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⟐ Genetic programming 
▹  Is about evolving computer programs 
▹  Mostly conventional GP: tree, graph, linear 
▹  Mostly conventional issues: memory, syntax 

⟐ Developmental GP encodings 
▹  Programs that build other things 
▹  e.g. programs, structures 
▹  Biologically-motivated process 
▹  The developed programs  

are still “conventional” 
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⟐ Conventional 
▹  Centralised 
▹  Top-down 
▹  Halting 
▹  Static 
▹  Exact 
▹  Fragile 
▹  Synchronous 

⟐ Biological 
▹  Distributed 
▹  Bottom-up (emergent) 
▹  Ongoing 
▹  Dynamical 
▹  Inexact 
▹  Robust 
▹  Asynchronous 

⟐ See Mitchell, “Biological Computation,” 2010
http://www.santafe.edu/media/workingpapers/10-09-021.pdf 



⟐ What is a cellular automaton? 
▹  A model of distributed computation 

•  Of the sort seen in biology 
▹  A demonstration of “emergence” 

•  complex behaviour emerges from 
interactions between simple rules 

▹  Developed by Ulam and von Neumann 
in the 1940s/50s 

▹  Popularised by John Conway’s work on 
the ‘Game of Life’ in the 1970s 

▹  Significant later work by Stephen 
Wolfram from the 1980s onwards 
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▹  Stephen Wolfram, A New Kind of Science, 2002 
▹  https://www.wolframscience.com/nksonline/toc.html 



⟐  Computation takes place on a grid, which may have 1, 2 or 
more dimensions, e.g. a 2D CA: 



⟐  At each grid location is a cell 
▹  Which has a state 
▹  In many cases this is binary: 
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⟐  Each cell contains an automaton 
▹  Which observes a neighbourhood around the cell 



⟐  Each cell contains an automaton 
▹  And applies an update rule based on this neighbourhood 
▹  Every automaton uses the same update rule 
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⟐  The CA is run over a number of discrete time steps 
▹  At each time step, each automaton applies its update rule 
▹  Time = 0 
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⟐  The CA is run over a number of discrete time steps 
▹  At each time step, each automaton applies its update rule 
▹  Time = 1 
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⟐  The CA is run over a number of discrete time steps 
▹  At each time step, each automaton applies its update rule 
▹  Time = 2 
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⟐  The CA is run over a number of discrete time steps 
▹  At each time step, each automaton applies its update rule 
▹  Time = 3 
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⟐  The CA is run over a number of discrete time steps 
▹  At each time step, each automaton applies its update rule 
▹  Time = 4 

If	
  one	
  
neighbour	
  is	
  
on,	
  turn	
  on,	
  
else	
  turn	
  off	
  



⟐  A number of different neighbourhoods are used in CAs 
▹  This is called a Moore neighbourhood 



⟐  A number of different neighbourhoods are used in CAs 
▹  This is called a von Neumann neighbourhood 



⟐  A number of different neighbourhoods are used in CAs 
▹  This is called an extended von Neumann neighbourhood 



⟐  A number of different neighbourhoods are used in CAs 
▹  At the edges, toroidal neighbourhoods are often used 
▹  Also known as periodic boundary conditions 



⟐  Modelling how a forest fire spreads* 
▹  A forest is modelled as a 2D grid of automata 
▹  A tree may or may not grow in each cell 
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⟐  Each automata has one of three states 
  indicating no tree 

