
Cellular Automata

Dr. Michael Lones
Room EM.G31
M.Lones@hw.ac.uk

⟐ Genetic programming
▹  Is about evolving computer programs
▹  Mostly conventional GP: tree, graph, linear
▹  Mostly conventional issues: memory, syntax

⟐ Developmental GP encodings
▹  Programs that build other things
▹  e.g. programs, structures
▹  Biologically-motivated process
▹  The developed programs

are still “conventional”

+	
 WRITE	

forwhile	

2	
 3	

9	

1	
 i	

G0	
 G1	
 G2	
 G3	
 G4	
 ✔	

✗	

⟐ Conventional
▹  Centralised
▹  Top-down
▹  Halting
▹  Static
▹  Exact
▹  Fragile
▹  Synchronous

⟐ Biological
▹  Distributed
▹  Bottom-up (emergent)
▹  Ongoing
▹  Dynamical
▹  Inexact
▹  Robust
▹  Asynchronous

⟐ See Mitchell, “Biological Computation,” 2010
http://www.santafe.edu/media/workingpapers/10-09-021.pdf

⟐ What is a cellular automaton?
▹  A model of distributed computation

•  Of the sort seen in biology
▹  A demonstration of “emergence”

•  complex behaviour emerges from
interactions between simple rules

▹  Developed by Ulam and von Neumann
in the 1940s/50s

▹  Popularised by John Conway’s work on
the ‘Game of Life’ in the 1970s

▹  Significant later work by Stephen
Wolfram from the 1980s onwards

Stanislaw	
 Ulam	

John	
 von	
 Neumann	

▹  Stephen Wolfram, A New Kind of Science, 2002
▹  https://www.wolframscience.com/nksonline/toc.html

⟐  Computation takes place on a grid, which may have 1, 2 or
more dimensions, e.g. a 2D CA:

⟐  At each grid location is a cell
▹  Which has a state
▹  In many cases this is binary:

State	
 =	
 On	

State	
 =	
 Off	

⟐  Each cell contains an automaton
▹  Which observes a neighbourhood around the cell

⟐  Each cell contains an automaton
▹  And applies an update rule based on this neighbourhood
▹  Every automaton uses the same update rule

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

⟐  The CA is run over a number of discrete time steps
▹  At each time step, each automaton applies its update rule
▹  Time = 0

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

⟐  The CA is run over a number of discrete time steps
▹  At each time step, each automaton applies its update rule
▹  Time = 1

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

⟐  The CA is run over a number of discrete time steps
▹  At each time step, each automaton applies its update rule
▹  Time = 2

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

⟐  The CA is run over a number of discrete time steps
▹  At each time step, each automaton applies its update rule
▹  Time = 3

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

⟐  The CA is run over a number of discrete time steps
▹  At each time step, each automaton applies its update rule
▹  Time = 4

If	
 one	

neighbour	
 is	

on,	
 turn	
 on,	

else	
 turn	
 off	

⟐  A number of different neighbourhoods are used in CAs
▹  This is called a Moore neighbourhood

⟐  A number of different neighbourhoods are used in CAs
▹  This is called a von Neumann neighbourhood

⟐  A number of different neighbourhoods are used in CAs
▹  This is called an extended von Neumann neighbourhood

⟐  A number of different neighbourhoods are used in CAs
▹  At the edges, toroidal neighbourhoods are often used
▹  Also known as periodic boundary conditions

⟐  Modelling how a forest fire spreads*
▹  A forest is modelled as a 2D grid of automata
▹  A tree may or may not grow in each cell

*Thanks	
 to	
 David	
 Corne	
 for	
 this	
 example	

	

⟐  Each automata has one of three states
 indicating no tree

▹  ok_tree indicating a healthy tree
▹  fire_tree a tree that’s on fire

⟐  Each automata applied this rule in a Moore neighbourhood
▹  If a tree is not on fire, and has n neighbours on fire, it catches

fire with probabilty n/8. If on fire for 3 steps, a tree dies
▹  Time = 0

Lightning	

strikes!	

Lightning	

strikes!	

