Michael Lones / Bio-Inspired Computing

| ectures

HERIOT
TIWATT

'-’.
S UNIVERSITY

Genetic Programming

Evolving programs with evolutionary algorithms

Cellular Automata
Programs that look like biological systems

Gene Regulatory Models

Programs that look even more like biological systems

Evolvable Hardware €

Evolving at the physical level on electronic devices

Michael Lones / Bio-Inspired Computing HERIOT
S WATT

Y| SATS
‘#JV UNIVERSITY

Assessment

Understanding, Knowledge and Cognitive Skills; Scholarship, Enquiry and Research
(Research-Informed Learning)

¢ Understanding of limitations of traditional computation.

¢ A critical understanding of a range of biologically inspired computation methods,
their limitations and areas of applicability.

¢ Ability to apply one or more biologically inspired techniques in solving a practical
problem.

Industrial, Commercial & Professional Practice; Autonomy, Accountability & Working
with Others; Communication, Numeracy & ICT

¢ Identify and define approaches that can be used to apply bio-inspired methods to
existing problems in optimisation and machine learning.
¢ Exercise substantial autonomy and initiative (both courseworks) (PDP)

¢ Demonstrate critical reflection (both courseworks) (PDP).

HERIOT
FPWATT

Fundamentals of
Genetic Programming

Dr. Michael Lones
Room EM.G31
M.Lones@hw.ac.uk

Distinctly Global

www.hw.ac.uk

Michael Lones / Bio-Inspired Computing HERIOT
e WATT

Books — free to download

> Written by leading researchers in the field...

R. Poli et al, A Field Guide to S. Luke, Essentials of
Genetic Programming Metaheuristics

Sean Luke
Essentials of

Genetic
Programming

Metaheuristics

Second Edition

www.gp-field-guide.org.uk http://cs.emu.edu/~sean/
book/metaheuristics/

Michael Lones / Bio-Inspired Computing HERIOT

S WATT

B O O k S %V UNIVERSITY

> Not essential, though may be of interest...

JOHN R. KO ZA

S E\N ETIC

PROGRAMMING

Linear Genetic

Programming

John Koza, Genetic Julian Miller Brameier&Banzhaf
Programming & Genetic Cartesian Genetic Linear Genetic
Programming Il Programming Programming

http://link.springer.com/book/ http://link.springer.com/book/

Both in the library 10.1007/978-3-642-17310-3 10.1007%2F978-0-387-31030-5

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Software — free to download

> Download from http://cs.gmu.edu/~eclab/projects/ecj/

ECJ

A Java-based Evolutionary Computation
Research System

By Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew
Skolicki, Rafal Kicinger, Elena Popovici, Keith Sullivan, Joseph
Harrison, Jeff Bassett, Robert Hubley, Ankur Desai, Alexander
Chircop, Jack Compton, William Haddon, Stephen Donnelly,
Beenish Jamil, Joseph Zelibor, Eric Kangas, Faisal Abidi, Houston
Mooers, James O'Beirne, Khaled Ahsan Talukder, and James
McDermott

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

{glk
| (: | & UNIVERSITY

& A Java-based framework for evolutionary computing

> Supports common evolutionary algorithms
* GAs, evolution strategies, GP, PSO, ...
* You just need to implement a Problem subclass

> |Individual components are configurable

« Using parameter files
» Representations, operators, selection mechanisms

> Relatively easy to evolve non-standard things
* New representations subclass Individual and Species
* New variation operators subclass BreedingPipeline

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Genetic Programming (GP)

& In a nutshell, using evolutionary algorithms to
design computer programs

> QOr other ‘executable structures’, e.g. circuits, equations
> Generally small programs that do specific things
> S0 we wouldn’t expect to evolve Microsoft Office

http://www.genetic-programming.com

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

'&k
S UNIVERSITY

Genetic Programming (GP)

¢ In a nutshell...

