart & Ross’ hyper-
heuristic approach. Now consider a simplified version of this algorithm, which 
only generates so-called ‘non-delay’ schedules.  

 
1. let C = the set of all tasks that can be scheduled next  
2. let G = the subset of C that can start at the earliest possible time  
3. choose a member of G, insert it in the schedule  
4. go to step 1.  
 
This time, there is a choice to be made in step 3. Hart & Ross’ approach was to 

use an encoding of the form [a1,h1,a2,h2,…], again interpreted from left to right, 
where the ais are 0 or 1, indicating whether to use an iteration of the Giffler and 
Thompson algorithm or an iteration of the non-delay algorithm, in order to decide 
on the next task to schedule, and the his indicate which of twelve heuristics to use 
to make the choice involved in the selected algorithm. This method again pro-
duced excecllent results on benchmark problems.  

Finally, before we move on to two examples of what can be called ‘super-
heuristics’ (.e. where we are evolving general problem solvers, rather than al-
gorighms for one instance at a time), we briefly mention an early real-world appli-
cation of the hyper-heuristic approach. Described in Hart et al (1998), the problem 
that needed to be solved was to schedule the collection of live chickens from 
farms in Scotland and Northern England, for delivery to one of two processing 
factories. A given instance of the problem arises from a set of orders from super-
markets and other retailers, which have to be fulfilled within given time windows. 
The specific resources that needed scheduling were of two types: the collection of 
live chickens from farms was done by a set of ‘catching squads’ who moved 
around the country in mini-buses; the delivery of chickens to processing factories 
was done by a set of lorries. In general, catching squads needed to move from 
farm to farm collecting chickens, and lorries needed to arrive at farms in time to 
be loaded with chickens caught by the squads, and then either move to another 
farm if able to hold more, or proceed to unload at a processing plant (and then 
perhaps back to a farm). The principal aim was to keep the factories supplied with 
work, while attempting to ensure that live chickens did not wait too long in the 
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factory yard, for veterinary and legal reasons. There were several constraints. For 
example, different types of catching squad were distinguished by differences in 
their contractual arrangements, relating to the amounts of work they would do per 
day or week (including, for example, guaranteed minimum amounts of work. 
Meanwhile, the order in which a given squad could visit farms in one day was 
constrained according to the status of each farm in terms of certain chicken dis-
eases, whilst lorry schedules also were subject to a range of associated constraints. 
Overall, the target was to create good schedules satisfying the many constraints, 
but that were also generally similar to the kinds of work pattern that the staff were 
already familiar with, and to do so quickly and reliably. 

After several approaches which did not work very well, using what were the 
standard styles of evolutionary algorithm approach at the time (experts in classical 
scheduling methods had already been consulted by the company, and had tended 
to retreat in terror once the problem had been described to them), the eventual so-
lution used two evolutionary algorithms in two stages. The first was a hyper-
heuristic approach to assign tasks to individual catching squads in a way that was 
able to cover the current set of customer orders. In detail, a chromosome specified 
a permutation of customer orders followed by two sequences of heuristic choices. 
The first sequence of heuristics specified ways to split each order into convenient 
workloads, and the second sequence of heuristics specified how to assign those 
workloads to catching squads. The second stage was an evolutionary algorithm 
that took the set of tasks produced from the first stage, and delivered a schedule of 
lorry arrivals at each factory. For this real industry problem, a hyper-heuristics ap-
proach was central to a solution that worked successfully, whereas no previous 
approach had met the required standards.  

Before we move on to ‘super-heuristics’, we note that we have barely scratched 
the surface of applications that have found hyper-heuristics to be a highly flexible 
and successful approach, albeit at the time of writing the application areas tend to 
be not very diverse, with most either involving  timetabling (e.g. Terashima-Marin 
et al, 1999; Cowling et al, 2000; Burke et al, 2002; Bilgin et al, 2006) or schedul-
ing (e.g. Hart & Ross, 1998; Cowling et al, 2002;; Ayob & Kendall, 2003). For a 
much more comprehensive discussion of hyper-heuristics, readers may refer again 
to Burke et al (2003), as well as Ozcan et al (2008).     

Superheuristics: evolving and learning new and effective algorithms   

In an increasingly influential piece of research, Ross et al (2002) extended the no-
tion of hyper-heuristics to see whether new constructive algorithms could be 
evolved which could deal effectively with large sets of problem instances, rather 
than one instance at a time. In what we term here a ‘super-heuristic’ approach, 
Ross et al (2002; 2003) used a learning classifier system called XCS (Wilson, 
1998), and later an evolutionary algorithm, to try to learn an algorithm for solving 
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hard bin packing problems. The learning was done in Ross et al (2003) with an 
evolutionary algorithm aiming to optimize the parameters for a fast constructive 
bin packing algorithm, training on a set of test problems (i.e. a collection of differ-
ent problem instances was involved in the fitness function). When the learned al-
gorithm was then tested on a different set of test problems, its performance was 
found to be clearly competitive with state of the art human designed bin-packing 
constructive algorithms.     

In bin-packing (as with many algorithms, and as we have discussed with 
scheduling), a typical constructive algorithm will build a solution one step at a 
time, each step involving the use of some heuristic to choose the next item to pack 
into a bin, and maybe another heuristic to choose which bin to place it in (or a sin-
gle heuristic covering the combined decision). The overall goal is to pack a given 
collection of items of different sizes into a set of fixed capacity bins, using as few 
bins as possible. In detail, the overall idea in Ross et al (2002) and their later work 
(2003) is as follows. At each stage during such a constructive algorithm, we are in 
a particular problem ‘state’, which is characterized by the set of items left to pack, 
and the current partial packing of items into bins. In this state, it is reasonable to 
infer that some heuristics will be better than others for deciding on the next 
item/bin placement. So, Ross et al’s approach was to define a constructive algo-
rithm as a set of rules. Each rule in the set referred to a particular problem state, 
and specified what heuristic to use when in that state. Clearly there are far more 
potential problem states than we can expect to be represented by the left hand 
sides of such rule; the method gets around this by having the rules essentially refer 
to points in the space of potential problem states, and the rule that ‘fires’ at any 
particular time is the one that is closest to the current problem state.  

