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Parameter Control in Evolutionary Algorithms
Ágoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz,Senior Member, IEEE

Abstract—The issue of controlling values of various parameters
of an evolutionary algorithm is one of the most important and
promising areas of research in evolutionary computation: It has a
potential of adjusting the algorithm to the problem while solving
the problem. In this paper we: 1) revise the terminology, which is
unclear and confusing, thereby providing a classification of such
control mechanisms, and 2) survey various forms of control which
have been studied by the evolutionary computation community
in recent years. Our classification covers the major forms of
parameter control in evolutionary computation and suggests some
directions for further research.

Index Terms—Adaptation, evolutionary algorithms, parameter
control, self-adaptation.

I. INTRODUCTION

T HE TWO major steps in applying any heuristic search al-
gorithm to a particular problem are the specification of the

representation and the evaluation (fitness) function. These two
items form the bridge between the original problem context
and the problem-solving framework. When defining an evolu-
tionary algorithm (EA) one needs to choose its components,
such as variation operators (mutation and recombination) that
suit the representation, selection mechanisms for selecting
parents and survivors, and an initial population. Each of these
components may have parameters, for instance: the probability
of mutation, the tournament size of selection, or the population
size. The values of these parameters greatly determine whether
the algorithm will find a near-optimum solution and whether
it will find such a solution efficiently. Choosing the right
parameter values, however, is a time-consuming task and
considerable effort has gone into developing good heuristics
for it.

Globally, we distinguish two major forms of setting pa-
rameter values: parametertuning and parametercontrol. By
parameter tuning we mean the commonly practiced approach
that amounts to finding good values for the parameters before
the run of the algorithm and then running the algorithm using
these values, which remain fixed during the run. In Section II
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we give arguments that any static set of parameters, having
the values fixed during an EA run, seems to be inappropriate.
Parameter control forms an alternative, as it amounts to starting
a run with initial parameter values which are changed during
the run.

This paper has a two-fold objective. First, we provide a
comprehensive discussion of parameter control and categorize
different ways of performing it. The proposed classification is
based on two aspects: how the mechanism of change works
and what component of the EA is affected by the mechanism.
Such a classification can be useful to the evolutionary com-
putation community, since many researchers interpret terms
like “adaptation” or “self-adaptation” differently, which can
be confusing. The framework we propose here is intended to
eliminate ambiguities in the terminology. Second, we provide
a survey of control techniques which can be found in the
literature. This is intended as a guide to locate relevant work
in the area and as a collection of options one can use when
applying an EA with changing parameters.

We are aware of other classification schemes, e.g., [2], [65],
[119], that use other division criteria, resulting in different
classification schemes. The classification of Angeline [2] is
based on levels of adaptation and type of update rules. In
particular, three levels of adaptation: population level, indi-
vidual level, and component level1 are considered, together
with two types of update mechanisms: absolute and empirical
rules. Absolute rules are predetermined and specify how
modifications should be made. On the other hand, empirical
update rules modify parameter values by competition among
them (self-adaptation). Angeline’s framework considers an
EA as a whole, without dividing attention to its different
components (e.g., mutation, recombination, selection, etc.).
The classification proposed by Hinterdinget al. [65] extends
that of [2] by considering an additional level of adaptation
(environment level), and makes a more detailed division of
types of update mechanisms, dividing them into deterministic,
adaptive, and self-adaptive categories. Here again, no attention
is paid to what parts of an EA are adapted. The classification
of Smith and Fogarty [116], [119] is probably the most
comprehensive. It is based on three division criteria: what
is being adapted, the scope of the adaptation, and the basis
for change. The last criterion is further divided into two
categories: the evidence the change is based upon and the
rule/algorithm that executes the change. Moreover, there are
two types of rule/algorithm: uncoupled/absolute and tightly

1Notice, that we use the term “component” differently from [2] where
Angeline denotes subindividual structures with it, while we refer to parts of
an EA, such as operators (mutation, recombination), selection, fitness function,
etc.
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coupled/empirical, with the latter one coinciding with self-
adaptation.

The classification scheme proposed in this paper is based on
the type of update mechanisms and the EA component that is
adapted, as basic division criteria. This classification addresses
the key issues of parameter control without getting lost in
details (this aspect is discussed in more detail in Section IV).

The paper is organized as follows. The next section dis-
cusses parameter tuning and parameter control. Section III
presents an example which provides some basic intuitions on
parameter control. Section IV develops a classification of con-
trol techniques in evolutionary algorithms, whereas Section V
surveys the techniques proposed so far. Section VI discusses
some combinations of various techniques, and Section VII
concludes the paper.

II. PARAMETER TUNING VERSUSPARAMETER CONTROL

During the 1980’s, a standard genetic algorithm (GA) based
on bit representation, one-point crossover, bit-flip mutation,
and roulette wheel selection (with or without elitism) was
widely applied. Algorithm design was thus limited to choosing
the so-called control parameters, or strategy parameters,2 such
as mutation rate, crossover rate, and population size. Many
researchers based their choices on tuning the control param-
eters “by hand,” that is experimenting with different values
and selecting the ones that gave the best results. Later, they
reported their results of applying a particular EA to a particular
problem, paraphrasing here — for these experiments, we
have used the following parameters: population size of 100,
probability of crossover equal to 0.85, etc. — without much
justification of the choice made.

Two main approaches were tried to improve GA design in
the past. First, De Jong [29] put a considerable effort into
finding parameter values (for a traditional GA), which were
good for a number of numeric test problems. He determined
(experimentally) recommended values for the probabilities of
single-point crossover and bit mutation. His conclusions were
that the following parameters give reasonable performance for
his test functions (for new problems these values may not be
very good):

population size of 50;
probability of crossover equal to 0.6;
probability of mutation equal to 0.001;
generation gap of 100%;
scaling window: ;
selection strategy: elitist.

Grefenstette [58], on the other hand, used a GA as a meta-
algorithm to optimize values for the same parameters for both
on-line and off-line performance3 of the algorithm. The best set
of parameters to optimize the on-line (off-line) performance of

2By “control parameters” or “strategy parameters” we mean the parameters
of the EA, not those of the problem.

3These measures were defined originally by De Jong [29]; the intuition is
that off-line performance is based on monitoring the best solution in each
generation, while on-line performance takes all solutions in the population
into account.

the GA were (the values to optimize the off-line performance
are given in parenthesis):

population size of 30 (80);
probability of crossover equal to 0.95 (0.45);
probability of mutation equal to 0.01 (0.01);
generation gap of 100% (90%);
scaling window: ( );
selection strategy: elitist (nonelitist).

Note that in both of these approaches, an attempt was made
to find the optimal and general set of parameters; in this con-
text, the word “general” means that the recommended values
can be applied to a wide range of optimization problems.
Formerly, genetic algorithms were seen as robust problem
solvers that exhibit approximately the same performance over
a wide range of problems [50, p. 6]. The contemporary view on
EA’s, however, acknowledges that specific problems (problem
types) require specific EA setups for satisfactory performance
[13]. Thus, the scope of “optimal” parameter settings is
necessarily narrow. Any quest for generally (near-)optimal
parameter settings is losta priori [140]. This stresses the
need for efficient techniques that help finding good parameter
settings for a given problem, in other words, the need for
good parameter tuning methods.

As an alternative to tuning parameters before running the
algorithm, controlling them during a run was realized quite
early [e.g., mutation step sizes in the evolution strategy (ES)
community]. Analysis of the simple corridor and sphere prob-
lems in large dimensions led to Rechenberg’s 1/5 success rule
(see Section III-A), where feedback was used to control the
mutation step size [100]. Later, self-adaptation of mutation was
used, where the mutation step size and the preferred direction
of mutation were controlled without any direct feedback. For
certain types of problems, self-adaptive mutation was very
successful and its use spread to other branches of evolutionary
computation (EC).

As mentioned earlier, parameter tuning by hand is a com-
mon practice in evolutionary computation. Typically one pa-
rameter is tuned at a time, which may cause some suboptimal
choices, since parameters often interact in a complex way.
Simultaneous tuning of more parameters, however, leads to an
enormous amount of experiments. The technical drawbacks to
parameter tuning based on experimentation can be summarized
as follows.