> Create a population of random programs
> Then repeat:

« Evaluate them

« Kill off the (really) bad ones

» Keep the (relatively) good ones

« Use them to breed the next generation
(by using mutation and recombination operators)

> Until the problem is (hopefully!) solved

Michael Lones / Bio-Inspired Computing

Genetic Programming (GP)

& Why use evolutionary algorithms?
> (Good at solving global optimisation problems
> Flexible in how solutions are represented
> However, focus on EAs is in part historical
> Qther optimisers may, in principle, be used

& Also a slightly iffy bio-inspired argument
> Biological systems are evolved
> Biological systems are, in a sense, complex computers
> Therefore complex computations can be evolved L[]

Michael Lones / Bio-Inspired Computing HERIOT

S WATT

Genetic Programming (GP)

& Why do we want to evolve programs?
> Sometimes because we're lazy!

> More often because we don’t know how to write a
program to solve a particular problem

> Or we want to do better than an existing solution

Evolutionary ‘black box’

Michael Lones / Bio-Inspired Computing

Genetic Programming (GP)

& Often portrayed as a form of automatic innovation
> http://www.human-competitive.org/
> “Humies” is an annual contest for human-beating results
> $10,000 in prizes every year

¢ Previous Humies winners include:
> (Games controllers
> Circuit designs/designers S
> Image analysis algorithms R S
> Software engineering tools
> Medical diagnostics tools

Michael Lones / Bio-Inspired Computing HERIOT
S WATT

Genetic Programming (GP)

& There are a number of varieties of GP
> You'll see lots of these over the coming lectures

& They differ in how they represent programs
> Syntax: control structures, modules, language
> Also their degree of bio-inspiration

& Representation is important
> The programs we write are fragile
> lmagine "mutating” one =»
> Can we remove this fragility??
(this is a big research question)

http://en.wikipedia.org/wiki/
File:Windows_NT_BSOD_at_GVA_baggage_claim,_1999-10-03.jpg

Evolvability

This is the capacity for a program to improve its
fitness as a result of an evolutionary process (i.e.
mutation and recombination).

For genetic programming, there’s little value in

being theoretically able to express a program if
it can not be discovered by evolution.

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Koza Tree-Based GP

& Invented by John Koza
> Also invented the scratch card
> Earliest successful form of GP
> (Though arguably not the first)
> Still the most widely used form

JOHN R. KO Z A

GENETIC

PROGRAMMING

& Programs are represented by trees
> Also known as syntax trees or parse trees
> |Internal nodes are sampled from a function set
> Leaves are sampled from a terminal set

Michael Lones / Bio-Inspired Computing

Parse Irees

]
/\ /\ /' \\ 7/ \

Slln IRsensor 10 left right move
0
progn3 forwhile
WRIleIhAD /l }RITE
/N N b NN

|
0

Michael Lones / Bio-Inspired Computing HERIOT
&= WATT

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set={y, t, 0}

Michael Lones / Bio-Inspired Computing HERIOT
&= WATT

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set={y, t, 0}

Michael Lones / Bio-Inspired Computing HERIOT
&= WATT

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set={y, t, 0}

X

PN

Michael Lones / Bio-Inspired Computing HERIOT
&= WATT

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set={y, t, 0}

Michael Lones / Bio-Inspired Computing

Initialisation

HERIOT
S WATT

S UNIVERSITY

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set={y, t, 0}

Michael Lones / Bio-Inspired Computing HERIOT
'*'% WATT

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set ={y, t, 8, constant }

I
\ /

Michael Lones / Bio-Inspired Computing HERIOT
'*'% WATT

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set ={y, t, 8, constant }

I
\ /

Michael Lones / Bio-Inspired Computing

Initialisation

& To create a mathematical expression
> Function set ={ +, -, X, +, sin, cos }
> Terminal set ={y, t, 8, constant }

I
/\ /\

sin

> e.g. (y/9)*(t sin) :

> QOther initialisation methods exist ‘
« E.g. ramped half-and-half: see Field Guide! 0