 The approach was first tested using 890 benchmark bin-packing problems in 
Ross et al (2002), of which 667 were used to train the XCS learning classifier sys-
tem, and 223 for testing. The single resulting learned constructive algorithm was 
able to achieve optimal results on 78.1% of the problems in the training set, and 
74.6% of the problems in the unseen test set. This compared well with the best 
single heuristic tested, which achieved optimality 73% of the time. A notable find-
ing in that work was that when the training set was confined to some of the harder 
problems, the learned algorithm was able to solve seven out of ten of those prob-
lems to optimality (compared with zero out of ten for the comparison human-
designed heuristics). This approach was improved in Ross et al (2003), with many 
interesting findings that showed highly competitive results for evolved algorithms 
on hard unseen problems. 

  Finally we take a brief look at a different style of super-heuristic approach ap-
plied to a different domain, specifically the work of Fukunaga (2008), which con-
cerns the satisfiability (SAT) problem. A SAT problem instance is a conjunctive 
normal form (CNF) expression, such as ‘(A or B or D) and (B or not(C)) and (D or 
E) …’, involving a number of logical variables (A, B, …) which may either be 
true or false, which in turn are the elements of a number of clauses, conjoined into 
the full statement. The problem is to discover whether or not an assignment of 
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truth values to each of the variables exists, which results in each of the conjuncts, 
and therefore the entire statement, being true. Fukunaga’s work exploited a well-
known general local search framework for SAT, as follows: 

 
1. Generate an assignment A of truth values at Random (e.g.: A = T, B = F, 

C = F, …) 
2. For a given maximum number of iterations: 

2.1  If A satisfies the formula, return YES 
2.2   Choose a variable V with a Variable Selection Heuristic 
2.3   Change A by flipping the value of variable V 

3.  Return UNKNOWN 
 

The algorithm uses a ‘Variable Selection Heuristic in step 2.2, and this in turn was 
the focus of Fukunaga’s investigations. There are several well known examples of 
variable selection heuristics, which are human-designed and typically used within 
the above algorithm framework. One example is GSAT (Selman et al, 1992), 
which involves choosing the variable that, if flipped,  would cause the highest net 
gain in satisfied clauses, breaking ties randomly. Another, HSAT (Gent & Walsh, 
1993), works as GSAT, but breaks ties in favour of age – so, the variable that was 
last flipped longest ago in the overarching local search process is the one chosen 
to break the tie. Yet another, of several more, is so-called GWSAT(p) (Selman et 
al, 1994), in which, with probability p, a random variable from a random unsatis-
fied clause is selected, else GSAT is used. 
 Fukunaga (2008) noticed that variable selection heuristics in the SAT lit-
eratire have certain common building blocks, including 

• Scoring variables via a gain metric 
• Selecting a variable from a subset of variables 
• Ranking variables, and choosing the best (or second best) 
• Consideration of a variable’s `age’ 
• Branching (if x do A, else do B) 

An insightful comment that Fukunaga makes is that, in the history of SAT heuris-
tics, developments typically come from finding new ways to combine these build-
ing blocks, rather than entirely novel heuristics. This begs a number of questions, 
one of which is whether or not automated methods may be able to find better 
combinations of these building blocks. The latter is in fact exactly what Fukunaga 
(2008) investigated, by using genetic programming, with a function and terminal 
set designed in such a way that novel heuristics could be expressed in terms of the 
above ingredients. As with the previous super-heuristic approach we discussed, 
the genetic programming experiments involved using a large set of different SAT 
instances in the fitness function, and Fukunaga (2008) evaluates the results by 
testing the evolved variable selection heuristics on unseen test sets.  
 On a collection of 1,000 unseen test instances, Fukunaga’s evolved vari-
able selection heuristics are vey competitive with the state of the art variable se-
lection heuristics, GWSAT, WalkSAT and Novelty (McAllester et al, 1997). A 
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handful of the new heuristics found in this way dominated the state of the at heu-
ristics in terms of success rate and speed. A further rather interesting finding was 
that one of the heuristics in a random search of expression trees was almost as 
good in terms of success rate, but usually faster, than the human-designed state of 
the art heuristics. 
 
 
Some concluding notes   
 
The super-heuristics concept has the potential to play a major role in optimisation 
over the next few years. One way to view this development is as a thrust towards 
more ‘general’ optimisation systems, which, for a wide variety of application ar-
eas, is a significant goal. In just one example application area, timetabling, there 
has been very extensive research in recent years along the lines of hyper-heuristics 
ans upper-heuristics; this has followed a statement in Ross et al (1997), which 
was, “… all this naturally suggests a possibly worthwhile direction for timetabling 
research involving Genetic Algorithms. We suggest that a Genetic Algorithm 
might be better employed in searching for a good algorithm rather than searching 
for a specific solution to a specific problem.” In agrrement with Burke et al 
(2003), we would emphasise that this suggestion can be generalised to a much 
wider range of problem areas than has currently been addressed with hyper- and 
super-heuristic technologies. 

 
   

5. Design: Art, Engineering, and Software    

 
In this penultimate section, we consider the theme of ‘Design’, and discuss three 
quite contrasting examples. Design is an area of especial interest when we con-
sider what natural inspiration has to offer to practitioners of various sorts. Today, 
and for some considerable time still to come, the world is, to most intents and pur-
poses, filled with two kinds of artefact – those designed by nature, and those de-
signed by human designers. The chief difference between these two kinds of arte-
fact is the specific design method that was employed. The naturally designed 
artefacts, as most scientists would agree, were designed by an evolutionary proc-
ess – essentially an iterated process of randomised generation and test, in which 
new designs, often failures, sometimes improvements, emerge via slight random 
changes or randomised recombinations of old designs. With a ‘survival of the fit-
test’ principle built in to this strategy, the successes are more often chosen than the 
failures when it comes to being the foundation for (or the parents of) new designs. 
Over time, this process continues to evolve new designs that are successful in their 
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environment, and the examples we see today include everything from archaea to 
artichokes, baobabs to brains, e-coli to elephants, and from wasps to the sophisti-
cated set of processes that lead to the construction of wasp nests. It is overwhelm-
ingly the case, however, that human-designed artefacts have not adopted this 
process. Humans prefer to design things in a rational way, that prefers the adop-
tion of designs that have worked before for similar problems, and rejects the no-
tion of any randomised exploration. Humans tend to stick to a battery of accepted 
design rules for the application in hand, and usually opt for a step-by-step con-
structive approach, rather than generating and later discarding many different de-
signs at once.  
 Some criticisms of the human way of designing can be summed up in the 
following statement: the over-reliance on established design rules imposes severe 
constraints on innovation, and probably limits the effectiveness of the resulting 
designs. Meanwhile, nature’s method for design may well not be perfect – it does 
indeed seem wasteful – however it certainly beats the human method for innova-
tion. We cannot yet design, with a rational approach, a biological flying machine 
as efficient as a mosquito, or an energy transduction system as efficient as photo-
synthesis. Meanwhile, it is notable that randomisation is an integral part of na-
ture’s method – undirected perturbations to designs tend to be anathema to the 
human approach, but are continually tried and tested in nature. Overall, it seems 
abundantly clear that nature has a lot to teach us about how to design things. 
 Perhaps unsurprisingly to most of our readers, but nevertheless, we hope, 
inspiringly, the documented experiences so far in the arena of natural computation 
in design show us that novel, effective and unprecedented designs can be found by 
applying nature’s method to design the artefacts we need to create. We discuss in 
the next subsections one of the more prominent and exciting examples in recent 
years, which is NASA’s use of evolutionary techniques to come up with entirely 
novel antenna designs that have been deployed on satellite missions. But before 
that, we look at an example of the use of interactive evolutionary computation in 
artistic design, and we end this section with a brief look at how natural computa-
tion is making headway into the design of software.     
 

