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Parameter Control in Evolutionary Algorithms

Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewemior Member, IEEE

Abstract—The issue of controlling values of various parameters we give arguments that any static set of parameters, having
of an evolutionary algorithm is one of the most important and  the values fixed during an EA run, seems to be inappropriate.
promising areas of research in evolutionary computation: Ithas a - p4rameter control forms an alternative, as it amounts to starting

potential of adjusting the algorithm to the problem while solving ith initial t | hich h d duri
the problem. In this paper we: 1) revise the terminology, which js & FUn With infial parameter values which are changed during

unclear and confusing, thereby providing a classification of such the run.
control mechanisms, and 2) survey various forms of control which ~ This paper has a two-fold objective. First, we provide a

have been studied by the evolutionary computation community comprehensive discussion of parameter control and categorize
in recent years. Our classification covers the major forms of yittarent ways of performing it. The proposed classification is
parameter control in evolutlonary computation and suggests some b d t ts: h th hani f ch K
directions for further research. ased on two aspects: how the mechanism of change works
) _ _ and what component of the EA is affected by the mechanism.
Index Terms—Adaptation, evolutionary algorithms, parameter  gch g classification can be useful to the evolutionary com-
control, self-adaptation. . . . .
putation community, since many researchers interpret terms
like “adaptation” or “self-adaptation” differently, which can
|. INTRODUCTION be confusing. The framework we propose here is intended to

HE TWO major steps in applying any heuristic search gfliminate ambiguities in thg terminol_ogy. Second, we p_rovide
T gorithm to a particular problem are the specification of th Survey of control techniques which can be found in the
representation and the evaluation (fitness) function. These tjiigrature. This is intended as a guide to locate relevant work
items form the bridge between the original problem contelt the aréa and as a collection of options one can use when
and the problem-solving framework. When defining an evol@PPIYing an EA with changing parameters.
tionary algorithm (EA) one needs to choose its components, /e are aware of other classification schemes, e.g., [2], [65],
such as variation operators (mutation and recombination) thad9]: that use other division criteria, resulting in different
suit the representation, selection mechanisms for selectffgssification schemes. The classification of Angeline [2] is
parents and survivors, and an initial population. Each of the@@Sed on levels of adaptation and type of update rules. In
components may have parameters, for instance: the probabifl ticular, three levels of adaptation: popglaﬂon level, indi-
of mutation, the tournament size of selection, or the populatidffludl level, and component levebre considered, together
size. The values of these parameters greatly determine whelffith tWo types of update mechanisms: absolute and empirical

the algorithm will find a near-optimum solution and WhetherrUIes,', ApSOIUte rules are predetermined and specify ,h,OW
it will find such a solution efficiently. Choosing the rightmodn‘lcatlons should be made. On the other hand, empirical

parameter values, however, is a time-consuming task a ate rules modify parameter values by competition among

considerable effort has gone into developing good heuristem (self-adaptation). Angeline’s framework  considers an

for it. EA as a whole, without dividing attention to its different
Globally, we distinguish two major forms of setting papomponeqt§ ((_—:t.g., mutation, recpmbin_ation, selection, etc.).

rameter values: parametéuning and parametecontrol. By The classification proposed by Hinterdiegyal. [65] extends

parameter tuning we mean the commonly practiced approdBgt Of [2] by considering an additional level of adaptation
that amounts to finding good values for the parameters beféfglvironment level), and makes a more detailed division of
the run of the algorithm and then running the algorithm usirféjpes of update mechanisms, dividing them into deterministic,

these values, which remain fixed during the run. In Section 3fiapPtive, and self-adaptive categories. Here again, no atention
is paid to what parts of an EA are adapted. The classification
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coupled/empirical, with the latter one coinciding with selfthe GA were (the values to optimize the off-line performance
adaptation. are given in parenthesis):
The classification scheme proposed in this paper is based on population size of 30 (80);
the type of update mechanisms and the EA component that is probability of crossover equal to 0.95 (0.45);
adapted, as basic division criteria. This classification addresses probability of mutation equal to 0.01 (0.01);
the key issues of parameter control without getting lost in  generation gap of 100% (90%):;
details (this aspect is discussed in more detail in Section IV).  gcaling window:n = 1 (n = 1);
The paper is organized as follows. The next section dis- gelection strategy: elitist (nonelitist).

cusses parameter tuning and parameter control. Section ”Note that in both of these approaches, an attempt was made

presents an example W.h'Ch provides some ba_s_|c INTUIIONS @4 the optimal and general set of parameters; in this con-
parameter control. Section IV develops a classification of co

trol techni . luti lqorith h Seci (é/'xt, the word “general” means that the recommended values
rol techniques In evoiutionary algortnms, whereas Section af,, e applied to a wide range of optimization problems.
surveys the techniques proposed so far. Section VI discus

m mbinations of vari techni nd Section VI merly, genetic algorithms were seen as robust problem
some ¢co ations ot various techniques, a ection \divers that exhibit approximately the same performance over
concludes the paper.

a wide range of problems [50, p. 6]. The contemporary view on
EA’s, however, acknowledges that specific problems (problem
types) require specific EA setups for satisfactory performance
[13]. Thus, the scope of “optimal” parameter settings is
During the 1980's, a standard genetic algorithm (GA) base@cessarily narrow. Any quest for generally (near-)optimal
on bit representation, one-point crossover, bit-flip mutatioparameter settings is lost priori [140]. This stresses the
and roulette wheel selection (with or without elitism) wageed for efficient techniques that help finding good parameter
widely applied. Algorithm design was thus limited to choosingettings for a given problem, in other words, the need for
the so-called control parameters, or strategy paramgsarsh good parameter tuning methods.
as mutation rate, crossover rate, and population size. Manyas an alternative to tuning parameters before running the
researchers based their choices on tuning the control pargiorithm, controlling them during a run was realized quite
eters “by hand,” that is experimenting with different valuegarly [e.g., mutation step sizes in the evolution strategy (ES)
and selecting the ones that gave the best results. Later, tBBbhmunity]. Analysis of the simple corridor and sphere prob-
reported their results of applying a particular EA to a particuldgms in large dimensions led to Rechenberg’s 1/5 success rule
problem, paraphrasing here — for these experiments, we(see Section IlI-A), where feedback was used to control the
have used the following parameters: population size of 10@utation step size [100]. Later, self-adaptation of mutation was
probability of crossover equal to 0.85, etc. — without mucflsed, where the mutation step size and the preferred direction
justification of the choice made. _ ~ of mutation were controlled without any direct feedback. For
Two main approaches were tried to improve GA design igertain types of problems, self-adaptive mutation was very

the past. First, De Jong [29] put a considerable effort intQccessful and its use spread to other branches of evolutionary
finding parameter values (for a traditional GA), which Wergomputation (EC).