Michael Lones / Bio-Inspired Computing

Recombination

& Sub-tree crossover:

N N
V/\S t/\sin V/\ 2/\y

Michael Lones / Bio-Inspired Computing HERIOT
'*"‘% WATT

Recombination

& Sub-tree crossover:
Parent 1 Parent 2
X X
e N
/ \ FAN / ;\ / N\
Y

.’ t Sin : } \\ 2
i | ,// A\
| i ' 6

\
1
I I

r

Michael Lones / Bio-Inspired Computing

Recombination

& Sub-tree crossover:

Child 1 Child 2
X X
7R N
A2 NS NN
Yy : t Y KON Y
------- AN
{ sin

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

M u tat | O n <P UNIVERSITY

& Sub-tree mutation:

Parent
X
/ \ lll / \.\\\
Y 5 |t Sin

Michael Lones / Bio-Inspired Computing HERIOT
'*"E WATT

Mutation

& Sub-tree mutation:

‘\\
e

Michael Lones / Bio-Inspired Computing

Mutation

& Point mutation (less disruptive):

Parent Child

N >

lx\

/\ /\ /\ /\

sin sin

| |
0 0

Michael Lones / Bio-Inspired Computing

Symbolic Regression

& Fitting a mathematical expression to data
> A common use of genetic programming
> Useful when little is known about the generating function

N
v PANANAN

. X 5 5||n

X X

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Curve Fitting Example

300 T T T

'Fitness:-o.é3 —
Target
250 *t .

200 - /"""f'*.,i,\;(,v;v:-.;:,.\\, . XX ,.-;«\,\’An, :i-lt""i\ .
150 + |

100 .

https://www.youtube.com/watch?v=37D3QpFvrgs

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

'-’.
S UNIVERSITY

Symbolic Regression

& Regression using ECJ
> Target expression is the quintic polynomial x*+x3+x2+x

> java ec.Evolve -from app/regression/erc.params

> Generation: 1

Fitness: Adjusted=0.25664273 Hits=1 '%m"=emwwmmf\
Tree O: random constant,

(= (* (= x %) (+ (c0s ~0.315) o poresson
(- x -0.870))) (* (rlog -0.707)

s s _ numbers r/
Note the prefix
Generation: 10 notation commonly
Fitness: Adjusted=1.0 Hits=20 used by GP systems
Tree O0: /4221//’

(+x (* (+ (* (+ x (* X X)) X) X) X))

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

2
€Y UNIVERSITY

Real World Example

MMN wWw”Ww
A AR

] 5 10 15 20 25 30

time /

100 FT T T T T T =
2 50| -
H
5 0 €
Q
ot -50 | \ -
(&)
<

-100 []]]]] 1

4.9 5 51 52 53 54 55 16 17 7 0.078

Time (s)

* MA Lones, SL Smith, J Alty, S Lacy, K Possin, S Jamieson, AM Tyrrell, Evolving Classifiers to Recognise the
Movement Characteristics of Parkinson’s Disease Patients, IEEE Trans. Evolutionary Computation, 2014.

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Programmatic Expressions

& Symbolic regression is a popular application of GP
> But mathematical expressions aren’t programs
> Qr, at least, not very exciting programs!

& Programmatic expressions also typically have:
> Command sequences: command; command;
> Conditional execution: if .. then .. else
> |teration: for .., do .. while
> Memory, variables: int i = 0 ..
> Functions, modules: foo = bar(x, Vy)

Michael Lones / Bio-Inspired Computing HERIOT
S WATT

1'
JV UNIVERSITY

Programmatic Expressions

& Santa Fe Trail Problem
> A control problem commonly used to benchmark GP
> Guide an ‘ant’ to ‘eat’ all the food’ in minimum time