5.1 Interactive Evolutionary Design of Batik Patterns    

Evolutionary Art Systems (EASs) are increasingly popular (Romero & Machado, 
2008), commonly using evolutionary computation, usually interactively (e.g. 
Sims, 1991; Lutton, 2006), to generate aesthetic artworks. In some real world ap-
plications, focussing on particular niches in art and design, EASs have been de-
veloped specifically to facilitate a designer’s activity. One recent such case, which 
we describe here, is by Li et al (2009), in which an EAS tool is described for help-
ing designers of Batik patterns, a traditional art in  Indonesia and southeast Asia. 
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Batik is a form of painting or writing on cotton cloth, applied with the aid of a tool 
called a cap (Kerlogue & Zanetini, 2004). Nowadays, Batik is used in fashion, fur-
nishing fabrics, and household accessories, as well as paintings and ornamenta-
tions in rooms and offices. However, fine quality handmade Batik is very expen-
sive, so it potentially valuable to consider ways that would decrease Batik 
designers’ effort and increase production of Batik.  

Li et al (2009) investigated the potential for an EAS-based Batik design system 
with such goals in mind. In doing so, however, they had to consider the difficulties 
commonly faced by EAS. First, the evolutionary process is often quite limited by 
the lack of an explicit correlation between genotypes and phenotypes. Essentially, 
the common ways in which aesthetic works tend to be encoded by manipulable 
genes (think of fractal patterns encoded in the typical way by mathematical formu-
lae) are far removed from the works themselves, so that, for example, when a hu-
man designer selects what he or she thinks are good parents, they may find that 
none of the promising features they saw in the parents actually appears in the next 
generation.  Another common difficulty is that the process can be tiresome for a 
human designer, spending hours sitting at a computer rating generated images. Li 
et al’s work attempted to develop a Batik design system with innovations that ad-
dressed these issues. In particular, they devised a suitable encoding for various Ba-
tik styles, and they devised an ‘out-breeding’ mechanism,  that provided an addi-
tional  way to generate new pattenrs that seemed to be on the aesthetic path being 
pursued by the desitgner. These issues are elaborated in the following subsections, 
but the reader is referred to Li et al (2009) for a more complete account.  

 
Encoding Batik Patterns    

 
Li et al (2009) explored the space of geometrical patterns used in Batik, and clas-
sified them into categories. They found that the most common features were repe-
tition, and certain geometric transformations such as rotation, translation, and re-
flection. This led to a way to encode patterns in genotypes, which specify a 
number of non-redundant primitives along with transformations. The encoding is 
therefore based directly on features of Batik patterns, most basic elements of 
which include: triangle, polygon, circle, dot, star and flower. Each feature is gen-
erated from one gene in the genotype.   

A genotype consists of a variable number of genes, each of which represents 
one feature in the phenotype. Every gene has two evolvable attributes. The first 
part is a specific basic pattern (e.g. a simple representation of a flower petal, or a 
circle or a triangle, etc.); the second part, the transformation, is a vector of matri-
ces, which each epresent a transformation of the unit set. A matrix is encoded by 
six numbers, indicating a 2D linear transformation together with a  translation   
This representation is straightforward and easy to manipulate. The resulting pat-
tern is made up of the union of the patterns induced by the different genes.  Figure 
12 shows some examples of single simple genes in this encoding, with their inter-
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pretations above, while Figure 13 shows some patterns produced using the system, 
contrasted with some human-designed similar Batik patterns.  

 
 
 

 
  
Figure 12:  Simple examples of Batik pattern genes, and their interpretations  

 
 

Boosting the evolutionary process 
 
Li et al (2009) use what they call an ‘out-breeding’ mechanism to invigorate the 
pool of patterns produced during the interactive evolutionary process. In their 
EAS, two separate populations of patterns are maintained, displayed to the de-
signer on separate panels. One population evolves in the normal way, based  on 
treating the user’s feedback as the fitness function. However the second popula-
tion evolves towards individuals that are maximally dissimilar to the what seem to 
be the user’s preferences, hence injecting considerable diversity in the displayed 
patterns. Whenever the first population seems to be stagnatint, individuals in the 
second population will be introduced to the first, contributing diverse input to the 
gene pool.    

  The crux of this mechanism is the idea of ‘dissimilarity’, which requires a 
way to compare patterns. Li et al (2009) preferred to investigate a measure that 
was related to the visual difference between patterns, expecting that a method 
based only on genotypic difference would not be satisfactory. They use a metric 
based on singular value decomposition (SVD)(Wang et al, 2000). In their ap-
proach, a pattern A is interpreted as a matrix, and they represent each pattern in 
terms of the singular values arising from the SVD of A, which in turn are likely to 
capture salient features of the visual perception of A. A similarity metric between 
two patterns is then defined on the basis of a normalised comparison of their vec-
tors of singular values. The outbreeding process then operates as follows: In each 
generation, while one population continues  to regenerate patterns according to the 
normal process, guided by the user’s evaluations, the outbreeding population re-
generates in a way guided by using dissimilarity as the fitnes measure, measured 
in terms of dissimilarity from the pattern that the user currently perceives as best. 



57 

Li et al (2009) report that the out-breeding mechanism is very effective in aiding 
the search for innovatiave patterns, and find that the ‘outbred’ populations tend to 
be more elaborate and attractive than the ‘main’ population!  

 
 
 

 
  
Fig 13 Above: some real-world  Batik patterns. below: Similar individuals gen-

erated by the mathematical model, such as appear in th einitial population of the 
Batik.interactive evolutionary system.  