• Parameters are not independent, but trying all different
combinations systematically is practically impossible.

• The process of parameter tuning is time consuming, even
if parameters are optimized one by one, regardless to their
interactions.

• For a given problem the selected parameter values are not
necessarily optimal, even if the effort made for setting
them was significant.

Other options for designing a good set of static parameters
for an evolutionary method to solve a particular problem
include “parameter setting by analogy” and the use of the-
oretical analysis. Parameter setting by analogy amounts to the
use of parameter settings that have been proved successful
for “similar” problems. It is not clear, however, whether
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similarity between problems as perceived by the user implies
that the optimal set of EA parameters is also similar. As
for the theoretical approach, the complexities of evolutionary
processes and characteristics of interesting problems allow
theoretical analysis only after significant simplifications in
either the algorithm or the problem model. Therefore, the
practical value of the current theoretical results on parameter
settings is unclear.4 There are some theoretical investigations
on the optimal population size [50], [52], [60], [132] or optimal
operator probabilities [10], [54], [108], [131]; however, these
results were based on simple function optimization problems
and their applicability for other types of problems is limited.

A general drawback of the parameter tuning approach,
regardless of how the parameters are tuned, is based on the
observation that a run of an EA is an intrinsically dynamic,
adaptive process. The use of rigid parameters that do not
change their values is thus in contrast to this spirit. Addition-
ally, it is intuitively obvious that different values of parameters
might be optimal at different stages of the evolutionary process
[8]–[10], [27], [62], [122], [127]. For instance, large mutation
steps can be good in the early generations helping the ex-
ploration of the search space and small mutation steps might
be needed in the late generations to help fine tuning the
suboptimal chromosomes. This implies that the use of static
parameters itself can lead to inferior algorithm performance.
The straightforward way to treat this problem is by using
parameters that may change over time, that is, by replacing
a parameter by a function , where is the generation
counter. As indicated earlier, however, the problem of finding
optimal static parameters for a particular problem can be
quite difficult, and the optimal values may depend on many
other factors (such as the applied recombination operator,
the selection mechanism, etc.). Hence designing an optimal
function may be even more difficult. Another possible
drawback to this approach is that the parameter value changes
are caused by a deterministic rule triggered by the progress
of time , without taking any notion of the actual progress in
solving the problem, i.e., without taking into account the cur-
rent state of the search. Yet researchers (see Section V) have
improved their evolutionary algorithms, i.e., they improved the
quality of results returned by their algorithms while working
on particular problems, by using such simple deterministic
rules. This can be explained simply by superiority of changing
parameter values: suboptimal choice of often leads to
better results than a suboptimal choice of.

To this end, recall that finding good parameter values for
an evolutionary algorithm is a poorly structured, ill-defined,
complex problem. But on this kind of problem, EA’s are often
considered to perform better than other methods! It is thus
seemingly natural to use an evolutionary algorithm not only for
finding solutions to a problem, but also for tuning the (same)
algorithm to the particular problem. Technically speaking, this
amounts to modifying the values of parameters during the

4During the Workshop on Evolutionary Algorithms, organized by Institute
for Mathematics and Its Applications, University of Minnesota, Minneapolis,
MN, October 21–25, 1996, L. Davis made a claim that the best thing a
practitioner of EA’s can do is to stay away from theoretical results. Although
this might be too strong of a claim, it is noteworthy that the current EA theory
is not seen as a useful basis for practitioners.

run of the algorithm by taking the actual search process into
account. Basically, there are two ways to do this. Either one
can use some heuristic rule which takes feedback from the
current state of the search and modifies the parameter values
accordingly, or incorporate parameters into the chromosomes,
thereby making them subject to evolution. The first option,
using a heuristic feedback mechanism, allows one to base
changes on triggers different from elapsing time, such as
population diversity measures, relative improvements, absolute
solution quality, etc. The second option, incorporating param-
eters into the chromosomes, leaves changes entirely based on
the evolution mechanism. In particular, natural selection acting
on solutions (chromosomes) will drive changes in parameter
values associated with these solutions. In the following we
discuss these options illustrated by an example.

III. A N EXAMPLE

Let us assume we deal with a numerical optimization
problem

optimize

subject to some inequality and equality constraints

and

and bounds for , defining the domain
of each variable.

For such a numerical optimization problem we may consider
an evolutionary algorithm based on a floating-point represen-
tation, where each individual in the population is represented
as a vector of floating-point numbers

A. Changing the Mutation Step Size

Let us assume that we use Gaussian mutation together
with arithmetical crossover to produce offspring for the next
generation. A Gaussian mutation operator requires two param-
eters: the mean, which is often set to zero, and the standard
deviation , which can be interpreted as the mutation step
size. Mutations then are realized by replacing components of
the vector by

where is a random Gaussian number with mean zero
and standard deviation. The simplest method to specify the
mutation mechanism is to use the samefor all vectors in
the population, for all variables of each vector, and for the
whole evolutionary process, for instance, .
As indicated in Section II, it might be beneficial to vary the
mutation step size.5 We shall discuss several possibilities in
turn.

First, we can replace the static parameterby a dynamic
parameter, i.e., a function . This function can be defined
by some heuristic rule assigning different values depending

5There are even formal arguments supporting this view in specific cases,
e.g., [8]–[10], [62].
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on the number of generations. For example, the mutation step
size may be defined as

where is the current generation number varying from zero
to , which is the maximum generation number. Here, the
mutation step size (used for all vectors in the population
and for all variables of each vector) will decrease slowly
from one at the beginning of the run ( ) to 0.1 as
the number of generations approaches . Such decreases
may assist the fine-tuning capabilities of the algorithm. In this
approach, the value of the given parameter changes according
to a fully deterministic scheme. The user thus has full control
of the parameter and its value at a given timeis completely
determined and predictable.

Second, it is possible to incorporate feedback from the
search process, still using the samefor all for vectors
in the population and for all variables of each vector. A
well-known example of this type of parameter adaptation is
Rechenberg’s “1/5 success rule” in (11)-evolution strategies
[100]. This rule states that the ratio of successful mutations6 to
all mutations should be 1/5, hence if the ratio is greater than
1/5 then the step size should be increased, and if the ratio is
less than 1/5, the step size should be decreased

where is the relative frequency of successful mutations,
measured over some number of generations and
[11]. Using this mechanism, changes in the parameter values
are now based on feedback from the search, and-adaptation
happens every generations. The influence of the user on
the parameter values is much less direct here than in the
deterministic scheme above. Of course, the mechanism that
embodies the link between the search process and parameter
values is still a heuristic rule indicating how the changes
should be made, but the values of are not deterministic.

Third, it is possible to assign an “individual” mutation step
size to each solution: extend the representation to individuals
of length as

and apply some variation operators (e.g., Gaussian mutation
and arithmetical crossover) to ’s as well as to the value
of an individual. In this way, not only the solution vector
values ( ’s), but also the mutation step size of an individual
undergoes evolution. A typical variation would be

6A mutation is considered successful if it produces an offspring that is
better than the parent.

and

where is a parameter of the method. This mechanism
is commonly called self-adapting the mutation step sizes.
Observe that within the self-adaptive scheme the heuristic
character of the mechanism resetting the parameter values is
eliminated.7

Note that in the above scheme the scope of application of
a certain value of is restricted to a single individual. It can
be applied, however, to all variables of the individual: it is
possible to change the granularity of such applications and
use a separate mutation step size to each. If an individual
is represented as

then mutations can be realized by replacing the above vector
according to a similar formula as discussed above

and

where is a parameter of the method. However, as opposed
to the previous case, each componenthas its own mutation
step size , which is being self-adapted. This mechanism
implies a larger degree of freedom for adapting the search
strategy to the topology of the fitness landscape.

B. Changing the Penalty Coefficients

In Section III-B, we described different ways to modify
a parameter controlling mutation. Several other components
of an EA have natural parameters, and these parameters are
traditionally tuned in one or another way. Here we show
that other components, such as the evaluation function (and
consequently the fitness function), can also be parameterized
and thus tuned. While this is a less common option than tuning
mutation (although it is practiced in the evolution of variable-
length structures for parsimony pressure [144]), it may provide
a useful mechanism for increasing the performance of an
evolutionary algorithm.

