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Previous Lecture

& Cellular automata
> Distributed, bottom-up, emergent behaviour
> Used to model natural systems
> Complexity from simple systems
> Can be used to compute
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Today’s Lecture

& How biological cells actually “compute”
> Gene regulatory networks (GRNs)
> Computational models of GRNs
> Artificial development using GRNs
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Gene Regulation in Biology

A gene is a contiguous region of DNA

AN
a N

DNA

http://c2.plzcdn.com
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Gene Regulation in Biology

A gene is a contiguous region of DNA

AN
a N

DNA \ J

Each gene describes
how to make a
protein, which is a
molecular machine
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Gene Regulation in Biology

Genes are expressed when a
transcription complex forms
— this is a bit like a photocopier

DNA \ J

/The transcription
complex binds to
conserved patterns
that mark the start
\Of genes, e.g. TATAy
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Gene Regulation in Biology

However, the transcription
complex is unstable, and rarely
copies genes by itself

DNA
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Gene Regulation in Biology
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Instead, it must be helped out by
proteins called transcription factors (TFs)

DNA

These bind to both the DNA and the
transcription complex, holding —
everything in place — a bit like a clamp
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Gene Regulation in Biology

Some TFs are inhibitory and act to
destabilise the transcription complex

DNA
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Gene Regulation in Biology

Since transcription factors
are proteins, they must be
produced by other genes ...

Regulated gene Regulating gene

This results in a regulatory
interaction between these
two genes
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Gene Regulation in Biology

HERIOT

& The pattern of interactions between all genes is
known as the gene regulatory network (or GRN)
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http://www.scbit.org/cgrnb/faq.htm
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& The GRN controls the expression of proteins, and

hence the behaviour of the cell, over time

> It is, basically, the cell's computer

Gene/protein 3

Gene/protein 2

Gene/protein 1

Gene/Protein Expression Level

Time

These all
cause the
cell to do
different
things
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Gene Regulation in Biology

& The GRN also determines when cells divide and
the kind of cells they will become

> |.e. an organism’s developmental process
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Gene Regulation in Biology

& Why is gene regulation of computational interest?

> GRNSs underlie the complexity of biological systems,
such as ourselves

& Biological systems are structurally complex

> This has led to an interest in how computational models
of GRNs can be used to generate intricate structures

< Biological systems are dynamically complex

> GRNSs produce robust and intelligent responses, leading
to interest in whether computational models can do the
same, e.g. for controlling robots
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Gene Regulation in Biology

& Also theoretical interest in computability
> How do biological systems process information?
> How does this differ from conventional computers?
> |s it in some ways better? e.g. more compact and robust

& And from an EA perspective evolvability

> GRNs are known to be evolvable, i.e. able to respond
robustly to mutation and crossover

> Especially in comparison to computer programs
> Potentially an evolvable representation for GP
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Gene Regulation in Biology
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A number of different TFs are

—

DNA

often involved in regulation, This pattern is
binding to different patternsin - different for
the regulatory region upstream every gene

of the gene
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Gene Regulation in Biology

TF1 TF2 TF3  Expressif TF1 or TF2 and not TF3

—_— A —
\

= I

DNA | | |

So, whether a gene is expressed
depends on whether some other genes
are expressed and whether some other

genes are not expressed — this is the

gene’s regulatory function
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Often this can be
captured by a
Boolean function
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Boolean Network

& This idea can be modelled as a Boolean Network
> A set of nodes (representing genes)

Each with a binary state (expressed or not expressed),

> a set of input nodes (their regulating genes),

> and a Boolean function (their regulatory function)

> These are executed synchronously at each time step

Gl GZG4 G5 | G6 | G7

\Y%

GO
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Boolean Network

& Looks a bit like an elementary cellular automata
< But without a fixed neighbourhood
< And with a different update rule in each cell
¢ In fact, a Boolean network is a generalisation of a CA
& (i.e. a Boolean network can implement a CA W)
& Therefore must be capable of universal computation
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Random Boolean Networks

& Their behaviour can be studied statistically

> By sampling and executing networks with particular
sizes, connectivities and function sets

> These are termed Random Boolean Networks (RBNSs)

& Stuart Kauffman is known for this

> He studied NK networks:
« RBNs with N nodes
« Kinputs per node
» A random function for each node
» Also called Kauffman networks

| Stuart Kauffman

http://en.wikipedia.org/wiki/
File:Stuart_Kauffman.jpg
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Boolean Functions

& For a particular value of K, there are 2(2°) functions
> E.g. for K=2, there are 16 possible functions:

A AND NOTA
NOTB AND B

0O O 0 0 0 0 0
o 1 0 0 0 0 1 1 1 1
1 O 0 0 1 1 0 0 1 1
1 1 0 1 0 1 1 0 1
RN e A
NOT B ORB
0 1 1 1 1 1
o 1 0 0 0 0 1 1 1 1
1 O 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1
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Kauffman's NK Networks

& There are very many networks for each NK

22Xn \
> |n fact, there are :
(N—K)!

e for K=2, N=10, there are ~2 million
« for K=3, N=10, there are ~6x101%, which is a lot

> This is why they are studied statistically

« Too many to study them exhaustively, as Wolfram did
with elementary CAs
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Kauffman’'s NK Networks

& The behaviour of an RBN falls into 3 categories:

Ordered Critical

Chaotic
L - - L.~ :* —

From [Gershenson, 2004] Introduction to Random Boolean Networks
http://uk.arxiv.org/abs/nlin.AO/0408006
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Kauffman’'s NK Networks