 
 

Meanwhile, concening the ‘standard’ interactively evolved population, we note 
that the generation of the initial population, and the subsequent evolution based on 
user-supplied fitnesses, relies on a collection of typical genetic operators as fol-
lows. The initial population is informed by using a mathematical model of Batik 
pattern space on based Li et al’s preliminary characterisation. The model is used to 
generate collections of genes, and then mutation operators are applied to these: ei-
ther Gaussian mutation (in which each point in the basic pattern element of each 
gene is perturbed by the same random amount), or style mutation (in which the 
elements of a gene reflecting line styles are perturbed, for example from 
straight-line to curve). During the subsequent interactive evolution proc-
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ess, new patterns are produced by crossover and mutation of patterns deemed 
good by the user. Standard types crossover and mutation are used for this in Li et 
al’s work so far, for example including linear combination and gene-swap based 
crossover. Also, as explained fully in Li et al (2009), their system has other fea-
tures that are meant to aid the user’s design process, such as the ability to retrieve 
patterns that were produced earlier in the evolution. 

 
  

Empirical Notes 
   
Li et al (2009) found that some of the traditional Batik designs could be produced 
by the mathematical model that underpins the generataion of the initial population. 
In Figure 13, the top three patterns are real-world Batik, while the three under-
neath were presented in initial populations.  

Li et al (2009) reports on five experiments using their system, aimed partly at 
evaluating the outbreeding technique; each experiment ran the process twice, with 
and without outbreeding (but starting from the same initial populations). They 
measured, in particular,  the time investment of the user before a satisfactory de-
sign was achieved. They found that, with the outbreeding mechanism in place, the 
design process took on average only 54% of the time taken using the interactive 
system without outbreeding. Further, the time with outbreeding was roughly 17% 
of the time it tends to take to design a new Batik pattern by hand.  Further experi-
ments confirmed in other ways that the outbreeding mechanism was effective in 
producing patterns, throughout the process, that tended to be evaluated well by us-
ers. Figure 14 shows the initial population used for all of these experiments, and 
Figure 15 shows some final-population designs that satisfied the users (produced 
with the out-breeding mexhanism in opeation), converted into tesselations. 

 



59 

  

 
Fig. 14 initial populations used in Li et al’s experiments.   
  
  

 
 
Fig 15; tesselations of final-population designs using the Batik pattern interac-

tive evolutionary system (with the outbreeding mechanism). 
 
 

Final points and notes   
 
The interactive Batik design system described and discussed here is a nice exam-
ple of how interactive evolutionary computation is beginning to be used in an in-
creasing number of applications that involve creativity. Experience with this sys-
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tem so far shows how it can both speed up and invigorate the process of generat-
ing interesting new patterns in the Batik ‘domain’. One of the keys to success in 
such enterprises is the wise design of the encoding, and we have seen a good ex-
ample of that in this case. Li et al (2009), as we have seen, also showed an innova-
tive approach to dealing with some of the ever-present problems (and hence, re-
search issues) in interactive evolution. The outbreeding mechanism was able to 
enhance diversity in the process, at the same time as reducing the time (and hence 
fatigue) of human users.   

5.2 Novel Antennae for Satellites: Discarding the Rule Book    

As elaborated further in Hornby et al (2006), current practice in antenna design 
almost invariably involves designing and optimizing them by hand, and this ap-
proach is very limited as a way to develop new and better antenna designs. It re-
quires significant time and expertise from human experts in the domain. An ongo-
ing alternative in antenna design (in common with an increasing variety of such 
specialist areas), is to investigate evolutionary algorithms for this purpose. This 
has been happening since the early 1990s, with increasing success and take-up as 
we have seen developments in processing power, and also improvements in the 
quality of software simulations of antenna performance.  To date, many types of 
antenna have been investigated by evolutionary design approaches. A particularly 
interesting and useful aspect of this approach is the opportunity to to evolve an-
tenna designs specifically for performance in a particular environment, so that the 
fitness function takes into account the effects of structures surrounding the an-
tenna’s intended position. This consideration of the immediate environment is ex-
tremely difficult for human expert antenna designers to take into account.  

In this section, we summarise work reported in Hornby et al (2006) and 
other publications from that group, which describe the experience and results of 
using evolutionary algorithms to evolve antennas for spacecraft associated with a 
number of NASA missions, in particular two antennas designed for NASA’s 
Space Technology 5 (ST5) mission, and an antenna for a Tracking and Data Relay 
Satellite (TDRS) for a mission due to operate in after 2010.   

 
Antennas for NASA’s Space Technology 5 Mission 

 
NASA’s Space Technology 5 (ST5) mission had the goal of launching multiple 
miniature spacecraft to test various innovative concepts for application in future 
space missions. Three miniaturized satellites were involved in ST5, called micro-
sats, designed to measure the effects of solar activity on the Earth’s magneto-
sphere. These micro-sats were approximately half a metre across and half a metre 
high, weighing around 25 kilos when fully fuelled, and each had two antennas, 
centered on the top and bottom. They were originally designed to operate in a geo-
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synchronous orbit at approximately 35,000 km above Earth, and had a stringent 
set of requirements for the communication antennas. Details of the specific re-
quirements are Hornby et al (2006), and we need not discuss them here, but (in 
common with similar antenna design tasks), these requirements were in terms of 
constraints on the gain patterns, voltage standing wave ratios, and input imped-
ances, at both the transmot and receive frequencies; also the mass of each antenna 
had to be below 165g, and the shape had to fit within a cylinder with height and 
diameter both below 16cm. 

To meet the initial design requirements in this instance, the team decided to 
constrain their search to a monopole wire antenna with four identical arms, 
equally spaced around the vertical axis. An evolutionary algorithm was therefore 
set to work to evolve the shape of a single arm, which in turn defined the entire 
antenna. Importantly, the encoding used by the team was one that allowed almost 
arbitrary designs for the arm, with no reference to the limited collection of known 
standard designs. Essentially it was a genetic programming style approach, in 
which each node in a tree was an antenna-construction operator. Interpreting the 
tree top down from the root node, and given an initial ‘feed-wire’ of a given small 
length and orientation, the operators and leaves of the tree effectively specified 
three-dimensional movements in the style of ‘turtle graphics’, adding sections of 
wire of specific lengths and orientations to the current partial design.     

