Michael Lones / Bio-Inspired Computing

Previous Lecture

& What GP is and when you should use it
> Evolutionary algorithms that optimise programs
> Useful for discovering novel solutions to problems
> Qr solutions to problems you don’t know how to solve

& Introduction to tree-based GP:
> |nitialisation, crossover, mutation
> Symbolic regression
> Conditional execution
> Handling types
> Bloat and bloat avoidance

Michael Lones / Bio-Inspired Computing

Questions

& Can GP expressions be “pretty printed™?

> Yesl!

> For output options (latex etc.) in ECJ, see:
http://cs.gmu.edu/~eclab/projects/ecj/docs/tutorials/
tutorial4/index.html

> There's also a gawk script for circular trees:
http://wwwO.cs.ucl.ac.uk/staff/\WW.Langdon/gpZ2lattice/
gpZ2lattice.html ATy

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Questions

& Can GP be used for medical image analysis?
> Yes, there are quite a few examples of this
> (Google “genetic programming medical image”

Michael Lones / Bio-Inspired Computing HERIOT

Medical Example

Cartesian Genetic
Programming and Its
Application to Medical Diagnosis

1. Introducti “ “r
omp gror A 10 F4 F5 F
(= R / Fep-TEfrE
andbiolftr . 12 — 2 =
- X [Heols
- HEEET 13— 1 F2rrF
igital Object Ident
D] N 14 2 o 2] o1
3 FohtT3IFs5 .: :t.
56 MPUTATI
16 Fsph-t [Z]F3
HiFl-ife
H,
18 —H2{F4) Fap
B s
Region of Interest in Mammogram SGLD Matrix CGP Network

e SL Smith, Cartesian Genetic Programming and Its Application to Medical Diagnosis,
IEEE Computational Intelligence Magazine, November 2011.

Michael Lones / Bio-Inspired Computing

Medical Example

& http://dl.acm.org/citation.cfm?id=2598244

Improving 3D Medical Image Registration CUDA Software
with Genetic Programming

William B. Langdon,Marc Modat,Justyna Petke, Mark Harman
Dept. of Computer Science, Unwersity College London Gower Street, WC1E 6BT, UK
W.Langdon@cs.ucl.ac.uk

ABSTRACT 10000 g

Genetic Improvement (GI) is shown to optimise, in some
cases by more than 35%, a critical component of health-
care industry software across a diverse range of six nVidia
graphics processing units (GPUs). GP and other search

based software engineering techniques can automatically op- 1000 3 3
timise the current rate limiting CUDA parallel function in + *

the Nifty Reg open source C+4+ project used to align or reg-

ister high resolution nuclear magnetic resonance NMRI and

other diagnostic NIfTI images. Future Neurosurgery tech-

100 | -
niques will require hardware acceleration, such as GPGPU, 3 3
to enable real time comparison of three dimensional in the-

atre images with earlier patient images and reference data.

Milions of aciveVoxd per second

+

With millimetre resolution brain scan measurements com-
prising more than ten million vaxels the modified kernel can
process in excess of 3 billion active voxels per second.

Categories and Subject Descriptor [.2.8 [search]: heuristic

10 . ,GP kernel on ten verification images +
NVS 200 GTX 236 T10 C2060 GTX580 K20¢

Figure 1: Performance of modified reg_spline_get
DeformationField3D CUDA kernel after optimisation

Evolvability

This is the capacity for a program to improve its
fitness as a result of an evolutionary process (i.e.
mutation and recombination).

For genetic programming, there’s little value in

being theoretically able to express a program if
it can not be discovered by evolution.

Expressiveness

This is the capacity for a program representation
to express different kinds of behaviours.

For genetic programming, you can’t evolve a
program if you can’t express it.

In practice, there is often a trade-off between
expressiveness and evolvability.

HERIOT
FPWATT

Genetic Programming:
Memory, Loops and Modules

Dr. Michael Lones
Room EM.G31
M.Lones@hw.ac.uk

Distinctly Global

www.hw.ac.uk

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Ad d | N g M emo ry 25 oaivrsiry

& There are various ways of adding memory to GP
> However, in practice these are not widely used

& Consider the approach used by Astro Teller [1994]

> This introduces a memory, of width M:

> And 2 new functions:

« READ(X) — read value from memory location X
« WRITE(Y, X) — write value Y to memory location X

Michael Lones / Bio-Inspired Computing

Example

progn3
/ \
WRITE WRllTE READ
/N /N |
2 0 4 READ 2

|
0

Michael Lones / Bio-Inspired Computing

Example

progn3
[Write 2 into IW | \

WRITE WRITE READ
/N /N \
2 0 2 READ 2

|
0

Michael Lones / Bio-Inspired Computing HERIOT
5‘:‘?5 WATT

E X a m p | e &Y universiTy

Write 4 into the
location number read 3
from location O

WRITE WRITE READ
SN N
READ 2

|
0

Michael Lones / Bio-Inspired Computing

Example

progn3
/ | \Rm)jlocaﬁ()n 2,i.e. 4]

WRITE WRITE READ
/N /N \
2 0 2 READ 2

|
0

Michael Lones / Bio-Inspired Computing

Example

progn3
/ \
WRITE WRllTE READ
/N /N |
2 0 4 READ 2

What if this is mutated? 0 [What happens here? 1
Intoa 3...ora12?