good for a number of numeric test problems. He determinedas mentioned earlier, parameter tuning by hand is a com-

(experimentally) recommended values for the probabilities f{on practice in evolutionary computation. Typically one pa-
single-point crossover and bit mutation. His conclusions wefgmeter is tuned at a time, which may cause some suboptimal
that the following parameters give reasonable performance fﬂ‘foices, since parameters often interact in a complex way.

his test functions (for new problems these values may not Bgyitaneous tuning of more parameters, however, leads to an

Il. PARAMETER TUNING VERSUSPARAMETER CONTROL

very QOOd):. _ enormous amount of experiments. The technical drawbacks to
population size of 50; parameter tuning based on experimentation can be summarized
probability of crossover equal to 0.6; as follows.

probability of mutation equal to 0.001;

i £ 100% « Parameters are not independent, but trying all different
generation gap o 0;

. . combinations systematically is practically impossible.
scaling window:n. = oo;  The process of parameter tuning is time consuming, even
selection strategy: elitist. if parameters are optimized one by one, regardless to their

Grefenstette [58], on the other hand, used a GA as a meta- jnteractions.

algorithm to optimize values for the same parameters for both. For g given problem the selected parameter values are not

on-line and off-line performanéef the algorithm. The best set necessarily optimal, even if the effort made for setting

of parameters to optimize the on-line (off-line) performance of  hem was significant.

Other options for designing a good set of static parameters
2By “control parameters” or “strategy parameters” we mean the parametéor an evolutionary method to solve a particular problem
of the EA, not those of the problem. include “parameter setting by analogy” and the use of the-
3Thes_e measures were defined originally by De Jong [29]; the intuition éretical analysis. Parameter setting by analogy amounts to the
that off-line performance is based on monitoring the best solution in each f . hat h b d ful
generation, while on-line performance takes all solutions in the populati&?e of parameter settings that have been proved successiu

into account. for “similar” problems. It is not clear, however, whether
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similarity between problems as perceived by the user impliasn of the algorithm by taking the actual search process into
that the optimal set of EA parameters is also similar. Aaccount. Basically, there are two ways to do this. Either one
for the theoretical approach, the complexities of evolutionagan use some heuristic rule which takes feedback from the
processes and characteristics of interesting problems allowrent state of the search and modifies the parameter values
theoretical analysis only after significant simplifications imccordingly, or incorporate parameters into the chromosomes,
either the algorithm or the problem model. Therefore, thtbereby making them subject to evolution. The first option,
practical value of the current theoretical results on parametesing a heuristic feedback mechanism, allows one to base
settings is uncledr.There are some theoretical investigationshanges on triggers different from elapsing time, such as
on the optimal population size [50], [52], [60], [132] or optimajpopulation diversity measures, relative improvements, absolute
operator probabilities [10], [54], [108], [131]; however, theseolution quality, etc. The second option, incorporating param-
results were based on simple function optimization problersgers into the chromosomes, leaves changes entirely based on
and their applicability for other types of problems is limited.the evolution mechanism. In particular, natural selection acting
A general drawback of the parameter tuning approaotn solutions (chromosomes) will drive changes in parameter
regardless of how the parameters are tuned, is based onuhlkeies associated with these solutions. In the following we
observation that a run of an EA is an intrinsically dynamidajiscuss these options illustrated by an example.
adaptive process. The use of rigid parameters that do not
change their values is thus in contrast to this spirit. Addition- . AN EXAMPLE
ally, itis intuitively obvious that different values of parameters
might be optimal at different stages of the evolutionary process
[8]-[10], [27], [62], [122], [127]. For instance, large mutationpmblem
steps can be good in the early generations helping the ex- optimize f() = f(z1, .
ploration of the search space and small mutation steps might
be needed in the late generations to help fine tuning thebject to some inequality and equality constraints
suboptimal chromosomes. This implies that the use of static _ ) . .
parameters itself can lead to inferior algorithm performanceé(Z) <00 =1,..., ¢) andh;(Z) =0(j =g +1, ..., m)
The straightforward way to treat th_is problem is by usin_gnd bounds; < z;
parameters that may change over time, that is, by repIamggeaCh variable
a parametep by a functionp(t), wheret is the generation :

As indi d earlier h h bl ¢ findi For such a numerical optimization problem we may consider
coqnter. s N icated earlier, owever, the problem of finding, evolutionary algorithm based on a floating-point represen-
optimal static parameters for a particular problem can l?

§tion, where each individualin the population is represented
quite difficult, and the optimal values may depend on ma on, W ndviduat popuiation|s rep

s a vector of floating-point numbers
other factors (such as the applied recombination operator, gp

the selection mechanism, etc.). Hence designing an optimal T={x1, ..., Tn).
function p(¢) may be even more difficult. Another possible
drawback to this approach is that the parameter value changeschanging the Mutation Step Size

are caused by a deterministic rule triggered by the progres . .
, Y . . 99 y Progresy et us assume that we use Gaussian mutation together
of time ¢, without taking any notion of the actual progress in

solving the problem, i.e., without taking into account the cu}'y'th arithmetical crossover to produce offspring for the next

rent state of the search. Yet researchers (see Section V) hgegeratlon. A Gaussian mutation operator requires two param-

Y
improved their evolutionary algorithms, i.e., they improved th

Eters: the mean, which is often set to zero, and the standard
quality of results returned by their algorithms while workin eviation o, which can be interpreted as the mutation step
on particular problems, by using such simple determinist{ﬁ