Having decoded a tree into an antenna design, the antenna was simulated with 
means of a sophisticated simulation platform, which yielded estimated perform-
ance characteristics which then had to be automatically evaluated against the de-
sign requirements. In common with the design requirements themselves, readers 
are referred to Hornby et al (2006) for details of the fitness function, but suffice it 
to say that the requirements themselves and the simulation results are both curves 
involving performance characteristics at different spatial locations and frequen-
cies, and the fitness function involved such things as estimates of distances be-
tween desired and actual curves, weighted in specific ways according to the im-
portance of different requirements.   

 It so happened that the requirements for the ST5 mission changed while these 
initial antennas were being designed. New mission requirements effectively forced 
a single-arm antenna design, and this led to the need to redesign the fitess function 
for the antenna design process. In the operating environment context of Hornby et 
al’s work, it is of particular interest and importance to note that an extremely ef-
fective antenna design was produced for the initial set of requirements, in a short 
time when compared with the human expert design process. Moreover, with mis-
sion requirements altered partway through the process, the evolutionary algorithm 
approach needed only relatively minor modification and was still able to quickly 
produce an effective antenna for the new requirements.   

To meet the initial mission requirements, the best evolved antenna design that 
emerged, ‘ST5-3-10’ is shown in figure16 on the left. This antenna met the initial 
mission requirements, and was indeed all set to be used on the mission itself, until 
the mission’s orbit (and hence many other aspects) was revised. The new evolved 
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best antenna following the new requirements was the one shown on the right in 
figure 16, so-called ‘ST5-33-142-7’. The latter antenna design, which was deliv-
ered for prototype fabrication less than a month after the changes to the ST5 mis-
sion requirements, was found fully compliant with specifications when the proto-
type was tested, and on March 22nd 2006 the ST5 mission was successfully 
launched into space using evolved antenna ST5-33-142-7. Hornby et al (2006) re-
port that this was the first computer-evolved antenna to be deployed for any appli-
cation and the first evolved hardware in space. We note that this is clearly valid, if 
we confine ourselves to hardware produced, by whatever means, in the local Solar 
system; but we don’t know about elsewhere.   

Hornby et al (2006) note that the evolved antenna has a number of advantages 
over human-designed alternatives. These advantages include reduced power con-
sumption, fabrication time, and complexity, and improved performance. The ST5 
mission managers had actually hired a contractor to produce antenna designs in 
addition to awaiting the findings of the evolutionary approach.  The contractor 
used conventional design practices, and came up with a variant of one of the many 
standard designs. When this design was compared in simulation with the evolved 
design, it was found that if an ST5 craft used two evolved antennas (recall that 
each craft had two antennas), efficiency would be 93% improved over the situa-
tion where the craft instead used two of the contractor-designed antennas.  Among 
other explication of the various benefits in Hornby et al (2006), we note that the 
evolved antenna required approximately three person-months to design and fabri-
cate, versus approximately five months for the human-designed one.  

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Photographs, reproduced with permission, of prototype fabricatede-
volved antennas. Left: the best obtained antenna for the initial ST5 mission re-
quirements, ST5-3-10; right: the best obtained following the revised specifica-
tions, ST5-33-142-7. 
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An Antenna for NASA;s TDRS-C Communications satellite 
 
Later in 2006, the same team evolved an ‘S-band phased array’ antenna element 
design for NASA’s TDRS-C communications satellite, part of a mission that had 
been scheduled for launch sometime between 2010 and 2020. This time the evolu-
tionary algorithm was combined with a hillclimbing algorithm, and the antenna 
design was somewhat more constrained towards a standard style; nevertheless the 
resulting design was simpler than the potential competing human designed anten-
nas, with consequently reducing testing and integration costs. 

As Hornby et al (2006) reports, the TDRS-C mission will carry several anten-
nas, including among them a 46 element phased array antenna. Readers unfamiliar 
with the terminology may see Figure 17, from which it becomes clear what the in-
diidual elements are in the phased array. The design and performance specifica-
tions for this antenna involved electromagnetic performance issues, as was the 
case for the ST5 missions, but also certain constraints on the elements and their 
spacing. 

A simpler encoding was used by the team for this case, in which an antenna 
was represented as a fixed length list of real numbers. Antenna parameters were 
determined from these simple ‘genes’ in a fairly straightforward way, in which the 
majority of successive pairs of genes referred to the distance to the next element 
along the antenna’s axis, followed by the size of the next element.   

In a similar process used for the ST5 mission antennas, the team set up around 
150 separate experiments that each ran an evolutionary algorithm for a total of 
50,000 evaluations (antenna simulations) each – the separate evolutionary algo-
rithms s each represented a random point in parameter space, with different popu-
lation sizes, mutation rates, and so forth. The best antennas from each of these 150 
runs was then subject, in a second stage to further improvement via a hillclimbing 
algorithm for 100,000 evaluations. Finally, the best of these were subject to fur-
ther hillclimbing. 

At the end of this process, most of the evolved antennas were very close to 
meeting the rather stringent mission specifications, and one of the evolved anten-
nas exceeded the specifications. That one, shown in Figure 17, was  further ana-
lysed by accurate electromagnetics software (WIPL-D version 5.2), and subjected 
to some fine tuning via another evolutionary algorithm, and finally a resulting an-
tenna design was fabricated and tested.  The final design, shown in Figure 17, ex-
ceeds the design specifications, and it remains up to the mission leaders whether it 
is deployed in the TDRS-C mission. 
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Figure 17. Best evolved TDRS-C antenna 
 
 
 

Concluding points  
  
In this section we have described the work of Hornby et al (2006) in evolving an-
tennas for two NASA missions. For both the ST5 mission and the TDRS-C mis-
sions it took approximately three months to set up our evolutionary algorithms and 
produce the initial evolved antenna designs. Following the revision in ST5 re-
quirements,  it took roughly one month for the team to evolve antenna ST5-
33.142.7, and the team are indeed very confident (Hornby et al, 2006) that  a 
change in requirements for the TDRS-C mission will result in a similarly fast re-
design of an antenna meeting the new requirements.   

As well as benefits in relative speed and ease of design, the evolutionary algo-
rithm approach to designing antennas leads to many other advantages over manual 
design. One such advantage is the potential for performance characteristics that 
are simply unachievable with conventional design styles. Antenna design is one of 
several areas in which there is potential for unexplored areas of design space to be 
examined. These are areas of design space that human experts tend to steer away 
from, since the current state of theory and understanding is quite limited to the 
properties of a range of conventional designs. Evolutionary algorithms are far less 
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wary of such ill-understood areas of design space, and, by finding exemplars in 
such areas that have outstanding performance (such as the ST5 designs discussed 
in this section), may lead to more systematic study of such regions of the design 
space, leading to new design principles and new scientific insights. 