When dealing with constrained optimization problems,
penalty functions are often used. A common technique is
the method of static penalties [92], which requires fixed
user-supplied penalty parameters. The main reason for its
wide spread use is that it is the simplest technique to
implement: It requires only the straightforward modification
of the evaluation function eval as follows:

eval penalty

where is the objective function, and penalty is zero if
no violation occurs, and is positive8 otherwise. Usually, the

7It can be argued that the heuristic character of the mechanism resetting
the parameter values is not eliminated, but rather replaced by a metaheuristic
of evolution itself. The method is very robust, however, with respect to the
setting of�0 and a good rule is�0 = 1=

p
n.

8For minimization problems.
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penalty function is based on the distance of a solution from
the feasible region, or on the effort to “repair” the solution,
i.e., to force it into the feasible region. In many methods a
set of functions ( ) is used to construct the
penalty, where the function measures the violation of the
th constraint in the following way:

if
if .

is a user-defined weight, prescribing how severely con-
straint violations are weighted.9 In the most traditional penalty
approach the weight does not change during the evolution
process. We sketch three possible methods of changing the
value of .

First, we can replace the static parameterby a dynamic
parameter, e.g., a function . Just as for the mutation
parameter , we can develop a heuristic which modifies the
weight over time. For example, in the method proposed by
Joines and Houck [76], the individuals are evaluated (at the
iteration ) by a formula, where

eval penalty

where and are constants. Clearly

and the penalty pressure grows with the evolution time.
Second, let us consider another option, which utilizes feed-

back from the search process. One example of such an
approach was developed by Bean and Hadj-Alouane [19],
where each individual is evaluated by the same formula as
before, but is updated in every generation in the
following way:

if for all
if for all
otherwise.

In this formula, is the set of all search points (solutions),
is a set of all feasible solutions, denotes the

best individual in terms of the function eval in generation,
and (to avoid cycling). In other words,

the method decreases the penalty component for the
generation if all best individuals in the last generations
were feasible (i.e., in ), and increases penalties if all best
individuals in the last generations were infeasible. If there
are some feasible and infeasible individuals as best individuals
in the last generations, remains without change.

Third, we could allow self-adaptation of the weight parame-
ter, similarly to the mutation step sizes in the previous section.
For example, it is possible to extend the representation of
individuals into

9Of course, instead ofW it is possible to consider a vector of weights
~w = (w1; . . . ; wm) which are applied directly to violation functionsfj(~x).
In such a case penalty(~x) = m

j=1 wjfj(~x). The discussion in the remaining
part of this section can be easily extended to this case.

where is the weight. The weight component undergoes
the same changes as any other variable(e.g., Gaussian
mutation, arithmetical crossover). It is unclear, however, how
the evaluation function can benefit from such self-adaptation.
Clearly, the smaller weight , the better an (infeasible) indi-
vidual is, so it is unfair to apply different weights to different
individuals within the same generation. It might be that a new
weight can be defined (e.g., arithmetical average of all weights
present in the population) and used for evaluation purpose;
however, to our best knowledge, no one has experimented
with such self-adaptive weights.

To this end, it is important to note the crucial differ-
ence between self-adapting mutation step sizes and constraint
weights. Even if the mutation step sizes are encoded in the
chromosomes, the evaluation of a chromosome is independent
from the actual value of ’s. That is

eval

for any chromosome . In contrast, if constraint weights
are encoded in the chromosomes, then we have

eval

for any chromosome . This enables the evolution to
“cheat” in the sense of making improvements by modifying
the value of instead of optimizing and satisfying the
constraints.

C. Summary

In the previous sections we illustrated how the mutation op-
erator and the evaluation function can be controlled (adapted)
during the evolutionary process. The latter case demonstrates
that not only the traditionally adjusted components, such as
mutation, recombination, selection, etc., can be controlled by
parameters, but so can other components of an evolutionary
algorithm. Obviously, there are many components and param-
eters that can be changed and tuned for optimal algorithm
performance. In general, the three options we sketched for
the mutation operator and the evaluation function are valid
for any parameter of an evolutionary algorithm, whether
it is population size, mutation step, the penalty coefficient,
selection pressure, and so forth.

The mutation example of Section III-A also illustrates
the phenomenon of the scope of a parameter. Namely,
the mutation step size parameter can have different
domains of influence, which we call scope. Using the

model, a particular mutation step
size applies only to one variable of a single individual.
Thus, the parameter acts on a subindividual level. In
the representation the scope of is one
individual, whereas the dynamic parameter was defined
to affect all individuals and thus has the whole population
as its scope.

These remarks conclude the introductory examples of this
section; we are now ready to attempt a classification of
parameter control techniques for parameters of an evolutionary
algorithm.
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IV. CLASSIFICATION OF CONTROL TECHNIQUES

In classifying parameter control techniques of an evolution-
ary algorithm, many aspects can be taken into account:

1) What is changed? (e.g., representation, evaluation func-
tion, operators, selection process, mutation rate, etc.);

2) How the change is made? (i.e., deterministic heuristic,
feedback-based heuristic, or self-adaptive);

3) The scope/levelof change (e.g., population-level,
individual-level, etc.);

4) The evidenceupon which the change is carried out (e.g.,
monitoring performance of operators, diversity of the
population, etc.).

In the following we discuss these items in more detail.
To classify parameter control techniques from the perspec-

tive of what is changed, it is necessary to agree on a list of all
major components of an evolutionary algorithm (which is a
difficult task in itself). For that purpose, assume the following
components of an EA:

• representation of individuals;
• evaluation function;
• variation operators and their probabilities;
• selection operator (parent selection or mating selection);
• replacement operator (survival selection or environmental

selection);
• population (size, topology, etc.).

Note that each component can be parameterized, and the
number of parameters is not clearly defined. For example, an
offspring produced by an arithmetical crossover ofparents

can be defined by the following formula:

where , and can be considered as parameters
of this crossover. Parameters for a population can include
the number and sizes of subpopulations, migration rates, etc.,
(this is for a general case, when more then one population is
involved). Despite the somewhat arbitrary character of this
list of components and of the list of parameters of each
component, we will maintain the “what-aspect” as one of the
main classification features. The reason for this is that it allows
us to locate where a specific mechanism has its effect. Also,
this is way we would expect people to search through a survey,
e.g., “I want to apply changing mutation rates, let me see how
others did it.”

As discussed and illustrated in Section III, methods for
changing the value of a parameter (i.e., the “how-aspect”) can
be classified into one of three categories.

• Deterministic Parameter Control:This takes place when
the value of a strategy parameter is altered by some de-
terministic rule. This rule modifies the strategy parameter
deterministically without using any feedback from the
search. Usually, a time-varying schedule is used, i.e., the
rule will be used when a set number of generations have
elapsed since the last time the rule was activated.

• Adaptive Parameter Control:This takes place when there
is some form of feedback from the search that is used to
determine the direction and/or magnitude of the change to
the strategy parameter. The assignment of the value of the

Fig. 1. Gobal taxonomy of parameter setting in EA’s.

strategy parameter may involve credit assignment, and the
action of the EA may determine whether or not the new
value persists or propagates throughout the population.

• Self-Adaptive Parameter Control:The idea of the evo-
lution of evolution can be used to implement the self-
adaptation of parameters. Here the parameters to be
adapted are encoded into the chromosomes and undergo
mutation and recombination. The better values of these
encoded parameters lead to better individuals, which in
turn are more likely to survive and produce offspring and
hence propagate these better parameter values.

This terminology leads to the taxonomy illustrated in Fig. 1.
Some authors have introduced a different terminology.