%ize. Mutations then are realized by replacing components of
rules. This can be explained simply by superiority of changing

e vector® by

parameter values: suboptimal choice jgt) often leads to 2h = x; + N(0, o)
better results than a suboptimal choicepof

To this end, recall that finding good parameter values farhereN(0, o) is a random Gaussian number with mean zero
an evolutionary algorithm is a poorly structured, ill-definedand standard deviatiom. The simplest method to specify the
complex problem. But on this kind of problem, EA’s are oftemutation mechanism is to use the samédor all vectors in
considered to perform better than other methods! It is thifse population, for all variables of each vector, and for the
seemingly natural to use an evolutionary algorithm not only fevhole evolutionary process, for instaneg,= x; + N(0, 1).
finding solutions to a problem, but also for tuning the (samé)s indicated in Section Il, it might be beneficial to vary the
algorithm to the particular problem. Technically speaking, thisutation step size.We shall discuss several possibilities in
amounts to modifying the values of parameters during thern.

P . . _ _ First, we can replace the static parameteby a dynamic

During the Workshop on Evolutionary Algorithms, organized by Institute

for Mathematics and Its Applications, University of Minnesota, Minneapolisparameter’ e, a functlom(t). This function can be defined
MN, October 21-25, 1996, L. Davis made a claim that the best thinglty some heuristic rule assigning different values depending
practitioner of EA’s can do is to stay away from theoretical results. Although

this might be too strong of a claim, it is noteworthy that the current EA theory There are even formal arguments supporting this view in specific cases,
is not seen as a useful basis for practitioners. e.g., [8]-[10], [62].

Let us assume we deal with a numerical optimization

.

< u; for 1 < i < n, defining the domain
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on the number of generations. For example, the mutation staml
size may be defined as

y xy = z; + N(0, o)
t

o(t)=1-09- where 7o is a parameter of the method. This mechanism

heret is the current generation number varving from eris commonly called self-adapting the mutation step sizes.
w IS the cu 9 : um varying “"®pserve that within the self-adaptive scheme the heuristic
to 7', which is the maximum generation number. Here, th

. . : » "haracter of the mechanism resetting the parameter values is
mutation step size(t) (used for all vectors in the populatlone"minated7

and for all variables of each vector) will decrease slowly Note that in the above scheme the scope of application of

IL%mnSrrrl]?Je?t Ozheezeegﬁ’;?ir;':gam rt:aecr:g:T (:Suoght(()je(c):.r%eazzsa certain value ofs is restricted to a single individual. It can
g P ' be applied, however, to all variables of the individual: it is

may assist the fine-tuning capabilities of the algorithm. In th ossible to change the granularity of such applications and

approach, the va}lqe_of the given parameter changes accor '?8 a separate mutation step size to eachf an individual
to a fully deterministic scheme. The user thus has full contr% represented as

of the parameter and its value at a given titris completely
determined and predictable. (X1, oevy Ty OLy oovy Op)

Second, it is possible to incorporate feedback from the ] ] )
search process, still using the samefor all for vectors then mutations can be realized by replacing the above vector

in the population and for all variables of each vector. &ccording to a similar formula as discussed above
well-known example of this type of parameter adaptation is N (0,70)

Rechenberg'’s “1/5 success rule” in{11)-evolution strategies
[100]. This rule states that the ratio of successful mutafiems and
all mutations should be 1/5, hence if the ratio is greater than
1/5 then the step size should be increased, and if the ratio is

less than 1/5, the step size should be decreased wherer, is a parameter of the method. However, as opposed
if (# mod n = 0) then to the previous case, each componenhas its own mutatlon
. . step sizes;, which is being self-adapted. This mechanism
a(t —n)/e, if p, > 1/‘: implies a larger degree of freedom for adapting the search
o(t) :=q ot —=n)-c if ps < 1/5 strategy to the topology of the fitness landscape.
ot —n), if p, =1/5

L
O—Z‘—O—i'

xf = x; + N0, o%)

else

o(t) = ot —1); In Section IlI-B, we described different ways to modify
fi a parameter controlling mutation. Several other components
an EA have natural parameters, and these parameters are
ditionally tuned in one or another way. Here we show
that other components, such as the evaluation function (and
sequently the fithess function), can also be parameterized

B. Changing the Penalty Coefficients

. . . of
where p, is the relative frequency of successful mutatlon§ra
measured over some number of generations0adiy < ¢ < 1
[11]. Using this mechanism, changes in the parameter val

are now based on feedback from the search,sadaptation and thus tuned. While this is a less common option than tuning

happens every. generations. The influence of the user OMhutation (although it is practiced in the evolution of variable-

the parameter values is much less direct here than in Qﬁ . : .
L ) th structures for parsimony pressure [144]), it may provide
deterministic scheme above. Of course, the mechanism t ag P yp [144]) yp

. ) biseful mechanism for increasing the performance of an
embodies the link between the search process and paramg\t/%rlutionary algorithm

values is still a heuristic rule indicating how the changes When dealing with constrained optimization problems
shou!d b_e made, .bUt the val_uesa(ft)_ ar_e_not determl_nlsnc. enalty functions are often used. A common technique i,s
Third, it is possible to assign an “individual” mutation ste;?he method of static penalties [92], which requires fixed
size to each solution: extend the representation to individuzalger_supIolied penalty parameters 'I:he main reason for its
of lengthn +1 as wide spread use is that it is the simplest technique to
(T1, ..., Tp, O) implement: It requires only the straightforward modification
of the evaluation function eval as follows:
and apply some variation operators (e.g., Gaussian mutation . . .
and arithmetical crossover) te;’s as well as to ther value eval?) = f(¥) + W - penalty7)

of an individual. In this way, not only the solution vectorwheref is the objective function, and penal) is zero if