5.3 Evolution in Software Design   

As noted in Arcuri & Yao (2008), software testing is used to find bugs in com-
puter programs (Myers, 1979). Even though successful testing is no guarantee that 
the software is bug-free, testing increases confidence in the software’s reliability, 
and is an integral and extremely important part of modern software engineering. 
However, testing is very expensive, time consuming and tedious, amounting to 
around half the total cost of software development (Beizer, 1990). This investment 
in testing is not begrudged, since releasing bug-ridden software can be immensely 
more costly in the long run.  In fact, it is often argued that far more testing should 
be done than is usually the case – in the USA, for example, it is estimated that 
around $20 billion per year could be saved if better testing was done (Tassey, 
2002). The need for cheaper and faster testing is clear.  

In this section we look at recent work by Arcuri & Yao (2008), which is 
part of an area of research called search-based software engineering. In this par-
ticular thread, the idea is to investigate the use of evolutionary computation to im-
prove aspects of the testing process. In particular, Arcuri & Yao (2008) are con-
cerned with unit tests (Ellims et al, 2006). This relates to writing small pieces of 
software code that test as many parts of the project as possible. For example, the 
test code might call, with specific inputs, a java method that adds two integers; the 
returned value is then checked against the expected value. If there is a difference, 
we can be sure that there is something wrong with the code. However, since test-
ing all possible inputs of a method is usually infeasible, a suitable subset of tests 
needs to be chosen. Writing code for such ‘unit tests’ requires some way to decide 
on a good collection of specific input cases, and is a very resource-hungry exer-
cise.   

Automated ways to generate unit tests are clearly of interest to the soft-
ware design process, and this is the topic of Arcuri & Yao’s work (2008). Various 
approaches have been studied to automatically generate unit tests (McMinn, 
2004), but there is no known way to generate an optimal set of unit tests for any 
given program. Also, comparatively little has been done in this area for object-
oriented (OO) software. In this section, we describe Arcuri & Yao’s recent work 
(2008) which had a focus is on a particular type of OO software construct: con-
tainers. These are data structures (like arrays, lists, vectors, trees, etc.) designed to 
store arbitrary types of data. What usually distinguishes a container class is the 
computational cost of operations like insertion, deletion and retrieval of data ob-
jects. They are used in almost all OO software, so their reliability in commercial 
code is paramount.  
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Arcuri & Yao (2007) presented a framework for automatically generating 
unit tests for container classes, in the context of white box testing. They analysed a 
number of different search algorithms, and compared them with more traditional 
techniques. They used a search space reduction that exploits the characteristics 
ofthe containers. Without this reduction, the use of search algorithms would have 
required too much computational time.     
   
About testing java containers 
 
In each of the many kinds of java containers (arrays, vectors, lists, trees, and so 
forth), we usually expect find methods such as insert, remove and find. The im-
plementations (and hence computational expense) of these methods can varymuch 
between containers; also, the behaviour of such methods is often a function of the 
container’s current contents. This situation considerably complicates the design of 
unit tests (McMinn & Holcombe, 2003; 2005) – just because we find that a 
method yields the correct result with certain inputs, that does not mean it will al-
ways give the correct result with those inputs, perhaps depending on the current 
contents of the container.  

The approach to testing containers therefore explicitly considers the se-
quence Si, of function calls. During a testing operation on such a container, the 
container is referred to here as a ‘Container under Test’ (CuT), and a function call 
(FC) can be seen as a triple:   

<object reference; function name; input list>  
This simply refers to calling the given function (method) of the given object (con-
tainer) with the given list of inputs. In Arcuri & Yao’s work, the CuT is subjected 
to a single sequence Si of such FCs, rather than a different sequence for each of the 
function’s branches. Natuallu, in the unit test java code, each FC is embedded in a 
different try/catch  block, so that the paths that throw exceptions do not forbid the 
execution of the subsequent FCs in the sequence.  

 The goal in testing is to achieve a maximal level of ‘coverage’; broadly 
speaking, this refers to the amount of code that is tested. All software is replete, 
for example, with case statements and “if X then Y else ..” style branches, and, 
without suitable design of test cases, many branches of the code may end up not 
being followed during the testing process. Given a suitable coveage-related crite-
rion (there are several), it is then important to aim for the short sequence of func-
tion calls while achieving excellent coverage. Arcuri & Yao (2008) used branch 
coverage as their coverage criterion,  although their approach is easily extensible 
to other coverage criteria.  

In Arcuri & Yao’s formulation, they consider a coverage function cov(Si) 
which, in relation to a given CuT, returns the number of code branches covered 
when tested with the sequence of functional calls Si. Where len(Si) is simply the   
number of function calls in the sequence, Arcuri & Yao attempt to optimise both  
cov(Si) and len(Si), preferring a shorter sequence in the case that the coverage of 
two sequences is the same. To some extent it is clear that this is a multi-objective 
problem (see Deb (2001), and sections 3.1 and 3.2), however Arcuri & Yao indi-
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cate a definite order of preference in this domain (coverage more important than 
length), which influences their decision to treat it as a single objective problem. 
They therefore attempted to find sequences that optimised cov(Si) + 1/(1+len(Si)), 
although with various modifications and adaptations detailed in Arcuri & Yao 
(2008). 
 
Smoothing the test landscape 
 
Arcuri & Yao (2008) detail several complex factors involved in the enterprise of 
treating unit testing as an application for evolutionary computation, along with 
their solutions to these issues. Here we will only discuss one such issue, of par-
ticular pertinence to the ‘engineering’ of problems when considering artificial evo-
lution of solutions. This relates to helping the evolutionary process by making the 
fitness assessments more informative. The problem in this case that the number of 
branches covered (i.e. the number returned by cov(Si)) does not give any indica-
tion of how close the sequence Si is at being able to cover additional branches. Put 
another way, two sequences Si and Sj may have the same coverage value, but one 
may be much ‘nearer’ than other (i.e. requiring a mutation to just one of its FCs) 
to a sequence that has higher coverage.    

In many branch statements, in which the predicates accessing the branch 
are quite simple, random sequences of FCs will have little difficulty finding inputs 
that force coverage of all its branches (this is why random search, as we see later, 
tends to achieve good coverage). But when the predicate is more complex, it is 
typically the case that only a very small portion of the space of potential inputs 
will lead to certain branches being covered. search is likely to fail.    