Angeline [2] distinguished absolute and empirical rules cor-
responding to uncoupled and tightly coupled mechanisms of
Spears [124]. Let us note that the uncoupled/absolute cate-
gory encompasses deterministic and adaptive control, whereas
the tightly coupled/empirical category corresponds to self-
adaptation. We feel that the distinction between deterministic
and adaptive parameter control is essential, as the first one
does not use any feedback from the search process. We
acknowledge, however, that the terminology proposed here
is not perfect either. The term “deterministic” control might
not be the most appropriate, as it is not determinism that
matters, but the fact that the parameter-altering transforma-
tions take no input variables related to the progress of the
search process. For example, one might randomly change the
mutation probability after every 100 generations, which is not
a deterministic process. The name “fixed” parameter control
might form an alternative that also covers this latter exam-
ple. Also, the terms “adaptive” and “self-adaptive” could be
replaced by the equally meaningful “explicitly adaptive” and
“implicitly adaptive” controls, respectively. We have chosen
to use “adaptive” and “self-adaptive” for the widely accepted
usage of the latter term.

As discussed earlier, any change within any component of
an EA may affect a gene (parameter), whole chromosomes
(individuals), the entire population, another component (e.g.,
selection), or even the evaluation function. This is the aspect
of the scope or level of adaptation [2], [65], [116], [119].
Note, however, that the scope/level usually depends on the
component of the EA where the change takes place. For
example, a change of the mutation step size may affect a
gene, a chromosome, or the entire population, depending
on the particular implementation (i.e., scheme used), but a
change in the penalty coefficients always affects the whole
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population. So, the scope/level feature is a secondary one,
usually depending on the given component and its actual
implementation.

The issue of the scope of the parameter might be more
complicated than indicated in Section III-C, however. First
of all, the scope depends on the interpretation mechanism of
the given parameters. For example, an individual might be
represented as

where the vector denotes the covariances between the
variables . In this case the scope of the strategy
parameters in is the whole individual, although the notation
might suggest that they are act on a subindividual level.

The next example illustrates that the same parameter (en-
coded in the chromosomes) can be interpreted in different
ways, leading to different algorithm variants with different
scopes of this parameter. Spears [124], following [46], exper-
imented with individuals containing an extra bit to determine
whether one-point crossover or uniform crossover is to be
used (bit 1/0 standing for one-point/uniform crossover, re-
spectively). Two interpretations were considered. The first
interpretation was based on a pairwise operator choice: If both
parental bits are the same, the corresponding operator is used,
otherwise, a random choice is made. Thus, this parameter
in this interpretation acts at an individual level. The second
interpretation was based on the bit-distribution over the whole
population: If, for example 73% of the population had bit 1,
then the probability of one-point crossover was 0.73. Thus this
parameter under this interpretation acts on the population level.
Note, that these two interpretations can be easily combined.
For instance, similar to the first interpretation, if both parental
bits are the same, the corresponding operator is used. If
they differ, however, the operator is selected according to
the bit-distribution, just as in the second interpretation. The
scope/level of this parameter in this interpretation is neither
individual, nor population, but rather both. This example
shows that the notion of scope can be ill-defined and very com-
plex. These examples, and the arguments that the scope/level
entity is primarily a feature of the given parameter and only
secondarily a feature of adaptation itself, motivate our decision
to exclude it as a major classification criterion.

Another possible criterion for classification is the evidence
used for determining the change of parameter value [116],
[119]. Most commonly, the progress of the search is moni-
tored, e.g., the performance of operators. It is also possible
to look at other measures, like the diversity of the population.
The information gathered by such a monitoring process is used
as feedback for adjusting the parameters. Although this is a
meaningful distinction, it appears only in adaptive parameter
control. A similar distinction could be made in deterministic
control, which might be based on any counter not related
to search progress. One option is the number of fitness
evaluations (as the description of deterministic control above
indicates). There are, however, other possibilities, for instance,
changing the probability of mutation on the basis of the
number of executed mutations. We feel, however, that these
distinctions are of a more specific level than other criteria and

for that reason we have not included the evidence for a change
as a major classification criterion.

So the main criteria for classifying methods that change the
values of the strategy parameters of an algorithm during its
execution are:

1) What is changed?
2) How is the change made?

Our classification is thus two dimensional: the type of con-
trol and the component of the evolutionary algorithm which
incorporates the parameter. The type and component entries
are orthogonal and encompass typical forms of parameter
control within EA’s. The type of parameters’ change consists
of three categories: deterministic, adaptive, and self-adaptive
mechanisms. The component of parameters’ change consists
of six categories: representation, evaluation function, variation
operators (mutation and recombination), selection, replace-
ment, and population.

V. SURVEY OF RELATED WORK

To discuss and survey the experimental efforts of many
researchers to control the parameters of their evolutionary
algorithms, we selected an ordering principle to group existing
work based on what is being adapted. Consequently, the fol-
lowing sections correspond to the earlier list of six components
of an EA with one exception, and we just briefly indicate
what the scope of the change is. Purely by the amount of
work concerning the control of mutation and recombination
(variation operators), we decided to treat them in two separate
subsections.

A. Representation

Representation forms an important distinguishing feature
between different streams of evolutionary computing. GA’s
were traditionally associated with binary or some finite alpha-
bet encoded in linear chromosomes. Classical ES is based on
real-valued vectors, just as modern evolutionary programming
(EP) [11], [45]. Traditional EP was based on finite state
machines as chromosomes and in genetic programming (GP)
individuals are trees or graphs [18], [79].

It is interesting to note that for the latter two branches of
evolutionary algorithms it is an inherent feature that the shape
and size of individuals is changing during the evolutionary
search process. It could be argued that this implies an in-
trinsically adaptive representation in traditional EP and GP.
On the other hand, the syntax of the finite state machines
is not changing during the search in traditional EP, nor
do the function and terminal sets in GP (without automat-
ically defined functions, ADF’s). That is, if one identifies
“representation” with the basic syntax (plus the encoding
mechanism), then the differently sized and shaped finite state
machines, respectively, trees or graphs are only different
expressions in this unchanging syntax. This view implies
that the representations in traditional EP and GP are not
intrinsically adaptive.

Most of the work into adaptation of representation has
been done by researchers from the GA area. This is probably
due to premature convergence and “Hamming cliff” problems
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which occurred when GA’s were first applied to numeric
optimization. The most comprehensive was the adaptive rep-
resentation used by Shaefer [114] in his ARGOT strategy.
Simpler schemes where later used by Mathias and Whitley
[139] (delta coding) and by Schraudolph and Belew [111]
(dynamic parameter encoding). All the techniques described
in this section use adaptive parameter control.

The ARGOT strategy used a flexible mapping of the func-
tion variables to the genes (one gene per function variable),
which allows not only the number of bits used to represent the
gene (resolution) to be adapted, but also adapts both the range
(contraction/expansion) and center point of the range (shift
left/right) of the values the genes are mapped into. Adaptation
of the representation and mapping is based on the degree of
convergence of the genes, the variance of the gene values,
and how closely the gene values approach the current range
boundaries.

Delta coding also modifies the representation of the function
parameters, but in a different way. It uses a GA with multiple
restarts, the first run is used to find an interim solution,
subsequent runs decode the genes as distances (delta values)
from the last interim solution. This way each restart forms
a new hypercube with the interim solution at its origin, the
resolution of the delta values can also be altered at the
restarts to expand or contract the search space. The restarts
are triggered when the Hamming distance between the best
and worst strings of the continuing population are not greater
than one. This technique was further refined in [87] to cope
with deceptive problems.

The dynamic parameter encoding technique is not based
on modifying the actual number of bits used to represent a
function parameter, but rather, it alters the mapping of the
gene to its phenotypic value. After each generation, population
counts of the gene values for three overlapping target intervals
for the current search interval for that gene are taken. If
the largest count is greater than a given trigger threshold,
the search interval is halved, and all values for that gene in
the population are adjusted. Note that in this technique the
resolutions of genes can be increased but not decreased.

Messy GA’s (mGA’s) [53] use a very different approach.
This technique is targeted to fixed-length binary represen-
tations but allows the representation to be under or over
specified. Each gene in the chromosome contains its value
(a bit) and its position. The chromosomes are of variable
length and may contain too few or too many bits for the
representation. If more than one gene specifies a bit position
the first one encountered is used, if bit positions are not
specified by the chromosome, they are filled in from so-called
competitive templates. Messy GA’s do not use mutation and
use cut and splice operators in place of crossover. A run of an
mGA is in two phases: 1) a primordial phase which enriches
the proportion of good building blocks and reduces the popu-
lation size using only selection and 2) a juxtapositional phase
which uses all the reproduction operators. This technique is
targeted to deceptive binary bitstring problems. The algorithm
adapts its representation to a particular instance of the problem
being solved.