Dense	

forest	

⟐  Each automata applied this rule in a Moore neighbourhood
▹  If a tree is not on fire, and has n neighbours on fire, it catches

fire with probabilty n/8. If on fire for 3 steps, a tree dies
▹  Time = 1

⟐  Each automata applied this rule in a Moore neighbourhood
▹  If a tree is not on fire, and has n neighbours on fire, it catches

fire with probabilty n/8. If on fire for 3 steps, a tree dies
▹  Time = 2

⟐  Each automata applied this rule in a Moore neighbourhood
▹  If a tree is not on fire, and has n neighbours on fire, it catches

fire with probabilty n/8. If on fire for 3 steps, a tree dies
▹  Time = 3

⟐  Each automata applied this rule in a Moore neighbourhood
▹  If a tree is not on fire, and has n neighbours on fire, it catches

fire with probabilty n/8. If on fire for 3 steps, a tree dies
▹  Time = 4

⟐ What are cellular automata used for?
▹  Modelling spatial processes

•  e.g. forest fires, disease spread
▹  Modelling physical processes

•  e.g. crystal formation, thermodynamics
▹  Modelling biological processes

•  e.g. pattern formation, self-replication
▹  Solving computational problems

•  e.g. random number generators, ciphers
▹  Parallel processing architectures

•  e.g. systolic arrays, Connection Machine è
www.mission-­‐base.com/tamiko	

hUp://www.rudyrucker.com	

⟐ Developed by John Conway in the 1970s
▹  A simple model of self-replication
▹  Surprisingly complex behaviour
▹  Led to wider interest in CAs

⟐  2 states (,), Moore neighbourhood, 4 rules:
▹  A live cell with <2 live neighbours dies (under-population)
▹  A live cell with 2-3 live neighbours remains alive
▹  A live cell with >3 live neighbours dies (over-crowding)
▹  A dead cell with 3 live neighbours becomes a live cell

(reproduction)

⟐ Moving elements that emerge from these rules
▹  The most famous is the glider:

t=0	
 t=1	
 t=2	
 t=3	
 t=4	

⟐ Moving elements that emerge from these rules
▹  Some more complex examples:

hUp://en.wikipedia.org/wiki/File:Animated_spaceships.gif	
 (animated)	

⟐ Structures that generate streams of spaceships
▹  Gosper’s glider gun is the smallest known example:

hUp://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif	
 (animated)	

⟐ Game of Life famously shown to be Turing complete
▹  i.e. capable of universal computation
▹  Proven by implementing logic gates with gliders

Jean-­‐Philippe	
 Rennard,	
 hUp://arxiv.org/pdf/cs/0406009.pdf	

⟐  Rendell, A Universal Turing Machine in Conway’s Game of Life
▹  http://uncomp.uwe.ac.uk/CAAA2011/Program_files/764-772.pdf

⟐ Patterns that grow and take a long time to stabilise
▹  Complexity emerges from simple rule and initial state
▹  Can be seen as carrying out a complex computation

⟐ Acorn: size 7, grows to 1057, lasts 5206 time steps
▹  Stable pattern consists of 41 blinkers, 4 traffic lights, 34

blocks, 30 beehives, 1 honey farm, 13 gliders, 8 boats, 5
loaves, 3 ships, 2 barges, 2 ponds and 1 mango

hUp://www.conwaylife.com/wiki/Methuselah	

hUps://www.youtube.com/watch?v=U2dB57bwIWQ	

hUp://altsoph.com/projects/conwaytree/	

⟐ A computationally interesting cellular automata
▹  Simple definition, complex behaviour
▹  Unexpected emergent phenomena
▹  i.e. spaceships, methuselah
▹  Computationally universal

⟐  Lots of Game of Life implementations:
▹  http://www.bitstorm.org/gameoflife/ [Java, online]
▹  http://golly.sourceforge.net [cross-platform]
▹  Do try this at home!