▹  ok_tree  indicating a healthy tree 
▹  fire_tree  a tree that’s on fire 



⟐  Each automata applied this rule in a Moore neighbourhood 
▹  If a tree is not on fire, and has n neighbours on fire, it catches 

fire with probabilty n/8. If on fire for 3 steps, a tree dies 
▹  Time = 0 
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⟐  Each automata applied this rule in a Moore neighbourhood 
▹  If a tree is not on fire, and has n neighbours on fire, it catches 

fire with probabilty n/8. If on fire for 3 steps, a tree dies 
▹  Time = 1 



⟐  Each automata applied this rule in a Moore neighbourhood 
▹  If a tree is not on fire, and has n neighbours on fire, it catches 

fire with probabilty n/8. If on fire for 3 steps, a tree dies 
▹  Time = 2 



⟐  Each automata applied this rule in a Moore neighbourhood 
▹  If a tree is not on fire, and has n neighbours on fire, it catches 

fire with probabilty n/8. If on fire for 3 steps, a tree dies 
▹  Time = 3 



⟐  Each automata applied this rule in a Moore neighbourhood 
▹  If a tree is not on fire, and has n neighbours on fire, it catches 

fire with probabilty n/8. If on fire for 3 steps, a tree dies 
▹  Time = 4 





⟐ What are cellular automata used for? 
▹  Modelling spatial processes 

•  e.g. forest fires, disease spread 
▹  Modelling physical processes 

•  e.g. crystal formation, thermodynamics 
▹  Modelling biological processes 

•  e.g. pattern formation, self-replication 
▹  Solving computational problems 

•  e.g. random number generators, ciphers 
▹  Parallel processing architectures 

•  e.g. systolic arrays, Connection Machine è 
www.mission-­‐base.com/tamiko	
  

hUp://www.rudyrucker.com	
  



⟐ Developed by John Conway in the 1970s 
▹  A simple model of self-replication 
▹  Surprisingly complex behaviour 
▹  Led to wider interest in CAs 

⟐  2 states ( , ), Moore neighbourhood, 4 rules: 
▹  A live cell with <2 live neighbours dies (under-population) 
▹  A live cell with 2-3 live neighbours remains alive 
▹  A live cell with >3 live neighbours dies (over-crowding) 
▹  A dead cell with 3 live neighbours becomes a live cell 

(reproduction) 



⟐ Moving elements that emerge from these rules 
▹  The most famous is the glider: 
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⟐ Moving elements that emerge from these rules 
▹  Some more complex examples: 

hUp://en.wikipedia.org/wiki/File:Animated_spaceships.gif	
  (animated)	
  



⟐ Structures that generate streams of spaceships 
▹  Gosper’s glider gun is the smallest known example: 

hUp://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif	
  (animated)	
  



⟐ Game of Life famously shown to be Turing complete 
▹  i.e. capable of universal computation 
▹  Proven by implementing logic gates with gliders 

Jean-­‐Philippe	
  Rennard,	
  hUp://arxiv.org/pdf/cs/0406009.pdf	
  



⟐  Rendell, A Universal Turing Machine in Conway’s Game of Life 
▹  http://uncomp.uwe.ac.uk/CAAA2011/Program_files/764-772.pdf 



⟐ Patterns that grow and take a long time to stabilise 
▹  Complexity emerges from simple rule and initial state 
▹  Can be seen as carrying out a complex computation 

⟐ Acorn: size 7, grows to 1057, lasts 5206 time steps 
▹  Stable pattern consists of 41 blinkers, 4 traffic lights, 34 

blocks, 30 beehives, 1 honey farm, 13 gliders, 8 boats, 5 
loaves, 3 ships, 2 barges, 2 ponds and 1 mango 

hUp://www.conwaylife.com/wiki/Methuselah	
  



hUps://www.youtube.com/watch?v=U2dB57bwIWQ	
  
hUp://altsoph.com/projects/conwaytree/	
  



⟐ A computationally interesting cellular automata 
▹  Simple definition, complex behaviour 
▹  Unexpected emergent phenomena 
▹  i.e. spaceships, methuselah 
▹  Computationally universal 

⟐  Lots of Game of Life implementations: 
▹  http://www.bitstorm.org/gameoflife/ [Java, online] 
▹  http://golly.sourceforge.net [cross-platform] 
▹  Do try this at home! 