The earliest use of self-adaptive control is for the dominance
mechanism of diploid chromosomes. Here there are two copies
of each chromosome. The extra chromosomes encode alternate
solutions and dominance decides which of the solutions will be
expressed. Bagley [17] added an evolvable dominance value to
each gene, and the gene with the highest dominance value was
dominant, while Rosenberg [102] used a biologically oriented
model and the dominance effect was due to particular enzymes
being expressed. Other early work (on stationary optimization
problems and mixed results) was by Hollstein [67] and Brindle
[23]. Goldberg and Smith [55] used diploid representation
with Hollstein’s triallelic dominance map for a nonstationary
problem, and showed that it was better than using a haploid
representation. Greene [56], [57] used a different approach that
evaluates both the chromosomes and uses the chromosome
with the highest fitness as the dominant one. In each of
the cases above, the method of dominance control is self-
adaptive as there is no explicit feedback to control dominance,
and dominance is only altered by the normal reproduction
operators.

An additional issue connected with adaptive representations
concerns noncoding segments of a genotype. Wu and Lindsay
[141] experimented with a method which explicitly define
introns in the genotypes.

B. Evaluation Function

In [76] and [90] mechanisms for varying penalties accord-
ing to a predefined deterministic schedule are reported. In
Section III-B we discussed briefly the mechanism presented in
[76]. The mechanism of [90] was based on the following idea.
The evaluation function eval has an additional parameter

eval

which is decreased every time the evolutionary algorithm
converges (usually, ). Copies of the best solution
found are taken as the initial population of the next iteration
with the new (decreased) value of. Thus there are several
“cycles” within a single run of the system: For each particular
cycle the evaluation function is fixed ( is
a set of active constraints at the end of a cycle) and the
penalty pressure increases (changing the evaluation function)
only when we switch from one cycle to another.

The method of Eiben and Ruttkay [36] falls somewhere be-
tween tuning and adaptive control of the fitness function. They
apply a method for solving constraint satisfaction problems
that changes the evaluation function based on the performance
of an EA run: the penalties (weights) of those constraints
which are violated by the best individual after termination are
raised, and the new weights are used in the next run.

A technical report [19] from 1992 forms an early example
on adaptive fitness functions for constraint satisfaction, where
penalties of constraints in a constrained optimization prob-
lem are adapted during a run (see Section III-B). Adaptive
penalties were further investigated by Smith and Tate [115],
where the penalty measure depends on the number of violated
constraints, the best feasible objective function found, and the
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best objective function value found. The breakout mechanism
of [93] is applied in [31] and [32], by detecting so-called
nogoods on line and adding a penalty for containing nogoods.
This amounts to adaptively changing the penalties during the
evolution. Eiben and van der Hauw [38], [39] introduced the
so-called SAW-ing (stepwise adaptation of weights) mecha-
nism for solving constraint satisfaction problems with EA’s.
SAW-ing changes the evaluation function adaptively in an EA
by periodically checking the best individual in the population
and raising the penalties (weights) of those constraints this
individual violates. Then the run continues with the new
evaluation function. This mechanism has been applied in EA’s
with very good results for graph coloring, satisfiability, and
random CSP’s [16], [40], [41].

A recent paper [82] describes a decoder-based approach
for solving constrained numerical optimization problems
(the method defines a homomorphous mapping between-
dimensional cube and a feasible search space). It was possible
to enhance the performance of the system by introducing
additional concepts, one of them being adaptive location of the
reference point of the mapping [81], where the best individual
in the current population serves as the next reference point. A
change in a reference point modifies the evaluation function
for all individuals.

It is interesting to note that an analogy can be drawn
between EA’s applied to constrained problems and EA’s oper-
ating on variable-length representation in light of parsimony,
for instance in GP. In both cases the definition of the evaluation
function contains a penalty term. For constrained problems this
term is to suppress constraint violations [89], [91], [92], in case
of GP it represents a bias against growing tree size and depth
[101], [122], [123], [144]. Obviously, the amount of penalty
can be different for different individuals, but if the penalty
term itself is not varied along the evolution then we do not see
these cases as examples of controlling the evaluation function.
Nevertheless, the mechanisms for controlling the evaluation
function for constrained problems could be imported into GP.
So far, we are only aware of only one paper in this direction
[33]. One real case of controlling the evaluation function in GP
is the so-called rational allocation of trials (RAT) mechanism,
where the number of fitness cases that determine the quality
of an individual is determined adaptively [130].

Also, coevolution can be seen as adapting the evaluation
function [96]–[99]. The adaptive mechanism here lies in the
interaction of the two subpopulations, and each subpopulation
mutually influences the fitness of the members of the other
subpopulation. This technique has been applied to constraint
satisfaction, data mining, and many other tasks.

C. Mutation Operators and Their Probabilities

There has been quite significant effort in finding optimal
values for mutation rates. Because of that, we discuss also their
tuned “optimal” rates before discussing attempts for control
them.

There have been several efforts to tune the probability of
mutation in GA’s. Unfortunately, the results (and hence the
recommended values) vary, leaving practitioners in dark. De

Jong recommended [29], the meta-level GA used
by Grefenstette [58] indicated , while Schafferet al.
came up with [106]. Following the earlier
work of Bremermann [22], M̈uhlenbein derived a formula for

which depends on the length of the bitstring (), namely
should be a generally “optimal” static value for

[94]. This rate was compared with several fixed rates by
Smith and Fogarty who found that outperformed
other values for in their comparison [117]. B¨ack also found

to be a good value for together with Gray coding [11,
p. 229].

Fogarty [44] used deterministic control schemes decreasing
over time and over the loci. Although the exact formulas

cannot be retrieved from the paper, they can be found in
[12]. The observed improvement with this scheme makes it
an important contribution, as it was first time (to our best
knowledge) where the mutation rate was changed during the
run of a GA (however, the improvement was achieved for an
initial population of all zero bits). Hesser and Männer [62]
derived theoretically optimal schedules for deterministically
changing for the counting-ones function. They suggest

where are constants, is the population size, andis
the time (generation counter).

Bäck [8] also presents an optimal mutation rate decrease
schedule as a function of the distance to the optimum (as
opposed to a function of time), being

The function to control the decrease of by Bäck and
Schütz [14] constrains so that and

if a maximum of evaluations are used

if

Janikow and Michalewicz [74] experimented with a nonuni-
form mutation, where

if a random binary digit is 0
if a random binary digit is 1

for . The function returns a value in the
range such that the probability of being close
to 0 increases asincreases (is the generation number). This
property causes this operator to search the space uniformly
initially (when is small), and very locally at later stages. In
experiments reported in [74], the following function was used:

where is a random number from , is the maximal
generation number, andis a system parameter determining
the degree of nonuniformity.
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As we discussed in Section III-A, the 1/5 rule of Rechenberg
constitutes a classical example adaptive method for setting the
mutation step size in ES [100]. The standard deviationis
increased, decreased, or left without change and the decision is
made on the basis of the current (i.e., most recent) frequency of
successful mutations. Julstrom’s adaptive mechanism regulates
the ratio between crossovers and mutations based on their
performance [77]. Both operators are used separately to create
an offspring, the algorithm keeps a tree of their recent contribu-
tions to new offspring and rewards them accordingly. Lis [83]
adapts mutation rates in a parallel GA with a farming model,
while Lis and Lis [84] adapt , and the population size
in an algorithm of a parallel farming model. They use parallel
populations and each of them has one value, out of a possible
three different values, for , , and the population size.
After a certain period of time the populations are compared.
Then the values for , , and the population size are shifted
one level toward the values of the most successful population.