T
I
(I
]
] [
[I
] []
|]
I]
|]
]l]
[]
]|]
[l EEEN
[[|
JEEQQF
]
I
|
]
|
EEE |
| | |
N | ;llﬁﬁﬁf
] I
| | O |
] T |
[]
N |
N
I

http://http://en.wikipedia.org/wiki/Santa_Fe_Trail_problem

Michael Lones / Bio-Inspired Computing HERIOT
&= WATT

Programmatic Expressions

¢ Function and terminal sets
> Functions: { if-food-ahead, progn2, progn3 }
> Terminals: { left, right, move }

progn* are sequential}

1f food ahead execution statements
move progn2
right 1f food ahead

TN

move right

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

¥ UNIVERSITY

Programmatic Expressions

& Santa Fe Trail using ECJ

/&Tﬂsone‘ate'87/89

> java ec.Evolve -from app/ant/ant.params pieces of ‘food’ —
> Generation: 50 pretty good!
Fitness: Standardized=2 Hits=87
Tree O:

(Lf-food-ahead (if-food-ahead (progn2 (if-food-ahead
move left) move) left) (progn3 (if-food-ahead
move left) (if-food-ahead (if-food-ahead
(progn3 (if-food-ahead move (if-food-ahead

left left)) (if-food-ahead move (progn3 left
(1f-food-ahead move left) (progn2 (progn3
left move move) move)) (if-food-ahead (if-
move move) (progn3 left move move))))
move right)) (if-food-ahead move (progn3

Michael Lones / Bio-Inspired Computing HERIOT

Santa Fe Solution Evolution

-4
o

i
999 999@9
§

o .
3 2
° =
9 :

Genera tion: 1

https://www.youtube.com/watch?v=6cMXN5rGLCs

Michael Lones / Bio-Inspired Computing

Conditional Execution

& An ‘if command for every condition?
> 1f x equals 1, 1if x i1s greater than 2 ..
> Not a very flexible or effective approach

& We would prefer something like this:
if

T

AN VAN

IRsensor 10 left right move

Michael Lones / Bio-Inspired Computing HERIOT

Crossover Problem
Parent 1 Parent 2
if if
,’/‘\(\ / N
,/ Se M progn2 < /o progn2
/ N\ /7 \ /N 0 /N
IRsensor 101 left right move IRsensor 10 left | right move |

‘progn2’ has a

‘if’ expects a return
return type of

type of Boolean

void
if
/ \
progn2 progn2 <
/7 \ /" \ / \ 7\
right move left right move IRsensor left IRsensor 10

Child 1 Child 2

Michael Lones / Bio-Inspired Computing

Closure

& Traditional tree-based GP requires closure

> All functions must be able to do something with whatever
input they may receive

> |.e. their input types must be more general than any
other function or terminal’s output type

& Function set with closure — good ©
> { AND, OR, NAND, NOR, NOT }

& Function set without closure — bad ®
> {+, -, AND, OR, progn2, sin, cos }

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

'&k
S UNIVERSITY

Can we avoid closure?

& Penalise invalid solutions /if\

> A common approach in EAs progn2 progn2
> Easy to implement / \ / \
_ right move left right move
> Can lead to search space bias
> |nefficient use of population if ~
invalidity occurs often Fitness =0 ®

& Repair invalid solutions
> Another common EA approach :f i
> Maintains population efficiency i / N\ i of rig{ }OVG
> Can be time consuming

progn2

Mutate sub-tree until valid

Michael Lones / Bio-Inspired Computing HERIOT
& WATT

Type-Constrained Operators

& Constrain initialisation and variation operators
> By taking into account the return types of branches
> e.g. only allow crossover points at type-compatible points
> The preferred approach to handling mixed types in GP

bool |f void bool |f void
bw \Nld boM \Nid
number number ro nz nobt | move
v0|d void 00 .
number number 1VOid | oig void bool void
IRsensor 10 left right move umber == number FgNT

number/ \number

IRsensor 0O
I compatible crossover points

Michael Lones / Bio-Inspired Computing

Strongly-Typed GP

& A variant of GP [Montana, 1995]
> Builds upon the idea of type constraints
> Every terminal and function is assigned a type
> Provides scope for type hierarchies
> Also supports generic functions with flexible types

