Logic and Proof course Solutions to exercises from chapters 10 and 11

Fairouz Kamareddine

- 10.1 (a) $\{m \in \mathbb{R} | -10 \le m \le 10 \land m \ne 0\}$. (Set $m : m \in \mathbb{R} \land -10 \le m \le 10 \land m \ne 0 : m$).
 - (b) $\{m \in \mathbb{N} | x \mod 2 \neq 0\}$. (Set $m : m \in \mathbb{N} \land x \mod 2 \neq 0 : m$).
 - (c) $\{m \in \mathbb{Z} | x \mod 6 = 0\}$. (Set $m : m \in \mathbb{N} \land x \mod 6 = 0 : m$).
 - (d) $\{k \in \mathbb{N} | \exists_{m,n}[(m,n) \in \mathbb{N} \times \mathbb{N} : k = m^2 + n^2]\}$ or $\{m^2 + n^2 | (m,n) \in \mathbb{N} \times \mathbb{N}\}$ (Set $k : \exists_{m,n}[(m,n) \in \mathbb{N} \times \mathbb{N} : k = m^2 + n^2] : k)$ or (Set $m, n : (m, n) \in \mathbb{N} \times \mathbb{N} : m^2 + n^2$).

10.2 Ignore.

- 10.3 (a) 4950.
 - (b) 1
 - (c) Left to reader.
 - (d) Left to reader.
- 10.4 (a) The scope of \forall_m is everything behind it. The scope of \forall_n is the part $[n \in \mathbb{N} : 3m + n > 3]$.
 - (b) a) Scope of \forall_m is everything behind it.
 - b) Scope of \exists_m is everything behind it.
 - c) Scope of \forall_x is everything behind it. Scope of \exists_y is $[y \in \mathbf{R} : y > x^2]$.
 - d) Scope of \forall_m is $[m \in \mathbf{N} \Rightarrow m^2 > m]$.
- 11.1 (a) Let g be the weather is good, l be Charles will go to the lake, a be Charles will go to his aunt, s be Charles will go to the sea, and f be Charles will go fishing. Then we have: $g \Rightarrow l \land \neg a$ and $l \lor s \Rightarrow f$.
 - (b) We prove (1) as follows:

 $\{ Hypothesis \}$

- (1) $g \Rightarrow l \land \neg a$ { Hypothesis}
- (2) $l \lor s \Rightarrow f$ {Assume }
- (3) g
- (4) {By (1) and (3)} $l \land \neg a$
- $\{By (4)\}\$
- (5) $\neg a$

We prove (1) as follows:

- $\{ Hypothesis \}$
- (1) $g \Rightarrow l \land \neg a$ { Hypothesis}
- (2) $l \lor s \Rightarrow f$ {Assume }
- $\begin{array}{c} (1100 \text{ almo}) \\ (3) \quad g \end{array}$
- (4) {By (1) and (3)} $l \land \neg a$
- $\{By (4)\}$
- (5) l(5) l(6) $l \lor s$ (7) $\{By (5)\}$ (7) $l \lor s$ (8) $\{By (6) \text{ and } (2)\}$
- (7) f
- $11.2\,$ Ignore.
- 11.3~ (a) We prove this as follows:

 $\{ Assume \}$

- (1) m and n are uneven{By definition}
- (2) m = 2k + 1 and n = 2k' + 1{By arithmetic}
- (3) mn = (2k+1)(2k'+1) = 2(2kk'+k+k')+1{By definition}
- (4) mn is uneven
- (b) Left as an exercise.
- (c) We prove this as follows:

 $\{ Assume \}$

- (1) m is a multiple of 6
- {By definition and arithmetic}
- (2) m = 6k = 3(2k){By definition}
- (3) m is a multiple of 3

- 11.4 (a) True. We prove this as follows:
 - { Assume}
 - (1) $p \text{ is even and } p \neq 2$ { By hypothesis, }
 - (2) p = 2k and $k \neq 1$.
 - { By arithmetic}
 - (3) 1, 2 and p are divisors of p{By definition}
 - (4) p is not prime.
 - (b) False. 2, 3, 5 are all prime but 2+3+5 = 10 is not prime.
 - (c) True. We prove this as follows:
 - { By Arithmetic}
 - (1) 29 = 1 + 4x7
 - {By Arithmetic}
 - (2) 29 is prime
 - $\{ Logic \}$
 - (3) $\exists_x [x \text{ is prime } \land x \text{ is 1 plus a multiple of seven }]$

11.5 (a) Ignore.

- (b) We prove one side as follows:
 - { Assume} (1) x = 1{By Arithmetic} (2) $x^3 + x^2 - x - 1 = 0$
 - We prove the other side as follows:

x = -1 is a solution to $x^{3} + x^{2} - x - 1 = 0$.

11.6 We prove as follows:

{By Arithmetic}

- (1) $(2n+1)^2 = 4n(n+1) + 1$ { By Arithmetic}
- (2) Case n = 2k is even: $(2n+1)^2 = 4n(n+1) + 1 = 8k(n+1) + 1$ is 1 plus a multiple of 8. {By Arithmetic}
- (3) Case n = 2k + 1 is uneven: $(2n + 1)^2 = 4n(2k + 2) + 1 = 8n(k + 1) + 1$ is 1 plus a multiple of 8.
- (4) So, in all cases, $(2n+1)^2$ is 1 plus a multiple of 8.
- 11.7~ (a) We prove this as follows:

{ Assume}

- (1) $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are bounded {By definition}
- (2) there are M, M' such that $|a_n| < M$ and $|b_n| < M$ for all $n \in \mathbb{N}$ { By Arithmetic}
- (3) $|a_n + b_n| < |a_n| + |b_n| < M + M'$ {By definition}
- (4) $(a_n + b_n)_{n \in \mathbb{N}}$ is bounded.

(b) Ignore.