Self-adaptive control of mutation step sizes is traditional in
ES [11], [112]. Mutating a floating-point object variable
happens by

where the mean step sizes are modified lognormally

where and are the so-called learning rates. In contem-
porary EP floating point representation is used too, and the
so-called meta-EP scheme works by modifying’s normally

where is a scaling constant, [45]. There seems to be empirical
evidence [104], [105] that lognormal perturbations of mutation
rates is preferable to Gaussian perturbations on fixed-length
real-valued representations. In the meanwhile, [5] suggest a
slight advantage of Gaussian perturbations over lognormal
updates when self-adaptively evolving finite state machines.

Hinterdinget al. [63] apply self-adaptation of the mutation
step size for optimizing numeric functions in a real-valued
GA. Srinivas and Patnaik [125] replace an individual by its
child. Each chromosome has its own probabilities, and

, added to their bitstring. Both are adapted in proportion
to the population maximum and mean fitness. Bäck [8], [9]
self-adapts the mutation rate of a GA by adding a rate for
the , coded in bits, to every individual. This value is
the rate, which is used to mutate the itself. Then this
new is used to mutate the individuals’ object variables.
The idea is that better rates will produce better offspring
and then hitchhike on their improved children to new gen-
erations, while bad rates will die out. Fogarty and Smith
[117] used B̈ack’s idea, implemented it on a steady-state
GA, and added an implementation of the 1/5 success rule for
mutation.

Self-adaptation of mutation has also been used for non-
numeric problems. Fogelet al. [47] used self-adaptation to
control the relative probabilities of the five mutation operators
for the components of a finite state machine. Hinterding [64]

used a multichromosome GA to implement the self-adaptation
in the cutting stock problem with contiguity. One chromosome
is used to represent the problem solution using a grouping rep-
resentation, while the other represents the adaptive parameters
using fixed point real representation. Here self-adaptation is
used to adapt the probability of using one of the two available
mutation operators, and the strength of the group mutation
operator.

In [128] a new adaptive operator (so-called inver-over) was
proposed for permutation problems. The operator applies a
variable number of inversions to a single individual. Moreover,
the segment to be inverted is determined by another (randomly
selected) individual.

D. Crossover Operators and Their Probabilities

Similarly to the previous subsection, we discuss tuned
“optimal” rates for recombination operators before discussing
attempts for controlling them.

As opposed to the mutation rate that is interpreted/bit,
the crossover rate acts on a pair of chromosomes, giving the
probability that the selected pair undergoes crossover. Some
common settings for obtained by tuning traditional GA’s
are [29], [58], and
[11, p. 114], [106]. Currently, it is commonly accepted that
the crossover rate should not be too low and values below 0.6
are rarely used.

In the following we will separately treat mechanisms regard-
ing the control of crossover probabilities and mechanisms for
controlling the crossover mechanism itself. Let us start with
an overview of controlling the probability of crossover.

Davis’s “adaptive operator fitness” adapts the rate of op-
erators by rewarding those that are successful in creating
better offspring. This reward is diminishingly propagated
back to operators of a few generations back, who helped
setting it all up; the reward is a shift up in probability
at the cost of other operators [28]. This, actually, is very
close in spirit to the credit assignment principle used in
classifier systems [50]. Julstrom’s adaptive mechanism [77]
regulates the ratio between crossovers and mutations based
on their performance, as already mentioned in Section V-C.
An extensive study of cost based operator rate adaptation
(COBRA) on adaptive crossover rates is done by Tuson and
Ross [133]. Lis and Lis [84] adapt , and the population
size in an algorithm of a parallel farming model. They use
parallel populations and each of them has one value, out
of a possible three different values, for , , and the
population size. After a certain period of time the populations
are compared. Then the values for, , and the population
size are shifted one level toward the values of the most
successful population.

Adapting probabilities for allele exchange of uniform
crossover was investigated by White and Oppacher in [138]. In
particular, they assigned a discrete
to each bit in each chromosome and exchange bits by crossover
at position if parent parent .
Besides, the offspring inherits bit and from its parents.
The finite state automata they used amounts to updating these
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probabilities in the offspring as follows:

child parent

raise in child for ’s from parent

child parent

lower in child for ’s from parent

modify randomly

where parent parent parent .
The mechanism of Spears [124] self-adapts the choice

between two different crossovers, two-point crossover and uni-
form crossover, by adding one extra bit to each individual (see
Section IV). This extra bit decides which type of crossover
is used for that individual. Offspring will inherit the choice
for its type of crossover from its parents. Srinivas and Patnaik
[125] replace an individual by its offspring. Each chromosome
has its own probabilities, and , added to their bitstring.
Both are adapted in proportion to the population maximum and
mean fitness. In Schaffer and Morishima [108] the number and
locations of crossover points was self-adapted. This was done
by introducing special marks into string representation; these
marks keep track of the sites in the string where crossover
occurred. Experiments indicated [108] that adaptive crossover
performed as well or better than a classical GA for a set of
test problems.

When using multiparent operators [34] a new parameter is
introduced: the number of parents applied in recombination.
In [37] an adaptive mechanism to adjust the arity of recombi-
nation is used, based on competing subpopulations [110]. In
particular, the population is divided into disjoint subpopula-
tions, each using a different crossover (arity). Subpopulations
develop independently for a certain period of time and ex-
change information by allowing migration after each period.
Quite naturally, migration is arranged in such a way that
populations showing greater progress in the given period grow
in size, while populations with small progress become smaller.
Additionally, there is a mechanism keeping subpopulations
(and thus crossover operators) from complete extinction. This
method yielded a GA showing comparable performance with
the traditional (one population, one crossover) version using
a high quality six-parent crossover variant. In the meanwhile,
the mechanism failed to clearly identify the better operators
by making the corresponding subpopulations larger. This is,
in fact, in accordance with the findings of Spears [124] in a
self-adaptive framework.

In GP a few methods were proposed which allow adaptation
of crossover operators by adapting the probability that a
particular position is chosen as a crossing point [3], [68], [69].
Note that in GP there is also implicit adaptation of all variation
operators because of variation of the genotype: e.g., introns,
which appear in genotypes during the evolutionary process,
change the probability that a variation operator is applied to
particular regions.

A meta-evolution approach in the context of genetic pro-
gramming is considered in [78]. The proposed system consists
of several levels; each level consists of a population of graph
programs. Programs on the first level (so-called base level)

solve the desired problem, whereas programs on higher levels
are considered as recombination operators.

E. Parent Selection

The family of the so-called Boltzmann selection mecha-
nisms embodies a method that varies the selection pressure
along the course of the evolution according to a predefined
“cooling schedule” [85]. The name originates from the Boltz-
mann trial from condensed matter physics, where a minimal
energy level is sought by state transitions. Being in a state
the chance of accepting stateis

accept

where are the energy levels, is a parameter called
the Boltzmann constant, andis the temperature. This accep-
tance rule is called the Metropolis criterion. The mechanism
proposed by de la Maza and Tidor [30] applies the Metropolis
criterion for defining the evaluation of a chromosome. The
grand deluge EA of Rudolph and Sprave [103] changes the
selection pressure by changing the acceptation threshold over
time in a multipopulation GA framework.

It is interesting to note that the parent selection component
of an EA has not been commonly used in an adaptive manner.
There are selection methods, however, whose parameters can
be easily adapted. For example, linear ranking, which assigns
a selection probability to each individual that is proportional
to the individual’s rank 10

where the parameter represents the expected number of
offspring to be allocated to the best individual. By changing
this parameter within the range of we can vary
the selective pressure of the algorithm. Similar possibilities
exist for other ranking and scaling methods and tournament
selection.

F. Replacement Operator—Survivor Selection

Simulated annealing (SA) is a generate-and-test search
technique based on a physical, rather than a biological analogy
[1]. Formally, SA can be envisioned as an evolutionary process
with population size of one, undefined (problem dependent)
representation and mutation mechanism, and a specific sur-
vivor selection mechanism. The selective pressure increases
during the course of the algorithm in the Boltzmann-style.
The main cycle in SA is as follows:

10Rank of the worst individual is zero, whereas the rank of the best
individual is pop size� 1.
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In this mechanism the parameter, the temperature, is
decreasing, making the probability of accepting inferior so-
lutions smaller and smaller (for minimization problems, i.e.,
the evaluation function is being minimized). From an
evolutionary point of view, we have here a (1 1) EA
with increasing selection pressure. Similarly to parent selection
mechanisms, survivor selection is not commonly used in an
adaptive fashion.