Michael Lones / Bio-Inspired Computing

Data Structures

& Using addressable memory is problematic

& An alternative is to use data structures
> These are less expressive than ‘full memory’
> But less susceptible to bad mutations
> e.g. using a stack:

progn3
PUSH PUSH

\
’ / AN

POP

Michael Lones / Bio-Inspired Computing

Other Memory Approaches

& “Soft memory” [Poli et al 2009]
> Blends new assignments with old memories
> |Intended to be more evolvable

> http://cswww.essex.ac.uk/staff/poli/papers/
PoliMcPheeCitiCraneJAEA2009.pdf

& Cultural memories [Spector & Luke 1996]
> Memory is shared amongst the population
> Allows programs to communicate
> http://www.cs.gmu.edu/~sean/papers/culture-gp96.pdf

Michael Lones / Bio-Inspired Computing

HERIOT
TEWATT

'&&
€ UNIVERSITY

Adding Loops

& This I1s possible, but...
> Requires caution!

> Halting Problem:
can’t predict termination

> Need to use constraints
to prevent infinite loops

> (e.g. max iterations)

> Qr use a time-out during
solution evaluation

(& - HALT!

OO =
@@ [[[
\\ﬁw g | [

Alan designed the perfect computer

http://www.coopertoons.com

Michael Lones / Bio-Inspired Computing

Adding Loops

& Koza'Style: - pred|cate
> do {

move();
until(IRsensor>5) move / \
IRsensor
& Langdon [1996]: forwhile
- for(i=2+3; i< i++) / \\

{

_ N I 00
}wrlte(1,|), / \ }VR‘-I{

1

Michael Lones / Bio-Inspired Computing

Loops for Image Processing

HERIOT
S WAT'T

¥ UNIVERSITY

& lteration has been found useful for image analysis
> Often processed in segments, e.g. every 10x10 pixels

> Evolved loops can be more efficient and effective

* http://goanna.cs.rmit.edu.au/~vc/papers/aust-aiO4.pdf

Using Loops in Genetic Programming for A Two
Class Binary Image Classification Problem

Xiang Li and Vic Ciesielski

{xiali, vc}@Qcs.rmit.edu.au
School of Computer Science and Information Technology
RMIT University, GPO Box 2476V, Melbourne, Victoria 3001

Abstract. Loops are rarely used in genetic programming (GP), because
they lead to massive computation due to the increase in the size of the
search space. We have investigated the use of loops with restricted se-
mantics for a problem in which there are natural repetitive elements, that
of distinguishing two classes of images. Using our formulation, programs
with loops were successfully evolved and performed much better than
programs without loops. Our results suggest that loops can successfully
used in genetic programming in situations where domain knowledge is
available to provide some restrictions on loop semantics.

(a) Circle

(b) Circle

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

'@t’ UNIVERSITY
Recap ‘“

& It is possible to add syntactic features to GP:
> Types v/
> Memory v/
> Loops v/

& But this has consequences:

> More complex initialisation and variation operators
> More constraints during evolution
> Possible biases within the search landscape

> S0, only use them when necessary

Michael Lones / Bio-Inspired Computing

Modularity

& Sub-expressions frequently re-occur in a program
> |deally, we only want to evolve each one once
> S0, not this:

+/X\+
NN
AYANAYA

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Modularity

& Sub-expressions frequently re-occur in a program
> |deally, we only want to evolve each one once

> This:
define sub:

N N
AWA

Michael Lones / Bio-Inspired Computing

Automatically-Defined Functions

& A program is defined as a forest of trees
> One “result producing branch” (RPB), i.e. main()
> One of more ADFs, each with one or more arguments

RPB ADFO(arg0, argl) ADF1(arg0)
X - X
ADFO ADF1 X ADF1 arg0 sin

/NT N \

r arg0 Yy argl arg0

Michael Lones / Bio-Inspired Computing

Automatically-Defined Functions

& ADFs must be defined before a GP run

> Both the number of ADFs, and the number of arguments
for each ADF must be specified in advance

> This is a prominent limitation of ADFs

& Some heuristics for choosing these values:
> A priori knowledge of problem decomposition
> Qver-specification, i.e. more than will ever be needed

> Affordable capacity, since ADFs tend to increase the
complexity and hence the execution time of programs

Michael Lones / Bio-Inspired Computing

Automatically-Defined Functions

& Good things about ADFs ©

> They can reduce overall program size

> They make it easy to solve modular problems
> They have been used to solve hard problems
> See Koza's books!

