Logic and Proof EXAMPLE Test wks 5—7
Example Solutions
Here is the collection of predicates to use in this test:
	predicate
	meaning

	
	

	calls(x, y)
	procedure x calls procedure  y 

	argsame(x , y) 
	procedure x takes same arguments as procedure y

	faster(x, y)
	procedure x is faster than procedure y

	welldoc(x)
	procedure x is well documented


1. Express the following statements in predicate logic, using only the predicates above.

(a) Sort21 is a well documented procedure, but Sort25 isn’t.    [1 mark]
welldoc(Sort21)

(b) Every procedure faster than  Lookup8 is called by Sort25    [3 marks]
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(c) None of the procedures with the same arguments as Sort21 is faster than every well-documented procedure.                                       [5 marks]
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various equivalent alternatives, e.g.:
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2. Convert each of the following into Conjunctive Normal Form:
(a) 
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                                                                        [2 marks]
1. remove implication:
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  (no change)

2. move negations to atomic propositions
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  (no change)

3. Skolemize
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  -- any name will do for the function to replace x, but it must be a function of z. See NOTE

. 
4. Eliminate universal quantifiers
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That’s it.

(b) 
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                 [4 marks]

1. remove implication:
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  no change

2. move negations to atomic propositions
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 no change

3. Skolemize
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 any name will do to replace q. The scope of x does not cover the existentially quantified part – that is, the identity of the individual q does not depend on what x is. So we can replace it with a constant rather than a Skolem function.
4. Eliminate universal quantifiers
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5. Distribute and over or.

We aim at a conjunction of disjunctions, so:  

    first transform “a(x) OR (b(x) AND not_c(x))”
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collect the last two into a clause:
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Use P OR (Q AND R) == (P OR Q ) AND (P OR R)

with P = (c or d), Q = (a or b), R = (a or not c):
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It is now in CNF.

3. Suppose that the following are accepted to be true:
1. 
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Do some logical reasoning to show that the following follows from statements 1 and 2:   
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                                                                                                                    [5 marks]

(you can get 3 marks for this by setting out a correct logical reasoning clearly in English, but 5 marks are available if you use the style of logical reasoning from the lectures, and correctly name the inference rule(s) and/or equivalences used).

Via logical calulcation and inference:

1. 
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{AND-elimination}

3.  
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(AND-elimination

4.  
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{Assumption}

5. A
{from 5 and 3, this follows directly}

6. B

{from 6 and 4, this follows directly}

7. C

{follows from 2, contraposition
8.   
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{Assumption}

9. 
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{from 8. and 9.}

10. 
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{AND-elimination from 10.}

11. 
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{Contradiction with 7, based on assumption 9., so it follows that:}
12.  F

{from 5. and 12 Since assuming 5 leads to 12, we have shown:

13. 
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English reasoning that would be worth 3 marks:

Assume that A is true.  

From 1, we know that A=>B is true, so B must then be true. 

We also know that B implies C is true (again from 1), so C would therefore be true. 

Since C would be true, we know that the left hand side of 2 is true, implying in turn that F must be true.

SO, if we assume A is true, this leads to F being true. Hence:  A => F.

NOTE

The x for which w(z,x) is true depends on z. Think of it this way: suppose it was this (our domain is real numbers, and we leave that out of the statement for simplicity):
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  where greater_than(z,x) means z is greater than x.

The Skolemization would be
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This says that whatever z is, there is a number that ii is greater than it. But it would have to be different individuals for each z.  We can’t just invent a name and say:
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  -- because this would be wrong for all of the zs that happen to be smaller than our fixed individual X302.
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