G. Population

Several researchers have investigated population size for ge-
netic algorithms from different perspectives. A few researchers
provided a theoretical analysis of the optimal population size
[51], [52], [121]. As usual, however, a large effort was made to
find “the optimal” population size empirically. As mentioned
in Section I, De Jong [29] experimented with population sizes
from 50–100, whereas Grefenstette [58] applied a meta-GA to
control parameters of another GA (including populations size);
the population size range was [30 80]. Additional empirical
effort was made by Schafferet al. [106]; the recommended
range for population size was [20 30].

Additional experiments with population size were reported
in [75] and [24]. Recently Smith [120] proposed an algorithm
which adjusts the population size with respect to the probabil-
ity of selection error. In [66] the authors experimented with an
adaptive GA’s which consisted of three subpopulations, and at
regular intervals the sizes of these populations were adjusted
on the basis of the current state of the search; see Section VI
for a further discussion of this method.

Schlierkamp–Voosen and M̈uhlenbein [109] use a compe-
tition scheme that changes the sizes of subpopulations, while
keeping the total number of individuals fixed—an idea which
was also applied in [37]. In a followup to [109] a competition
scheme is used on subpopulations that also changes the total
population size [110].

The genetic algorithm with varying population size
(GAVaPS) [7] does not use any variation of selection
mechanism considered earlier but rather introduces the concept
of the “age” of a chromosome, which is equivalent to the
number of generations the chromosome stays “alive.” Thus
the age of the chromosome replaces the concept of selection
and, since it depends on the fitness of the individual, influences
the size of the population at every stage of the process.

VI. COMBINING FORMS OF CONTROL

As we explained in Section I, “control of parameters in
EA’s” includes any change of any of the parameters that
influence the action of the EA, whether it is done by a
deterministic rule, feedback-based rule, or a self-adaptive
mechanism.11 Also, as has been shown in the previous sections
of this paper, it is possible to control the various parameters
of an evolutionary algorithm during its run. Most studies,
however, considered control of one parameter only (or a
few parameters which relate to a single component of EA).
This is probably because: 1) the exploration of capabilities
of adaptation was done experimentally and 2) it is easier

11Note that in many papers, the term “control” is referred to as “adaptation.”

to report positive results in such simpler cases. Combining
forms of control is much more difficult as the interactions
of even static parameter settings for different components
of EA’s are not well understood, as they often depend on
the objective function [61] and representation used [129].
Several empirical studies have been performed to investigate
the interactions between various parameters of an EA [43],
[106], [142]. Some stochastic models based on Markov chains
were developed and analyzed to understand these interactions
[25], [95], [126], [137].

In combining forms of control, the most common method
is related to mutation. With Gaussian mutation we can have a
number of parameters that control its operation. We can dis-
tinguish the setting of the standard deviation of the mutations
(mutation step size) at a global level, for each individual, or for
genes (parameters) within an individual. We can also control
the preferred direction of mutation.

In evolution strategies [112], the self-adaptation of the
combination of the mutation step-size with the direction of
mutation is quite common. Also the adaptation of the mutation
step-size occurs at both the individual and the gene level.
This combination has been used in EP as well [104]. Other
examples of combining the adaptation of the different mutation
parameters are given in Yaoet al. [143] and Ghozeil and Fogel
[49]. Yao et al. combine the adaptation of the step size with
the mixing of Cauchy and Gaussian mutation in EP. Here the
mutation step size is self-adapted, and the step size is used
to generate two new individuals from one parent: one using
Cauchy mutation and the other using Gaussian mutation; the
“worse” individual in terms of fitness is discarded. The results
indicate that the method is generally better or equal to using
either just Gaussian or Cauchy mutations even though the
population size was halved to compensate for generating two
individuals from each parent. Ghozeil and Fogel compare the
use of polar coordinates for the mutation step size and direction
over the generally used Cartesian representation. While their
results are preliminary, they indicate that superior results can
be obtained when a lognormal distribution is used to mutate
the self-adaptive polar parameters on some problems.

Combining forms of control where the adapted parameters
are taken from different components of the EA are much
rarer. Hinterdinget al. [66] combined self-adaptation of the
mutation step size with the feedback-based adaptation of
the population size. Here feedback from a cluster of three
EA’s with different population sizes was used to adjust the
population size of one or more of the EA’s at 1000 evaluation
epochs, and self-adaptive Gaussian mutation was used in each
of the EA’s. The EA adapted different strategies for different
type of test functions: for unimodal functions it adapted to
small population sizes for all the EA’s; while for multimodal
functions, it adapted one of the EA’s to a large but oscillating
population size to help it escape from local optima. Smith
and Fogarty [118] self-adapt both the mutation step size
and preferred crossover points in a EA. Each gene in the
chromosome includes: the problem encoding component; a
mutation rate for the gene; and two linkage flags, one at each
end of the gene which are used to link genes into largerblocks
when two adjacent genes have their adjacent linkage flags
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set. Crossover is a multiparent crossover and occurs at block
boundaries, whereas the mutation can affect all the components
of a block and the rate is the average of the mutation rates in
a block. Their method was tested against a similar EA on a
variety of NK problems and produced better results on the
more complex problems.

The most comprehensive combination of forms of control is
by Lis and Lis [84], as they combine the adaptation of mutation
probability, crossover rate, and population size, using adaptive
control. A parallel GA was used, over a number of epochs;
in each epoch the parameter settings for the individual GA’s
was determined by using the Latin squares experiment design.
This was done so that the best combination of three values for
each of the three parameters could be determined using the
fewest number of experiments. At the end of each epoch, the
middle level parameters for the next epoch were set to be the
best values from the last epoch.

It is interesting to note that all but one of the EA’s which
combine various forms of control use self-adaptation. In Hin-
terding et al. [66] the reason that feedback-based rather than
self-adaptation was used to control the population size was
to minimize the number of separate populations. This leads
us to believe that while the interactions of static parameters
setting for the various components of an EA are complex,
the interactions of the dynamics of adapting parameters using
either deterministic or feedback-based adaptation will be even
more complex and hence much more difficult to work out.
Hence it is likely that using self-adaptation is the most
promising way of combining forms of control, as we leave it to
evolution itself to determine the beneficial interactions among
various components (while finding a near-optimal solution to
the problem).

It should be pointed out, however, that any combination
of various forms of control may trigger additional problems
related to “transitory” behavior of EA’s. Assume, for example,
that a population is arranged in a number of disjoint subpop-
ulations, each using a different crossover (e.g., as described
in Section V-D). If the current size of subpopulation depends
on the merit of its crossover, the operator which performs
poorly (at some stage of the process) would have difficulties
“to recover” as the size of its subpopulation shrunk in the
meantime (and smaller populations usually perform worse
than larger ones). This would reduce the chances for utilizing
“good” operators at later stages of the process.

VII. D ISCUSSION

The effectiveness of an evolutionary algorithm depends on
many of its components, e.g., representation, operators, etc.,
and the interactions among them. The variety of parameters
included in these components, the many possible choices (e.g.,
to change or not to change?), and the complexity of the
interactions between various components and parameters make
the selection of a “perfect” evolutionary algorithm for a given
problem very difficult, if not impossible.

So, how can we find the “best” EA for a given problem? As
discussed earlier in the paper, we can perform some amount of
parameter tuning, trying to find good values for all parameters

Fig. 2 An evolutionary algorithm EA for problemP as a single point in
the search spaceSEA of all possible evolutionary algorithms. EA searches
(broken line) the solution spaceSP of the problemP . SGA represents a
subspace of classical GA’s, whereasSp —a subspace which consists of
evolutionary algorithms which are identical except their mutation ratepm.

before the run of the algorithm. Even if we assume for a
moment that there is a perfect configuration, however, finding
it is an almost hopeless task. Fig. 2 illustrates this point: the
search space of all possible evolutionary algorithms is
huge, much larger than the search space of the given
problem , so our chances of guessing the right configuration
(if one exists!) for an EA are rather slim (e.g., much smaller
than the chances of guessing the optimum permutation of cities
for a large instance of the traveling salesman problem). Even
if we restrict our attention to a relatively narrow subclass,
say of classical GA’s, the number of possibilities is
still prohibitive.12 Note that within this (relatively small) class
there are many possible algorithms with different population
sizes, different frequencies of the two basic operators (whether
static or dynamic), etc. Besides, guessing the right values of
parameters might be of limited value anyway: in this paper
we have argued that any set of static parameters seems to be
inappropriate, as any run of an EA is an intrinsically dynamic,
adaptive process. So the use of rigid parameters that do not
change their values may not be optimal, since different values
of parameters may work better/worse at different stages of the
evolutionary process.