⟐ Various multi-valued state CAs have been studied 
▹  e.g. Langton’s loops model self-replication 

•  Uses 8 states: 

▹  e.g. WireWorld models electron flow in circuits 
•  Uses 4 states: 



hUp://en.wikipedia.org/wiki/File:Animated_display.gif	
  (animated)	
  



⟐ Probabilistic cellular automata 
▹  Transitions occur with a certain probability  

⟐ Asynchronous cellular automata 
▹  Updates don’t occur at the same time 

⟐ Use of non-rectangular grids 
▹  e.g. irregular Penrose tilings 

⟐ Continuous cellular automata 
▹  Continuous state, functions or spaces 
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⟐  1D binary CAs that take place on a single grid row 
▹  Appear simple, but can be deceptively complex 
▹  Probably the most studied form of CA 
▹  Stephen Wolfram’s work on these is very well known 
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⟐ They are based around a neighbourhood of size 3: 

⟐ Hence, it maps 23=8 possible patterns to 0 or 1 
▹  Meaning there are 28=256 possible update rules 
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t=n+1	
  



⟐ An example of a rule: 

⟐ This is known as Rule 30 … can you see why? 
▹  Hint: binary! 
▹  Every elementary CA has a number between 0 and 255 
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⟐ One of Wolfram’s famous rules 
▹  Leads to complex, aperiodic, chaotic behaviour 
▹  Space-time diagram resembles the shell of conus textile 
▹  Used as a random number generator in Mathematica 

hUp://en.wikipedia.org/wiki/File:Texgle_cone.JPG	
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⟐ Stephen Wolfram’s book in a nutshell 
▹  Simple programs (such as CAs) can 

generate complex behaviours 
▹  They can generate a lot of the patterns 

we see in natural systems 
▹  They might therefore be used as a 

means for studying natural systems 
▹  Rather than using top-down models 
▹  e.g. in physics, chemistry, biology, … 

⟐ Often misunderstood as saying the universe is a CA 



⟐ This one is known to be Turing complete 
▹  The simplest known Turing complete system 
▹  Very simple definition, complex behaviour 
▹  Behaviour appears to take place on the “edge of chaos” 
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⟐ Rules 30 and 110 were discovered by exhaustively 
enumerating and simulating the rule space 
▹  Feasible for these elementary CAs 
▹  Quickly becomes infeasible for more complex CAs 

⟐  Is it possible to use EAs to find useful rules? 
▹  Yes, this has been done. 

⟐  Is this a form of genetic programming? 
▹  If the aim is to perform computation, then yes! 
▹  If the aim is modeling, then probably not 



⟐ How do I compute using a CA? 
▹  1) Find a suitable rule 
▹  2) Encode the problem instance in the initial state 
▹  3) Execute the CA for a certain number of steps 
▹  4) Read the result from the final state of the CA 

⟐  Lots of cryptography applications 
▹  Google ‘cellular automata encryption’ 
▹  Lots of different CA models used 
▹  Have a look! 



⟐ Know how to execute a CA, and their uses 
⟐ Know how CAs differ from traditional computation 

⟐ Know about the Game of Life: 
▹  Know it is computationally universal, and understand why 
▹  Know its emergent phenomena: gliders, methuselah 
▹  You don’t need to remember patterns 

⟐ Know about Elementary CAs: 
▹  Know what they are 
▹  Be aware of their computational properties 
▹  You don’t need to remember individual rules 



⟐ Try out some CAs: 
▹  Forest fire

http://www.macs.hw.ac.uk/~dwcorne/mypages/apps/ca.html 
▹  Elementary cellular automata

http://www.macs.hw.ac.uk/~dwcorne/mypages/apps/1dca.html 
▹  Golly (game of life, Langton’s loops, WireWorld) 

http://golly.sourceforge.net/ 

⟐ Read about using CAs for modelling: 
▹  See papers on course website 
▹  Urban growth, traffic simulation, flu infection, brain 

tumour growth, HIV infection 



⟐ How biological cells actually “compute” 
▹  Gene regulatory networks (GRNs) 
▹  Computational models of GRNs 
▹  Boolean networks 