& Kauffman observed that, on average™

Ordered when K<2

*But note this doesn’t mean that all K=2 networks are
critical, or that critical networks can’t be found for K>2
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Evolved Criticality

=y

& Evolved Boolean networks appear to favour criticality
> Several studies have shown this, with K tending to 2
> K=2 also promotes learning and generality [Goudarzi'12]:
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Edge of Chaos

& Criticality is also known as the ‘edge of chaos’
> Dynamics are neither ordered nor chaotic, but complex
> Hypothesised to be the sweet spot for computation
> This is where CA Rule 110 (universality) is found

FRBR'BAK
& Appears frequently in natural systems 64
> (Genes, brains, proteins, flocks ... natare

> Evolution may select for criticality works
> Per Bak, “How Nature Works” =

> “Are biological systems poised at criticality?”
[http://arxiv.org/pdf/1012.2242v1.pdf]




Michael Lones / Bio-Inspired Computing

Attractors

& Attractors are an important concept for RBNs
> A finite number of nodes means that states must repeat
> An attractor of length L repeats every L steps

> e.g. L=3:
x H Sl Be

> An attractor of length 1 is termed a point attractor

¢ Transients occur before an attractor is reached
> e.g. "Acorn” is a transient leading to a stable attractor
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Attractors

& Complete attractor map for a small network
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> 2 attractors of length 3, and 2 point attractors
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Attractors

& Attractors often have large basins of attraction

5 -« an attractor state
shown in detail

transient tree
and sub-trees

http://www.ddlab.com
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Attractors BoaLT

Complete map for an RBN, N=13, K=3:
Yy

http://www.ddlab.com |
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Attractors

& Attractors have a biological interpretation . ...
> Stable states for a cell —

e.g. cell types: neuron, liver, skin, ... 5?; / %

7'\
> Cancer can also be seen as an attractor

& Boolean networks are used to study bio GRNs

> Captures their qualitative dynamics
> Usually using NOT, OR and AND functions

> See “Boolean modeling of biological regulatory
networks: A methodology tutorial”:
http://www.sciencedirect.com/science/article/pii/
S51046202312002770
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Attractors

& And a computational interpretation?
> An attractor can be seen as a computational state
> e.g. a point attractor represents a particular ‘output’

& A cyclic attractor generates a repeating sequence
> Which can be interpreted as a sequence of actions
> e.g. robot actuator movements

& Transients can be seen as computing the attractor
> Either from the initial state
> Or between attractors (especially if inputs are allowed)
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lllustrative Example

Obstacle causes
perturbation

Initial

state Adaptive gait

ol

Running gait

Visual input causes
perturbation

Efficient gait
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Evolving Boolean Networks

& Using EAs to find useful Boolean networks
> Networks that solve a particular computational problem
> Exhaustive search is not an option in this case
> Another form of genetic programming

& Robot controllers [Roli, 2011] dHH : E
| N I s
> Used inputs and outputs 2 s ~—
_ Sensor Motor
> Searched for networks with inputs outputs
light following behaviour | ‘\ = / |
light P — i left/right
: ; on/off

> Controlled a real ePuck sound :
> Networks were robust
to sensor noise
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www.youtube.com/watch?v=6ZF9lj
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Inputs and Outputs
Sensor inputs Left/right motors
Initial State r A ) —
No sensor signals > t=0
Not moving

Note: This is a simplified example. See
paper for full details of how this works.
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Inputs and Outputs

Sensor inputs Left/right motors
Initial State . - ! X
No sensor signals > t=0
Not moving =1

—~+
l
N

Note: This is a simplified example. See
paper for full details of how this works.
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Inputs and Outputs

Sensor inputs Left/right motors
Initial State . a - ! X
No sensor signals > t=0
Not moving . =1
First Updat - . =2
irst Update
No sensor signals - - - t=3

Moving forward

Note: This is a simplified example. See
paper for full details of how this works.
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Inputs and Outputs
Sensor inputs Left/right motors
Initial State 7 ~ N —
No sensor signals > t=0
Not moving . =1
e Uadat H EH Bl -
irst Update
No sensor signals . . - t=3
Moving forward . . - t=4
H EH Bl -
B Bl

Note: This is a simplified example. See
paper for full details of how this works.
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Inputs and Outputs

Sensor inputs Left/right motors
Initial State . - ! X
No sensor signals > t=0
Not moving =1

First Update
No sensor signals
Moving forward

Second Update
Light on left
Moving forward

—~+
Il
S

Note: This is a simplified example. See
paper for full details of how this works.
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Inputs and Outputs
Sensor inputs Left/right motors
Initial State . a - ! X
No sensor signals > t=0
Not moving =1

First Update
No sensor signals
Moving forward

Second Update
Light on left
Moving forward

—~+
Il
S

i
~

—+
Il
o

Note: This is a simplified example. See
paper for full details of how this works.
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Inputs and Outputs
Sensor inputs Left/right motors
Initial State . a - ! X
No sensor signals > t=0
Not moving =1

First Update
No sensor signals
Moving forward

Second Update
Light on left
Moving forward

—~+
Il
S

i
~

Third Update
Light on left
Turning left

—+
Il
o

Note: This is a simplified example. See
paper for full details of how this works.
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Limitations of Boolean Networks

& From a practical perspective
> |nputs and outputs must be binary encoded

> Difficult to handle large/continuous/many values
> E.g. Piin binary: 01000000010010010000111111111001

& From a biological perspective

> (Gene expression levels are not discrete
> Regulatory functions are not always Boolean functions

> However, Boolean networks are computationally efficient
and can be implemented directly in hardware
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To be continued. ..

& GRN models that look more biological
& Using GRN models for development
& Interesting applications
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