On the other hand, adaptation provides the opportunity to
customize the evolutionary algorithm to the problem and to
modify the configuration and the strategy parameters used
while the problem solution is sought. This possibility enables
us not only to incorporate domain information and multiple
reproduction operators into the EA more easily, but, as indi-
cated earlier, allows the algorithm itself to select those values
and operators which provide better results. Of course, these
values can be modified during the run of the EA to suit the
situation during that part of the run. In other words, if we allow
some degree of adaptation within an EA, we can talk about
two different searches which take place simultaneously: while
the problem is being solved (i.e., the search space is
being searched), a part of is searched as well for the best
evolutionary algorithm EA for some stage of the search of.
However, in all experiments reported by various researchers
(see Section V) only a tiny part of the search space was
considered. For example, by adapting the mutation ratewe
consider only a subspace (see Fig. 2), which consists of

12A subspace ofclassical genetic algorithms,SGA � SEA, consists
of evolutionary algorithms where individuals are represented by binary
coded fixed-length strings, and 1-point crossover, a bit-flip mutation, and
proportional selection are used.
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all evolutionary algorithms with all parameters fixed except
the mutation rate. Similarly, early experiments of Grefenstette
[58] were restricted to the subspace only.

An important objective of this paper is to draw attention to
the potentials of EA’s adjusting their own parameters on-line.
Given the present state of the art in evolutionary computation,
what could be said about the feasibility and the limitations of
this approach?

One of the main obstacles of optimizing parameter settings
of EA’s is formed by the epistasic interactions between these
parameters. The mutual influence of different parameters on
each other and the combined influence of parameters together
on EA behavior is very complex. A pessimistic conclusion
would be that such an approach is not appropriate, since
the ability of EA’s to cope with epistasis is limited. On the
other hand, parameter optimization falls in the category of
ill-defined, not well-structured (at least not well understood)
problems preventing an analytical approach—a problem class
for which EA’s usually provide a reasonable alternative to
other methods. Roughly speaking, we might not have a better
way to do it than letting the EA figuring it out. To this end,
note that the self-adaptive approach represents the highest
level of reliance on the EA itself in setting the parameters.
With a high confidence in the capability of EA’s to solve
the problem of parameter setting this is the best option. A
more skeptical approach would provide some assistance in the
form of heuristics on how to adjust parameters, amounting
to adaptive parameter control. At this moment there are not
enough experimental or theoretical results available to make
any reasonable conclusions on the (dis)advantages of different
options.

A theoretical boundary on self-adjusting algorithms in gen-
eral is formed by the no free lunch theorem [140]. However,
while the theorem certainly applies to a self-adjusting EA,
it represents a statement about the performance of the self-
adjusting features in optimizing parameters compared to other
algorithms for the same task. Therefore, the theorem is not
relevant in the practical sense, because these other algorithms
hardly exist in practice. Furthermore, the comparison should
be drawn between the self-adjusting features and the human
“oracles” setting the parameters, this latter being the common
practice.

It could be argued that relying on human intelligence
and expertise is the best way of drawing an EA design,
including the parameter settings. After all, the “intelligence”
of an EA would always be limited by the small fraction
of the predefined problem space it encounters during the
search, while human designers (may) have global insight of
the problem to be solved. This, however, does not imply
that the human insight leads to better parameter settings (see
our discussion of the approaches called parameter tuning
and parameter setting by analogy in Section II). Furthermore,
human expertise is costly and might not be easily available for
the given problem at hand, so relying on computer power is
often the most practicable option. The domain of applicability
of the evolutionary problem solving technology as a whole
could be significantly extended by EA’s that are able to
configure themselves, at least partially.

At this stage of research it is unclear just “how much
parameter control” might be useful. Is it feasible to consider
the whole search space of evolutionary algorithms and
allow the algorithm to select (and change) the representation
of individuals together with operators? At the same time
should the algorithm control probabilities of the operators used
together with population size and selection method? It seems
that more research on the combination of the types and levels
of parameter control needs to be done. Clearly, this could lead
to significant improvements to finding good solutions and to
the speed of finding them.

Another aspect of the same issue is “how much parameter
control is worthwhile?” In other words, what computational
costs are acceptable? Some researchers have offered that
adaptive control substantially complicates the task of EA
and that the rewards in solution quality are not significant
to justify the cost [20]. Clearly, there is some learning cost
involved in adaptive and self-adaptive control mechanisms.
Either some statistics are collected during the run, or additional
operations are performed on extended individuals. Comparing
the efficiency of algorithms with and without (self-)adaptive
mechanisms might be misleading, since it disregards the time
needed for the tuning process. A more fair comparison could
be based on a model which includes the time needed to set up
(to tune) and to run the algorithm. We are not aware of any
such comparisons at the moment.

On-line parameter control mechanisms may have a par-
ticular significance in nonstationary environments. In such
environments often it is necessary to modify the current solu-
tion due to various changes in the environment (e.g., machine
breakdowns, sickness of employees, etc.). The capabilities
of evolutionary algorithm to consider such changes and to
track the optimum efficiently have been studied [4], [15],
[134], [135]. A few mechanisms were considered, including
(self-)adaptation of various parameters of the algorithm, while
other mechanisms were based on maintenance of genetic diver-
sity and on redundancy of genetic material. These mechanisms
often involved their own adaptive schemes, e.g., adaptive
dominance function.

It seems that there are several exciting research issues
connected with parameter control of EA’s. These include the
following.

• Developing models for comparison of algorithms with
and without (self-)adaptive mechanisms. These models
should include stationary and dynamic environments.

• Understanding the merit of parameter changes and inter-
actions between them using simple deterministic controls.
For example, one may consider an EA with a constant
population-size versus an EA where population-size de-
creases, or increases, at a predefined rate such that the
total number of function evaluations in both algorithms
remain the same (it is relatively easy to find heuristic
justifications for both scenarios).

• Justifying popular heuristics for adaptive control. For
instance, why and how to modify mutation rates when
the allele distribution of the population changes?

• Trying to find the general conditions under which adaptive
control works. For self-adaptive mutation step sizes there
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are some universal guidelines (e.g., surplus of offspring,
extinctive selection), but so far we do not know of any
results regarding adaptation.

• Understanding the interactions among adaptively con-
trolled parameters. Usually feedback from the search
triggers changes in one of the parameters of the algorithm.
However, the same trigger can be used to change the
values of other parameters. The parameters can also
directly influence each other.

• Investigating the merits and drawbacks of self-adaptation
of several (possibly all) parameters of an EA.

• Developing a formal mathematical basis for the pro-
posed taxonomy for parameter control in evolutionary
algorithms in terms of functionals which transform the
operators and variables they require.

In the next few years we expect new results in these areas.
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Algorithms,T. Bäck, Ed. San Mateo, CA: Morgan Kaufmann, 1997,
pp. 362–369.

[143] X. Yao, G. Lin, and Y. Liu, “An analysis of evolutionary algorithms
based on neighborhood and step sizes,” inProc. 6th Annu. Conf.
Evolutionary Programming(Lecture Notes in Computer Science, 1213),
P. J. Angeline, R. G. Reynolds, J. R. McDonnel, and R. Eberhart, Eds.
Berlin: Springer, 1997, pp. 297–307.

[144] B. Zhang and H. M̈uhlenbein, “Balancing accuracy and parsimony in
genetic programming,”Evol. Comput.,vol. 3, no. 3, pp. 17–38, 1995.
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