One approach to this issue is to consider the Branch Distance (BD) (Ko-
rel, 1990). Any particular branch will be entered if a given statement is true (such 
as 0.2<x<0.3); the BD is a real number that tells us how far the relevant predicate 
is from being true (in the latter case, BD will be low if x=0.4 and high if x=10). 
Making use of such information in the coverage metric would help the evolution-
ary search process, by helping to distinguish between pairs of sequences that 
would otherwise have the same simple coverage value. Branch Distance is the 
topic of much research effort in Software Testing (e.g. Baresel et al, 2002;  Har-
man et al, 2002; McMinn & Holcombe, 2004). This research tends to consider ap-
proaches in which different test sequences focus on different branches, without 
considering the issues involved with the precise sequencing of function calls af-
fecting the results. A difference in Arcuri & Yao’s approach is the attempt to 
evolve a single test sequence that covers all branches.  

The technique they adopt is to modify  the cov(Si) defined earlier, incor-
porating within it a simple measure of branch distance for any uncovered branch, 
which takes into account how many times the predicate associated with a branch is 
evaluated. For example, if only one FC in the sequence invokes a predicate with 
two branches, then only one branch will be covered. However if in another se-
quence there are two FCs that test this predicate, both invoking the same branch, 
then it can be said that this second sequence is closer to covering the second 
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branch, since (if coverage of this other branch is possible at all) this requires only 
mutation of the input list of one of the FCs in the sequence. There are various 
ways in which the coverage metric could be modified to take branch distance into 
account, and it turned out important to use different variations in different circum-
stances, as is mentioned later, and of course discussed more fully in Arcuri & Yao. 
 
Evaluating natural computation for this task 
 
Arcuri & Yao (2008) tested five approaches: random search, (RS), hill climbing 
(HC), simulated annealing (SA), a genetic algorithm (GA) and a memetic algo-
rithms (MA). RS is a natural baseline used to understand the effectiveness of other 
presumably more sophisticated algorithms, and often it bring surprisingy good re-
sults. In the current context, we can expect RS to give good results in terms of 
coverage. The RS worked simply by repeatedly generating random sequences, 
evaluating them, and returning the best at the end of the process; for pragmatic 
reasons it was necessary to specifiy a maximum length for each sequence. 

For the other methods, it was necessary to design neighbourhood (and ge-
netic) operators that would operate on sequences to produce variants. In all cases, 
the encoding of a sequence of FCs was entirely straightforward. The ‘chromo-
some’ is simply an explicit (variable length) sequence of FCs, each a triple as des-
cibed above. For neighbourhood (mutation) operators, the natural choice was 
made to use operators of the following type: 

 
• Removing an FC from a sequence 
• Inserting a new FC into the sequence, in a random position. 
• Modifying the parameters of a randomly chosen FC in a sequence.  

 
In the genetic algorithm, single point crossover was also used, in which a child se-
quence was generated by using the first K (randomly chosen) FCs in one parent, 
and completing the child with the FCs from position K+1 onwards in the second 
parent.  The memetic algorithm was a simple hybrid of the genetic algorithm and 
hillclimbing, which repeatedly ran hillclimbing on each new individual produced 
by the genetic algorithm until a local optimum was reached. Although the RS, HC, 
GA and MC were fairly standard, In their simulated annealing (SA) implementa-
tion, various modifications and sophistications were included to control the accep-
tance of new mutants during the search, in attempt to balance the coverage and 
length considerations. These details, and of course other parameteric details of all 
of the algorithms, are explained in Arcuri & Yao (2008).   
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Table 6: Some results from Arcuri & Yao (2008), showing coverage and lengths obtained 
when evolving sequences of function calls for five separate containers, using five algo-
rithms, random search (RS), hill-climbing (HC), simulated annealing (SA), genetic algo-
rithm (GA) and memetic algorithm (MA). 
 

Container Algorithm Mean  
Coverage 

Variance in 
coverage 

Mean 
length 

Variance in 
length 

RS 85.21 1.52 56.99 7.73 
HC 100.00 0.00 47.67 1.05 
SA 99.99 0.01 45.76 1.11 
GA 99.99 0.01 46.87 1.63 

Vector 
  
  
  

  MA 100.00 0.00 47.89 2.64 
RS 69.96 1.82 55.27 14.00 
HC 84.00 0.00 38.48 10.27 
SA 82.47 2.25 33.60 5.29 
GA 83.83 0.26 36.66 3.64 

LinkedList 
  
  
  

  MA 84.00 0.00 36.43 3.58 
RS 92.92 1.17 54.45 25.97 
HC 106.00 0.00 35.25 0.19 
SA 105.84 0.74 34.98 0.77 
GA 101.14 6.50 31.10 6.31 

Hashtable 
  
  
  

  MA 106.00 0.00 35.01 0.01 
RS 151.94 5.85 54.11 26.87 
HC 188.76 0.71 51.23 10.08 
SA 184.19 5.75 40.68 5.88 
GA 185.03 3.46 42.14 8.44 

TreeMap 
  
  
  
  MA 188.86 0.65 50.55 10.31 

 
 
Arcuri & Yao (2008) performed tests on separate java containers that imple-
mented Vector, Stack, LinkedList, Hashtable and TreeMap respectively, from the 
Java API 1.4, package java.util, and BinTree and BinomialHeap from the exam-
ples in Visser et al (2006). Here we describe only a selection of their results, fo-
cussing on the four cases which involved the largest number of public functions 
under test (PuT). These were: Vector (34 PuT), Linked List (20 PuT), Hashtable 
(18 PuT) and TreeMap (17 PuT), respectively with 1019, 708, 1060 and 1636 
lines of code, and achievable coverage of 100, 84, 106 and 191 branches.  The lat-
ter figures for achievable coverage are based on Arcuri & Yao’s experience of 
around a year’s worth of experimentation, with inspection of the container code 
confirming that non-covered branches seem unreachable.   
  Each of the five algorithms were tested, to a limit of 100,000 sequence 
evaluations per trial, using 100 trials per algorithm and container pair; a selection 
of Arcuri & Yao’s results results are summarised in Table 6. When we consider 
the coverage results in the context of the highest achievable coverage mentioned 
above, it turns out that only TreeMap presents a  particularly difficult coverage 
task. The MA achieves the best mean coverage result on TreeMap, and indeed the 
MA is reported by Arcuri & Yao (2008) as statistically superior to the other algo-
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rithms in all cases except Vector (based on a Mann Whitney U test). In all con-
tainer cases except Vector (including the others reported in Arcuri & Yao (2008)) , 
the MA shows either the best mean coverage, or it shares first position for cover-
age while having a better mean length. Not surprisingly, random search tends to 
have worse performance than the other algorithms, although it can often achieve 
reasonable coverage. When coverage from RS is good, however, the length of the 
sequence of FCs tends to be poor; this is readily understood giventh enature of the 
‘difficult’ branches in testing, as also indicated above. Finally it should be pointed 
out that Arcuri & Yao’s system was not able to generate inputs that could cover all 
branches in the CuT; for example, for pragmatic reasons, branches in private 
methods were not considered, while around 10% of the public methods were not 
directly callable.   
 