values ;’s), but also the mutation step size of an individugl, yiolation occurs, and is positi@therwise. Usually, the
undergoes evolution. A typical variation would be
It can be argued that the heuristic character of the mechanism resetting
o =g . eNO0:70) the parameter values is not eliminated, but rather replaced by a metaheuristic
of evolution itself. The method is very robust, however, with respect to the
6A mutation is considered successful if it produces an offspring that §tting of7o and a good rule isp = 1/v/n.
better than the parent. 8For minimization problems.
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penalty function is based on the distance of a solution fromhereW is the weight. The weight componelt undergoes
the feasible region, or on the effort to “repair’ the solutiorthe same changes as any other variabje(e.g., Gaussian
i.e., to force it into the feasible region. In many methods mutation, arithmetical crossover). It is unclear, however, how
set of functionsf; (1 < j < m) is used to construct the the evaluation function can benefit from such self-adaptation.
penalty, where the functiorf; measures the violation of theClearly, the smaller weighiV, the better an (infeasible) indi-

jth constraint in the following way: vidual is, so it is unfair to apply different weights to different
L . ) individuals within the same generation. It might be that a new
(@) = { Izéxio’ 9; (%)}, !I 1<y f ?< weight can be defined (e.g., arithmetical average of all weights
13 ()], Tg+l<i<m. present in the population) and used for evaluation purpose;

W is a user-defined weight, prescribing how severely coROWwever, to our best knowledge, no one has experimented
straint violations are weightetin the most traditional penalty With such self-adaptive weights. o
approach the weigh# does not change during the evolution T0 this end, it is important to note the crucial differ-

process. We sketch three possible methods of changing &€ between self-adapting mutation step sizes and constraint
value of W. weights. Even if the mutation step sizes are encoded in the

First, we can replace the static paraméérby a dynamic Chromosomes, the evaluation of a chromosome is independent

parameter, e.g., a functiod’ (). Just as for the mutation from the actual value oé’s. That is
parameters, we can develop a heuristic which modifies the L .
weight W over time. For example, in the method proposed by eval(7, 7)) = f(2)

Joines and Houck [76], the individuals are evaluated (at ﬂ]ge h = trast. if traint weiaht
iteration £) by a formula, where or any chromosoméz, ). In contrast, if constraint weights

are encoded in the chromosomes, then we have
evalz) = f(Z) + (C - t)* - penalty(Z) . .
eval(Z, W)) = fw(Z)
where C and « are constants. Clearly
N for any chromosomé, W). This enables the evolution to
W(t)=(C-1) “cheat” in the sense of making improvements by modifying

and the penalty pressure grows with the evolution time. the Vall.Je of W instead of optimizing and satisfying the
%Qnstralnts.

Second, let us consider another option, which utilizes fee
back from the search process. One example of such an
approach was developed by Bean and Hadj-Alouane [1§];, Summary
where each individual is evaluated by the same formula asin the previous sections we illustrated how the mutation op-
before, butW(t) is updated in every generatiohin the erator and the evaluation function can be controlled (adapted)
following way: during the evolutionary process. The latter case demonstrates
that not only the traditionally adjusted components, such as

Wi(t+1) . mutation, recombination, selection, etc., can be controlled by
(1/B1) -W(t), fv'eFforallt—k+1<i<t parameters, but so can other components of an evolutionary
=9 G- W(2), if ' e S—Fforallt—k+1<4i<t algorithm. Obviously, there are many components and param-
W (1), otherwise. eters that can be changed and tuned for optimal algorithm

performance. In general, the three options we sketched for
the mutation operator and the evaluation function are valid
for any parameter of an evolutionary algorithm, whether
it is population size, mutation step, the penalty coefficient,
selection pressure, and so forth.

In this formula, S is the set of all search points (solutions)
F C S is a set of all feasible solutiondy denotes the
best individual in terms of the function eval in generation
B, B2 > 1 and By # P2 (to avoid cycling). In other words,

theen;nrzeaiihoors dT(:i;eaélalssgstthi?\gsgﬂgscﬁmﬁgfg+£;gt?2§s The mutation example of Section IlI-A also illustrates
9 + g {he phenomenon of the scope of a parameter. Namely,

were feasple (€., in7), and Increases p.enaltn.as it all bes he mutation step size parameter can have different
individuals in the last; generations were infeasible. If thered

are some feasible and infeasible individuals as best individu

in the lastk generationsj¥ (¢ 4+ 1) remains without change. . i | iable of inale individual
Third, we could allow self-adaptation of the weight param size applies only to one variable o a singie individua.
! hus, the parametes; acts on a subindividual level. In

ter, similarly to the mutation step sizes in the previous SeCt'otﬂ'F (x1, ..., an, o) representation the scope of is one

;%riv?dxuazglqsplii’tolt is possible to extend the representation iRdividual, whereas the dynamic paramet€t) was defined
to affect all individuals and thus has the whole population

(T, .., T, W) as its scope.
These remarks conclude the introductory examples of this
90f course, instead ofV it is possible to consider a vector of weightssection- we are now ready to attempt a classification of
w = (w1, ..., wy) Which are applied directly to violation functionfs (). ’ . .
In such a case penalty) = 37", w, f; (). The discussion in the remaining parameter control technigques for parameters of an evolutionary
part of this section can be easily extended to this case. algonthm.

I%mains of influence, which we call scope. Using the
L1, ..., ZTn, 01, ..., 0p) Model, a particular mutation step
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IV. CLASSIFICATION OF CONTROL TECHNIQUES Parameter setting
In classifying parameter control techniques of an evolution-
ary algorithm, many aspects can be taken into account: before the run during the run
1) Whatis changed? (e.g., representation, evaluation func-

tion, operators, selection process, mutation rate, etc.); parameter tuning
2) How the change is made? (i.e., deterministic heuristic,

feedback-based heuristic, or self-adaptive); /
3) The scopellevelof change (e.g., population-level, N ) )
individual-level, etc.); Deterministic Adaptive Self-adaptive

Parameter control

4) The evidenceipon which the change is carried out (€.ggig. 1. Gobal taxonomy of parameter setting in EA’s.
monitoring performance of operators, diversity of the
population, etc.).

In the following we discuss these items in more detail.