⟐ Various multi-valued state CAs have been studied
▹  e.g. Langton’s loops model self-replication

•  Uses 8 states:

▹  e.g. WireWorld models electron flow in circuits
•  Uses 4 states:

hUp://en.wikipedia.org/wiki/File:Animated_display.gif	
 (animated)	

⟐ Probabilistic cellular automata
▹  Transitions occur with a certain probability

⟐ Asynchronous cellular automata
▹  Updates don’t occur at the same time

⟐ Use of non-rectangular grids
▹  e.g. irregular Penrose tilings

⟐ Continuous cellular automata
▹  Continuous state, functions or spaces

hU
p://en.w

ikipedia.org/w
iki/File:O

scillator.gif	

⟐  1D binary CAs that take place on a single grid row
▹  Appear simple, but can be deceptively complex
▹  Probably the most studied form of CA
▹  Stephen Wolfram’s work on these is very well known

t=0	

t=1	

t=2	
 …
	

Space-­‐gme	
 diagram	

⟐ They are based around a neighbourhood of size 3:

⟐ Hence, it maps 23=8 possible patterns to 0 or 1
▹  Meaning there are 28=256 possible update rules

t=n	

t=n+1	

⟐ An example of a rule:

⟐ This is known as Rule 30 … can you see why?
▹  Hint: binary!
▹  Every elementary CA has a number between 0 and 255

1 1 1

0

1 1 0

0

1 0 1

0

1 0 0

1

0 1 1

1

0 1 0

1

0 0 1

1

0 0 0

0

⟐ One of Wolfram’s famous rules
▹  Leads to complex, aperiodic, chaotic behaviour
▹  Space-time diagram resembles the shell of conus textile
▹  Used as a random number generator in Mathematica

hUp://en.wikipedia.org/wiki/File:Texgle_cone.JPG	
 From	
 A	
 New	
 Kind	
 of	
 Science,	
 ©	
 Stephen	
 Wolfram,	
 LLC	

Ti
m
e	

⟐ Stephen Wolfram’s book in a nutshell
▹  Simple programs (such as CAs) can

generate complex behaviours
▹  They can generate a lot of the patterns

we see in natural systems
▹  They might therefore be used as a

means for studying natural systems
▹  Rather than using top-down models
▹  e.g. in physics, chemistry, biology, …

⟐ Often misunderstood as saying the universe is a CA

⟐ This one is known to be Turing complete
▹  The simplest known Turing complete system
▹  Very simple definition, complex behaviour
▹  Behaviour appears to take place on the “edge of chaos”

From	
 A	
 New	
 Kind	
 of	
 Science,	
 ©	
 Stephen	
 Wolfram,	
 LLC	

⟐ Rules 30 and 110 were discovered by exhaustively
enumerating and simulating the rule space
▹  Feasible for these elementary CAs
▹  Quickly becomes infeasible for more complex CAs

⟐  Is it possible to use EAs to find useful rules?
▹  Yes, this has been done.

⟐  Is this a form of genetic programming?
▹  If the aim is to perform computation, then yes!
▹  If the aim is modeling, then probably not

⟐ How do I compute using a CA?
▹  1) Find a suitable rule
▹  2) Encode the problem instance in the initial state
▹  3) Execute the CA for a certain number of steps
▹  4) Read the result from the final state of the CA

⟐  Lots of cryptography applications
▹  Google ‘cellular automata encryption’
▹  Lots of different CA models used
▹  Have a look!

⟐ Know how to execute a CA, and their uses
⟐ Know how CAs differ from traditional computation

⟐ Know about the Game of Life:
▹  Know it is computationally universal, and understand why
▹  Know its emergent phenomena: gliders, methuselah
▹  You don’t need to remember patterns

⟐ Know about Elementary CAs:
▹  Know what they are
▹  Be aware of their computational properties
▹  You don’t need to remember individual rules

⟐ Try out some CAs:
▹  Forest fire

http://www.macs.hw.ac.uk/~dwcorne/mypages/apps/ca.html
▹  Elementary cellular automata

http://www.macs.hw.ac.uk/~dwcorne/mypages/apps/1dca.html
▹  Golly (game of life, Langton’s loops, WireWorld)

http://golly.sourceforge.net/

⟐ Read about using CAs for modelling:
▹  See papers on course website
▹  Urban growth, traffic simulation, flu infection, brain

tumour growth, HIV infection

⟐ How biological cells actually “compute”
▹  Gene regulatory networks (GRNs)
▹  Computational models of GRNs
▹  Boolean networks