On related and similar work 
  
Arcuri & Yao (2008) point out the difficulties in comparing their approach with 
traditional systems in software testing, including the fact that there is no common 
benchmark scenario, and no reasonable way to replicate the ways that other au-
thors instrumented the software to be tested. However they point out that tradi-
tional techniques (e.g. King, 1976; Doong & Frankl, 1994; Buy et al, 2000; Mari-
nov et al, 2001; Boyapati et al, 2002; Visser et al, 2004; Xie et al, 2004; 2005) 
tend to have considerable challenges with scalability, and invariably rely on con-
siderable prior effort, such as the need to generate algebraic specifications or other 
formal representations of the functions to be tested; this is particularly tricky when 
predicates are highly nonlinear, involve loops, non-linear data types, and so forth.  
Arcuri & Yao’s evolutionary computation based approach, however, needs no 
such prior specification effort, and is applicable to any container. Meanwhile, al-
though there are many difficulties with direct comparison with results from tradi-
tional techniques reported in the literature, the evolutionary computing approach, 
especially the memetic algorithm, seems to have significant benefits in terms of 
speed. However much further work is warranted in this field, including hybrids of 
natural computation and traditional approaches. 

As noted by Arcuri & Yao, the use of natural computation in software 
testing has been gaining a research following in recent years. Other examples in-
clude Tonella (2004) who used evolutionary algorithms for generating unit tests of 
Java programs, while Wappler andWegener (2006) used strongly typed genetic 
programming (STGP) also for testing Java programs. Seesing (2006) also investi-
gated STGP for a similar purpose, while  Liu et al. (2005) used a hybrid approach, 
involving ant colony optimisation (see the Swarm Intelligence chapter in this vol-
ume) to optimise the sequence of function calls, and a multi-agent evolutionary 
algorithm to optimise the input parameters of those function calls.  Meanwhile, 
Arcuri & Yao’s research described in this section began with presenting a new en-
coding and search operators and a dynamic search space reduction method for 
testing OO containers (Arcuri & Yao, 2007), also testing  Estimation of Distribu-
tion Algorithms on this problem (Sagarna et al, 2007). 
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Summary thoughts   
 
In this section we have seen an example of how evolutionary computation is be-
ginning to be used in software engineering. The work we focussed on showed a 
comparison with a selection of other methods, and also discussed comparisons 
with standard techniques in the software engineering industry, and found advan-
tages for the evolutionary computation approach in both scenarios.  The empirical 
tests by Arcuri & Yao (2008) showed that their Memetic algorithm  usually per-
forms better than the other algorithms tried. However, there remains clear chal-
lenges for improvement (e.g. the performance on the TreeMap container was not 
completely satisfactory).   
 Arcuri & Yao conclude, based on their results as well as the neighbouring 
literature, that, in testing OO software, nature inspired algorithms seem to be bet-
ter than the standard techniques based on symbolic execution and state matching, 
since they seem able to solve more complex test problems in less time. Arcuri & 
Yao’s work also included the unusual approach of trying to cover every branch at 
the same time with a single sequence. This has yet to be compared to the tradi-
tional approach of testing each branch separately.   

 6 Concluding Notes   

We have discussed a selection of application areas in which natural computation 
shows its value in real-world enterprises of various sorts. Our selection has been 
quite eclectic. Other authors will have chosen a different set; at another time, the 
same authors will have chosen a different collection. The main message we mean 
to convey by such statements is that, for the purposes of demonstrating the signifi-
cant impact and potential of natural computation in practice, there is certainly no 
shortage of documented examples that could be selected. We have presented just 
ten applications, ranging from specific problems to specific domains, and ranging 
from cases familiar to the authors, to highlights known well in the general natural 
computation community. However all of them share, we hope, the property of dis-
playing (each in their own way) a clear indication of the proven promise or great 
potential for the impact of nature-inspired computation in high-profile and impor-
tant real-world applications. Similarly, we hope that these applications share the 
property of being inspiring to both students and practitioners; many were selected 
on the basis of proving particularly popular with our students, in the context of 
getting them interested in the study of natural computation. 
 When designing an article such as this, the first problem one faces is that 
natural computation is almost too successful in practice. You may ask, for exam-
ple, why we do not mention more from the thousands of successful real-world ap-
plications of neural computation, or fuzzy systems? Well, first of all, we have in-
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deed just mentioned them. But second of all, the positioning of this article in the 
‘Broader Perspective’ volume suggests a focus on the novel and unusual; on the 
less generally known, and on areas whose potential is clear, yet only beginning to 
be realized in practice.  

Naturally, therefore, the centre of gravity in this article has turned out to be 
evolutionary computation. Sandwiched between the more familiar, tried and tested 
topics of neural and fuzzy systems, and the several emerging areas of natural com-
putation that are currently less `on the map’ with application studies, evolutionary 
computation is a highly flexible child of natural computation that excels in dis-
playing the promise for this field. But, in passing, we have seen, in Blondie24, 
how different areas of nature-inspired computation collaborate to remarkable ef-
fect. We have also seen, in the aircraft maneuver study, and in our discussions of 
super-heuristics, how learning classifier systems – themselves inspired by the 
adaptive behaviour of intelligent organisms – contribute towards natural comput-
ing’s expanding gallery of successes. Meanwhile, other chapters in this volume 
cover some of the successes of swarm intelligence, simulated annealing, artificial 
immune systems, and more.  

The real-world value of some of the more established natural computing tech-
niques has been proven to be unquestionably immense. It is worth pointing out 
that this was never anticipated in the ‘early days’ for each individual technique. In 
the case of neural computation, for example, Minsky and Papert’s analysis of the 
capabilities of two-layer networks led (if not deliberately) to much skepticism and 
delay in the exploration and take-up of neural networks for pattern recognition. In 
evolutionary computation’s earliest days, the algorithms were usually considered 
as intellectual curiousities, with the occasional promising application studies con-
sidered as one-offs. There seems to be a lesson here for the promise and potential 
of the several less mature and emerging natural computing ideas – those discussed 
in this volume, as well as others. In anticipation, we wait and see. 
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