To classify parameter control techniques from the perspec-
tive of what is changed, it is necessary to agree on a list of all,
major components of an evolutionary algorithm (which is a
difficult task in itself). For that purpose, assume the following
components of an EA:

strategy parameter may involve credit assignment, and the
action of the EA may determine whether or not the new
value persists or propagates throughout the population.
Self-Adaptive Parameter Controlfhe idea of the evo-
lution of evolution can be used to implement the self-
adaptation of parameters. Here the parameters to be
adapted are encoded into the chromosomes and undergo

* representation of individuals; mutation and recombination. The better values of these
. evglugtlon function; _ encoded parameters lead to better individuals, which in
* variation operators and their probabilities; turn are more likely to survive and produce offspring and

« selection operator (parent selection or mating selection); hence propagate these better parameter values.

. replac_ement operator (survival selection or environmentaltp;g terminology leads to the taxonomy illustrated in Fig. 1.
selection); Some authors have introduced a different terminology.
* population (size, topology, etc.). Angeline [2] distinguished absolute and empirical rules cor-
Note that each component can be parameterized, and {8€ponding to uncoupled and tightly coupled mechanisms of
number of parameters is not clearly defined. For example, gpears [124]. Let us note that the uncoupled/absolute cate-
offspring produced by an arithmetical crossoverkoparents gory encompasses deterministic and adaptive control, whereas
T1, ..., Zx can be defined by the following formula: the tightly coupled/empirical category corresponds to self-
adaptation. We feel that the distinction between deterministic
and adaptive parameter control is essential, as the first one
whereay, ..., ax, and k can be considered as parametergoes not use any feedback from the search process. We
of this crossover. Parameters for a population can inclugeknowledge, however, that the terminology proposed here
the number and sizes of subpopulations, migration rates, ef§.not perfect either. The term “deterministic” control might
(this is for a general case, when more then one populationnist be the most appropriate, as it is not determinism that
involved). Despite the somewhat arbitrary character of thifiatters, but the fact that the parameter-altering transforma-
list of components and of the list of parameters of eagfbns take no input variables related to the progress of the
component, we will maintain the “what-aspect” as one of thgsarch process. For example, one might randomly change the
main classification features. The reason for this is that it allowutation probability after every 100 generations, which is not
us to locate where a specific mechanism has its effect. Algpdeterministic process. The name “fixed” parameter control
this is way we would expect people to search through a surveight form an alternative that also covers this latter exam-
e.g., “I want to apply changing mutation rates, let me see hgyle. Also, the terms “adaptive” and “self-adaptive” could be
others did it.” replaced by the equally meaningful “explicitly adaptive” and
As discussed and illustrated in Section Ill, methods fO‘[mp”Cmy adaptive” controls, respectively. We have chosen
changing the value of a parameter (i.e., the “how-aspect”) cgnuse “adaptive” and “self-adaptive” for the widely accepted
be classified into one of three categories. usage of the latter term.
< Deterministic Parameter ControlThis takes place when As discussed earlier, any change within any component of
the value of a strategy parameter is altered by some det* EA may affect a gene (parameter), whole chromosomes
terministic rule. This rule modifies the strategy parametéindividuals), the entire population, another component (e.g.,
deterministically without using any feedback from theelection), or even the evaluation function. This is the aspect
search. Usually, a time-varying schedule is used, i.e., tbé the scope or level of adaptation [2], [65], [116], [119].
rule will be used when a set humber of generations haitote, however, that the scope/level usually depends on the
elapsed since the last time the rule was activated. component of the EA where the change takes place. For
« Adaptive Parameter Controlfhis takes place when thereexample, a change of the mutation step size may affect a
is some form of feedback from the search that is used ¢@ne, a chromosome, or the entire population, depending
determine the direction and/or magnitude of the changeda the particular implementation (i.e., scheme used), but a
the strategy parameter. The assignment of the value of tfeange in the penalty coefficients always affects the whole

T=amZ1 + -+ arTs
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population. So, the scope/level feature is a secondary of,that reason we have not included the evidence for a change

usually depending on the given component and its actusd a major classification criterion.

implementation. So the main criteria for classifying methods that change the
The issue of the scope of the parameter might be moralues of the strategy parameters of an algorithm during its

complicated than indicated in Section IlI-C, however. Firstxecution are:

of all, the scope depends on the interpretation mechanism ofj) whatis changed?

the given parameters. For example, an individual might be2) How is the change made?

represented as Our classification is thus two dimensional: the type of con-

(T1y ooy Ty OLy ey Oy QLy -y Qi 1)j2) _trol and the component of the evolutionary algorithm which
incorporates the parameter. The type and component entries
where the vectora’ denotes the covariances between thgre orthogonal and encompass typical forms of parameter
variablesoy, ..., o,. In this case the scope of the strategyontrol within EA’s. The type of parameters’ change consists
parameters i is the whole individual, although the notationof three categories: deterministic, adaptive, and self-adaptive
might suggest that they are act on a subindividual level. mechanisms. The component of parameters’ change consists
The next example illustrates that the same parameter (&fsix categories: representation, evaluation function, variation

coded in the chromosomes) can be interpreted in differesferators (mutation and recombination), selection, replace-
ways, leading to different algorithm variants with differeninent, and population.

scopes of this parameter. Spears [124], following [46], exper-

imented with individuals containing an extra bit to determine V. SURVEY OF RELATED WORK
whether one-point crossover or uniform crossover is to be

used (bit 1/0 standing for one-point/uniform crossover, re-
spectively). Two interpretations were considered. The fir
interpretation was based on a pairwise operator choice: If bét
parental bits are the same, the corresponding operator is u