> Paper discusses mixing scalars, vectors and matrices:
« http://davidmontana.net/papers/stgp.pdf

Michael Lones / Bio-Inspired Computing HERIOT

S WATT

&P UNIVERSITY
Bloat ‘

& Bloat is a big problem for genetic programming
> Tendency for trees to grow large during evolution
> |n standard GP, growth has quadratic complexity
> Leads to inefficient uninterpretable programs

900

800 | -

700 - 3
g 5
Q.
S 600 - §
E 500 8
E, 7}
£ 400 - g
[(2]
S 300 |-)

200 |

S o} i
100 |
0 2 | | | | | _05 1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 0 5000 10000 15000 20000 25000 30000
Number of Programs Created Number of Programs Created

From Langdon, 2000, Quadratic Bloat in Genetic Programming

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

B | O a.t &Y UNIVERSITY

& Many theories for why bloat occurs:
> There are more big programs than small programs
> GP operators tend to explore larger trees (operator bias)
> Programs protect themselves with non-functional code
> [See §11.3 of “Field Guide”]

Nothing in this ‘intron’ }

if sub-tree gets executed
true left progn2
Few small programs, prognz move
uncountable big programs
[Langdon, 2000] / \

move right

Michael Lones / Bio-Inspired Computing

Bloat

& There are various ways to control bloat

> Easiest way is to apply depth constraints
e.g. only pick crossover points below depth N

> Parsimony pressure involves penalising large programs
e.g. subtract a term from their fitness in proportion to size

> Code editing involves removing parts of large programs
e.g. remove the bits that don’'t do anything

> An extra objective can be added to a multiobjective EA
e.g. second objective of minimising number of nodes

& For more info, read [Luke, 2006]

> http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.159.1580&rep=rep1&type=pdf

Michael Lones / Bio-Inspired Computing

Things you should know

& What GP is and when you should use it

& Basics of tree-based GP:
> Sub-tree crossover and mutation operators
> Closure, why types can be a problem
> Bloat: why it is a problem, methods for avoiding it

& | don’t expect you to know:
> Details of initialisation methods
> About the causes of bloat
> Methods for handling types

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

'%""i‘]
& UNIVERSITY

Questions

& Where can | see some code?
& “Essentials of Metaheuristics” sec. 3.3.3 & 4.3 (or ECJ)

Algorithm 55 The Ramped Half-and-Half Algorithm

1: minMax < minimum allowed maximum depth
2: maxMax <— maximum allowed maximum depth
3: FunctionSet < function set

4: d < random integer chosen uniformly from minMax to maxMax inclusive
5. if 0.5 < a random real value chosen uniformly from 0.0 to 1.0 then

6: return DoGrow(1, d, FunctionSet)

7. else

8 return DoFull(1, d, FunctionSet)

Michael Lones / Bio-Inspired Computing

Coursework 3

& Available now!
> Download the zip file containing ECJ and CW3 files

& It's about getting to know genetic programming
> Trying out GP on some benchmark problems
> Understanding how parameters affect GP’s behaviour

> Getting some experience using a well known
evolutionary computing framework

& It's not about your Unix skills
> S0 let me know if you're struggling with this aspect

Michael Lones / Bio-Inspired Computing

Other things to do

& Get to know ECJ:
> |nstall it: http://cs.gmu.edu/~eclab/projects/ec;j/

> Read the tutorials, browse the documentation
> Play around with it

& Get to know GP:
> Check out the GP facilities in ECJ
> Have a look at the example problems
> Play around with parameter files

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Bibliography

& 8. Luke and L. Panait, A Comparison of Bloat Control Methods for Genetic
Programming, Evolutionary Computation 14(3):309-344, 2006
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1580

& D. Montana, Strongly Typed Genetic Programming, Evolutionary Computation
3(2):199-230, 1995.
http://www.cs.bham.ac.uk/~wbl/biblio/cache/http__vishnu.bbn.com_papers_stgp.pdf