& Bad things about ADFs ®

> They can increase program complexity
> |ncorrect parameter settings hinder evolution
> Modular dependencies may hinder evolution...

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Modular Dependencies

& This is also seen in software engineering
> Two routines make use of shared code
> The routines’ requirements diverge
> The shared code must be copied and modified
> |.e. It is no longer shared code!

Routine 1 Routine 2 Routine 1 Routine 2
Shared Local Local

library function function

Michael Lones / Bio-Inspired Computing

Removing Dependencies

& Koza introduced a similar mechanism to GP
> Called ‘case splitting’
> Part of a group of ‘architecture altering operators’
> Basically mutation operators that refactor code

RPB ADFO RPB ADFO ADF1
A A L
ADFO || ADFO\ . ADFO || ADF1 J

Michael Lones / Bio-Inspired Computing

Analytical Modularity

& Another group of methods for achieving modularity
> These attempt to identify useful code blocks
> And then turn them into modules
> For potential use elsewhere in evolving programs

& Adaptive Representation through Learning (ARL)
> A successful form of analytical modularity
> First, it identifies programs with improved fitness
> Then extracts the most-executed code blocks
> Placing these in a library shared between programs

> http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.26.3333

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

'ﬂt’ UNIVERSITY
Recap ‘

& It is possible to add syntactic features to GP:
> Types v/
> Memory v/
> Loops v/
> Modularity v/

& But this has consequences:
> More complex initialisation and variation operators
> More constraints during evolution
> Possible biases within the search landscape
> S0, only use them when necessary

Michael Lones / Bio-Inspired Computing

Going Graphical

& Some limitations of GP are due to using trees:

+/X\+
NN
AVARRAYA

Michael Lones / Bio-Inspired Computing

Going Graphical

& There are advantages to using graphs instead
> |nstant reuse!

7N
AN

Michael Lones / Bio-Inspired Computing

Going Graphical

& There are a number of graph-based GPs
> PADO, PDGP, GNP, CGP, ...

& Cartesian GP (CGP) is the best known [Miller]

> Functions are arranged on a Cartesian grid

X‘;?X +
=" output
y Pl X [+ outp

t NIEEE T
N, A

Michael Lones / Bio-Inspired Computing

Cartesian GP

& Other notable properties of CGP
> Constrained grid limits program size (no bloat!)
> Mutation can connect/disconnect nodes
> Disconnected nodes are a form of redundancy
> Redundancy has evolutionary advantages

><<—/7->< +
_~

—
~_

N AL

+

N
> 5 l+— output
e

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Cartesian GP

& Other notable properties of CGP
> Constrained grid limits program size (no bloat!)
> Mutation can connect/disconnect nodes
> Disconnected nodes are a form of redundancy

> Redundancy has evolutionary advantages
(This sub-graph is still}

present but is no

__———___longerin use
X ‘;7- X +
y =y /71 X [+ output

RN/

+

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Cartesian GP

& Other notable properties of CGP
> Constrained grid limits program size (no bloat!)
> Mutation can connect/disconnect nodes
> Disconnected nodes are a form of redundancy
> Redundancy has evolutionary advantages

This sub-graph was
unexpressed, but is

. L now used

Y 1 H X v=7J X output

t ‘\ _ 4/ /This allows old code\
\ I to come back into

— 43; X use, and supports

‘neutral evolution’,
_ agood thing!

Michael Lones / Bio-Inspired Computing

Things you should know

& The meaning of evolvability and expressiveness
> And that there is often a trade-of between them
> And be able to give examples of this trade-off

& ADFs: what are they, why use them, rules of thumb
& Cartesian GP: what is it, why use it

& | don’t expect you to know:
> Details of GP memory and loop implementations
> About modular dependencies and analytical modularity

Michael Lones / Bio-Inspired Computing

Summary

& This week
> Some ways of making tree GP more expressive
> Some thoughts on how this affects evolvability
> The potential for using different representations

& Next week
> QOther ways of representing programs
> Turing complete genetic programming
> Conventional languages
> \What we can learn from biology

Michael Lones / Bio-Inspired Computing

Things to try out

& ADFs
> ECJ has support for these
> Try them out on a few problems
> Try using different numbers of ADFs

& CGP
> Add-on available for ECJ
> http://oranchak.com/cgp/contrib-cgp-18.zip
> http://oranchak.com/cgp/doc/
> Have a look, try it out

Michael Lones / Bio-Inspired Computing HERIOT
s WAT T

Bibliography

& W. Langdon, Data Structures and Genetic Programming, PhD thesis,
1996http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_thesis.html

& J. Miller and P. Thomson, Cartesian genetic programming, EuroGP 2000
http://www.cartesiangp.co.uk/papers/eurogp2000-miller.pdf

& A. Teller, Turing Completeness in the Language of Genetic Programming with
Indexed Memory, WCCI 1994, http://astroteller.net/pdf/Turing.pdf