To discuss and survey the experimental efforts of many
searchers to control the parameters of their evolutionary
orithms, we selected an ordering principle to group existing
fk based on what is being adapted. Consequently, the fol-

otherwise, a random choice is made. Thus, this parame Wing sections correspond to the earlier list of six components
in this interpretation acts at an individual level. The seco an EA with on:: ﬁxceﬁtlon, qnd [;Ne llusé bn;:ﬂy |nd|catef
interpretation was based on the bit-distribution over the Who\f@al;[ the Scope Oht ec a?g? IS. Purely é’ the ant”:.ounlt 0
population: If, for example 73% of the population had bit Work concerning the control of mutation and recombination

then the probability of one-point crossover was 0.73. Thus tr{&ariation operators), we decided to treat them in two separate

parameter under this interpretation acts on the population |ev%L||'bsect|ons.
Note, that these two interpretations can be easily combined. )
For instance, similar to the first interpretation, if both parentdl: R€Presentation
bits are the same, the corresponding operator is used. IRepresentation forms an important distinguishing feature
they differ, however, the operator is selected according between different streams of evolutionary computing. GA’s
the bit-distribution, just as in the second interpretation. Theere traditionally associated with binary or some finite alpha-
scope/level of this parameter in this interpretation is neithbet encoded in linear chromosomes. Classical ES is based on
individual, nor population, but rather both. This examplesal-valued vectors, just as modern evolutionary programming
shows that the notion of scope can be ill-defined and very cofeP) [11], [45]. Traditional EP was based on finite state
plex. These examples, and the arguments that the scope/lenathines as chromosomes and in genetic programming (GP)
entity is primarily a feature of the given parameter and onipdividuals are trees or graphs [18], [79].
secondarily a feature of adaptation itself, motivate our decisionlt is interesting to note that for the latter two branches of
to exclude it as a major classification criterion. evolutionary algorithms it is an inherent feature that the shape
Another possible criterion for classification is the evidencand size of individuals is changing during the evolutionary
used for determining the change of parameter value [116karch process. It could be argued that this implies an in-
[119]. Most commonly, the progress of the search is mortrnsically adaptive representation in traditional EP and GP.
tored, e.g., the performance of operators. It is also possilid the other hand, the syntax of the finite state machines
to look at other measures, like the diversity of the populatiois not changing during the search in traditional EP, nor
The information gathered by such a monitoring process is usgal the function and terminal sets in GP (without automat-
as feedback for adjusting the parameters. Although this idcally defined functions, ADF’s). That is, if one identifies
meaningful distinction, it appears only in adaptive paramet&epresentation” with the basic syntax (plus the encoding
control. A similar distinction could be made in deterministienechanism), then the differently sized and shaped finite state
control, which might be based on any counter not relatedachines, respectively, trees or graphs are only different
to search progress. One option is the number of fithesgpressions in this unchanging syntax. This view implies
evaluations (as the description of deterministic control aboteat the representations in traditional EP and GP are not
indicates). There are, however, other possibilities, for instan@etrinsically adaptive.
changing the probability of mutation on the basis of the Most of the work into adaptation of representation has
number of executed mutations. We feel, however, that thedseen done by researchers from the GA area. This is probably
distinctions are of a more specific level than other criteria amtie to premature convergence and “Hamming cliff” problems



EIBEN et al.: PARAMETER CONTROL IN EVOLUTIONARY ALGORITHMS 131

which occurred when GA's were first applied to numeric The earliest use of self-adaptive control is for the dominance
optimization. The most comprehensive was the adaptive rapechanism of diploid chromosomes. Here there are two copies
resentation used by Shaefer [114] in his ARGOT strategyf each chromosome. The extra chromosomes encode alternate
Simpler schemes where later used by Mathias and Whitleglutions and dominance decides which of the solutions will be
[139] (delta coding) and by Schraudolph and Belew [11Expressed. Bagley [17] added an evolvable dominance value to
(dynamic parameter encoding). All the techniques describedch gene, and the gene with the highest dominance value was
in this section use adaptive parameter control. dominant, while Rosenberg [102] used a biologically oriented
The ARGOT strategy used a flexible mapping of the funénodel and the dominance effect was due to particular enzymes
tion variables to the genes (one gene per function variablBging expressed. Other early work (on stationary optimization
which allows not only the number of bits used to represent tidoblems and mixed results) was by Hollstein [67] and Brindle
gene (resolution) to be adapted, but also adapts both the ralg- Goldberg and Smith [55] used diploid representation
(contraction/expansion) and center point of the range (Sh\mth Hollstein’s triallelic dominance map for a nonstationary
left/right) of the values the genes are mapped into. AdaptatiBfePlem, and showed that it was better than using a haploid
of the representation and mapping is based on the degred&Rresentation. Greene [56], [57] used a different approach that
convergence of the genes, the variance of the gene valfRéluates both the chromosomes and uses the chromosome
and how closely the gene values approach the current rafgill the highest fiiness as the dominant one. In each of
boundaries. the cases above, the method of dominance control is self-
Delta coding also modifies the representation of the functiGifiaptive as there is no explicit feedback to control dominance,

parameters, but in a different way. It uses a GA with multipl@nd dtomlnance is only altered by the normal reproduction
[pperators.

restarts, the first run is used to find an interim solutiorn, " , , . )
additional issue connected with adaptive representations

subsequent runs decode the genes as distances (delta valué%"é' : )
oncerns noncoding segments of a genotype. Wu and Lindsay

from the last interim solution. This way each restart formEMl . ted with thod. which licitly defi
a new hypercube with the interim solution at its origin, th ] experimented with a2 method which explicilly define
Wetrons in the genotypes.

resolution of the delta values can also be altered at t

restarts to expand or contract the search space. The restarts ] ]

are triggered when the Hamming distance between the bBstEvaluation Function

and worst strings of the continuing population are not greaterin [76] and [90] mechanisms for varying penalties accord-

than one. This technique was further refined in [87] to copeg to a predefined deterministic schedule are reported. In

with deceptive problems. Section 111-B we discussed briefly the mechanism presented in
The dynamic parameter encoding technique is not badé®]. The mechanism of [90] was based on the following idea.

on modifying the actual number of bits used to representTde evaluation function eval has an additional parameter

function parameter, but rather, it alters the mapping of the 1

gene to its phenotypic value. After each generation, population eval@, 7) = f(Z) + > Z ff(a?)

counts of the gene values for three overlapping target intervals J

for the current search interval for that gene are taken.

the largest count is greater than a given trigger thresho

the search interval is halved, and all values for that gene

the population are adjusted. Note that in this technique t

resolutions of genes f:an be increased but_ not decreased. scycles” within a single run of the system: For each particular
Messy GA’s (MGA’s) [53] use a very different approachgycie the evaluation function is fixed/(C {1, ..., m} is

This technique is targeted to fixed-length binary represeg-get of active constraints at the end of a cycle) and the
tations but allows the representation to be under or OV&éﬂnalty pressure increases (changing the evaluation function)
specified. Each gene in the chromosome contains its valyigy when we switch from one cycle to another.

(a bit) and its position. The chromosomes are of variable The method of Eiben and Ruttkay [36] falls somewhere be-
length and may contain too few or too many bits for thgyeen tuning and adaptive control of the fitness function. They
representation. If more than one gene specifies a bit positighnly a method for solving constraint satisfaction problems
the first one encountered is used, if bit positions are ngfat changes the evaluation function based on the performance
specified by the chromosome, they are filled in from so-callel an EA run: the penalties (weights) of those constraints
competitive templates. Messy GA’s do not use mutation agghich are violated by the best individual after termination are
use cut and splice operators in place of crossover. A run of gised, and the new weights are used in the next run.

mMGA is in two phases: 1) a primordial phase which enriches A technical report [19] from 1992 forms an early example
the proportion of good building blocks and reduces the popgn adaptive fitness functions for constraint satisfaction, where
lation size using only selection and 2) a juxtapositional phapenalties of constraints in a constrained optimization prob-
which uses all the reproduction operators. This techniquelésn are adapted during a run (see Section IlI-B). Adaptive
targeted to deceptive binary bitstring problems. The algorithpenalties were further investigated by Smith and Tate [115],
adapts its representation to a particular instance of the problemere the penalty measure depends on the number of violated
being solved. constraints, the best feasible objective function found, and the

Ifhich is decreased every time the evolutionary algorithm
nverges (usuallyr := 7/10). Copies of the best solution
Bund are taken as the initial population of the next iteration
h the new (decreased) value of Thus there are several
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best objective function value found. The breakout mechanisfang recommendeg,, = 0.001 [29], the meta-level GA used
of [93] is applied in [31] and [32], by detecting so-callecdby Grefenstette [58] indicated,, = 0.01, while Schafferet al.
nogoods on line and adding a penalty for containing nogoodsime up withp,,, € [0.005, 0.01] [106]. Following the earlier
This amounts to adaptively changing the penalties during thrk of Bremermann [22], Ndhlenbein derived a formula for
evolution. Eiben and van der Hauw [38], [39] introduced thg,,, which depends on the length of the bitstring),( namely
so-called SAW-ing (stepwise adaptation of weights) mechas;, = 1/L should be a generally “optimal” static value for
nism for solving constraint satisfaction problems with EA'sp,,, [94]. This rate was compared with several fixed rates by
SAW-ing changes the evaluation function adaptively in an EBmith and Fogarty who found that,, = 1/L outperformed
by periodically checking the best individual in the populationther values fop,, in their comparison [117]. &k also found
and raising the penalties (weights) of those constraints thisL to be a good value fas,,, together with Gray coding [11,
individual violates. Then the run continues with the neww. 229].
evaluation function. This mechanism has been applied in EA’sFogarty [44] used deterministic control schemes decreasing
with very good results for graph coloring, satisfiability, ang,, over time and over the loci. Although the exact formulas
random CSP’s [16], [40], [41]. cannot be retrieved from the paper, they can be found in
A recent paper [82] describes a decoder-based approfith]. The observed improvement with this scheme makes it
for solving constrained numerical optimization probleman important contribution, as it was first time (to our best
(the method defines a homomorphous mapping betweenknowledge) where the mutation rate was changed during the
dimensional cube and a feasible search space). It was possible of a GA (however, the improvement was achieved for an
to enhance the performance of the system by introduciigtial population of all zero bits). Hesser andakner [62]
additional concepts, one of them being adaptive location of therived theoretically optimal schedules for deterministically
reference point of the mapping [81], where the best individuahangingp.., for the counting-ones function. They suggest
in the current population serves as the next reference point. A ot
()

change in a reference point modifies the evaluation function 5

for all individuals. Pt) =2 x — > =L
It is interesting to note that an analogy can be drawn p AL

between EA's applied to constrained problems and EA’s opgfhereq, 3, v are constants) is the population size, andis
ating on variable-length representation in light of parsimonyse time (generation counter).

fOI‘ instance in GP In bOth cases the deﬁnition Of the eVaantionBack [8] a|so presents an Opt|ma| mutation rate decrease
function contains a penalty term. For constrained problems thishedule as a function of the distance to the optimum (as
term is to suppress constraint violations [89], [91], [92], in casghposed to a function of time), being
of GP it represents a bias against growing tree size and depth
[101], [122], [123], [144]. Obviously, the amount of penalty P (f(2)) = 4;
can be different for different individuals, but if the penalty 2f(#F)+1) - L
term itself is not varied along the evolution then we do not seeThe function to control the decrease pf, by Back and
these cases as examples of controlling the evaluation functigighitz [14] constrainsp,,(t) so that p,,(0) = 0.5 and
Nevertheless, the mechanisms for controlling the evaluatigrrrll(T) = 1/L if a maximum ofT evaluations are used
function for constrained problems could be imported into GP. .
So far, we are only aware of only one paper in this direction (t) = <2 n L—-2 -t) fo<t<T
[33]. One real case of controlling the evaluation function in GP T ’ - -
is the so-called rational allocation of trials (RAT) mechanis
where the number of fithess cases that determine the qug?'
of an individual is determined adaptively [130].
Also, coevolution can be seen as adapting the evaluatiorf**

functior! [96]-[99]. The adaptive_mechanism here lies in tr_le zt + A(t, r(k) — z1), if a random binary digit is 0
interaction of the two subpopulatlons, and each subpopulatiof™ {377; — A(t, 2 — I(k)), if a random binary digit is 1
mutually influences the fitness of the members of the other
subpopulation. This technique has been applied to constrd®itk = 1, ..., n. The functionA(¢, y) returns a value in the
satisfaction, data mining, and many other tasks. range(0, y] such that the probability of\(¢, y) being close

to 0 increases asincreasesi(is the generation number). This

property causes this operator to search the space uniformly
C. Mutation Operators and Their Probabilities initially (when ¢ is small), and very locally at later stages. In

There has been quite significant effort in finding Optim‘,j\efxperiments reported in [74], the following function was used:

anikow and Michalewicz [74] experimented with a nonuni-
B¥m mutation, where

values for mutation rates. Because of that, we discuss also their £\°
tuned “optimal” rates before discussing attempts for control At,y)=y-7- <1 - T)
them.
There have been several efforts to tune the probability wherer is a random number froi), ... , 1], 7" is the maximal

mutation in GA’s. Unfortunately, the results (and hence thgeneration number, anfdis a system parameter determining
recommended values) vary, leaving practitioners in dark. Dee degree of nonuniformity.



EIBEN et al.: PARAMETER CONTROL IN EVOLUTIONARY ALGORITHMS 133

As we discussed in Section 1lI-A, the 1/5 rule of Rechenbergsed a multichromosome GA to implement the self-adaptation
constitutes a classical example adaptive method for setting thehe cutting stock problem with contiguity. One chromosome
mutation step size in ES [100]. The standard deviatiois is used to represent the problem solution using a grouping rep-
increased, decreased, or left without change and the decisioreisentation, while the other represents the adaptive parameters
made on the basis of the current (i.e., most recent) frequencysing fixed point real representation. Here self-adaptation is
successful mutations. Julstrom’s adaptive mechanism regulaiesd to adapt the probability of using one of the two available
the ratio between crossovers and mutations based on thmirtation operators, and the strength of the group mutation
performance [77]. Both operators are used separately to cregperator.
an offspring, the algorithm keeps a tree of their recent contribu-In [128] a new adaptive operator (so-called inver-over) was
tions to new offspring and rewards them accordingly. Lis [83]roposed for permutation problems. The operator applies a
adapts mutation rates in a parallel GA with a farming modefariable number of inversions to a single individual. Moreover,
while Lis and Lis [84] adapp,., p. and the population size the segment to be inverted is determined by another (randomly
in an algorithm of a parallel farming model. They use parallskelected) individual.
populations and each of them has one value, out of a possible
three different values, fop,,, p., and the population size.

After a certain period of time the populations are compareB. Crossover Operators and Their Probabilities
Then the values fop,,, p., and the population size are shifted Similarly to the previous subsection, we discuss tuned
one level toward the values of the most successful populatiogptimal” rates for recombination operators before discussing

Self-adaptive control of mutation step sizes is traditional igttempts for controlling them.

ES [11], [112]. Mutating a floating-point object variable  As opposed to the mutation rage, that is interpreted/bit,
happens by the crossover ratg. acts on a pair of chromosomes, giving the
o = + ol N0, 1) probability thgt the selecteq pair undergoes crossover. Some
’ ! ’ ’ common settings fop. obtained by tuning traditional GA’s

where the mean step sizes are modified lognormally are p. = 0.6 [29], p. = 0.95 [58], andp. € [0.75, 0.95]
[11, p. 114], [106]. Currently, it is commonly accepted that
o =a;-exp(r' - N(0, 1) +7-N;(0, 1)) the crossover rate should not be too low and values below 0.6

h g+ h led | ) tes. | ‘ are rarely used.
wherér and 7 aré Ihe so-called learning rates. In contem-, y,o following we will separately treat mechanisms regard-

porar)l/l EP float:;g porllnt repres;ntg)altlon ljs u'sed too, :Ijllnd ttﬁ% the control of crossover probabilities and mechanisms for
so-called meta-EP scheme works by modifyirig normally controlling the crossover mechanism itself. Let us start with

ol =0;4+C-o; - N(0, 1) an overview of controlling the probability of crossover.
Davis’'s “adaptive operator fitness” adapts the rate of op-

where( is a scaling constant, [45]. There seems to be empiricadators by rewarding those that are successful in creating
evidence [104], [105] that lognormal perturbations of mutatiometter offspring. This reward is diminishingly propagated
rates is preferable to Gaussian perturbations on fixed-lengpdick to operators of a few generations back, who helped
real-valued representations. In the meanwhile, [5] suggessetting it all up; the reward is a shift up in probability
slight advantage of Gaussian perturbations over lognornsl the cost of other operators [28]. This, actually, is very
updates when self-adaptively evolving finite state machineslose in spirit to the credit assignment principle used in

Hinterding et al. [63] apply self-adaptation of the mutationclassifier systems [50]. Julstrom’s adaptive mechanism [77]
step size for optimizing numeric functions in a real-valuetegulates the ratio between crossovers and mutations based
GA. Srinivas and Patnaik [125] replace an individual by iten their performance, as already mentioned in Section V-C.
child. Each chromosome has its own probabilities, and An extensive study of cost based operator rate adaptation
p., added to their bitstring. Both are adapted in proportigfCOBRA) on adaptive crossover rates is done by Tuson and
to the population maximum and mean fitnes§cB [8], [9] Ross [133]. Lis and Lis [84] adapt,,, p. and the population
self-adapts the mutation rate of a GA by adding a rate feize in an algorithm of a parallel farming model. They use
the p,,, coded in bits, to every individual. This value isparallel populations and each of them has one value, out
the rate, which is used to mutate thwg, itself. Then this of a possible three different values, for,, p., and the
new p,, is used to mutate the individuals’ object variablegpopulation size. After a certain period of time the populations
The idea is that bettes,, rates will produce better offspring are compared. Then the values fgf, p., and the population
and then hitchhike on their improved children to new gersize are shifted one level toward the values of the most
erations, while bad rates will die out. Fogarty and Smitbuccessful population.
[117] used Bck's idea, implemented it on a steady-state Adapting probabilities for allele exchange of uniform
GA, and added an implementation of the 1/5 success rule fopssover was investigated by White and Oppacher in [138]. In
mutation. particular, they assigned a discretec [0,1/N,2/Nn... 1]

Self-adaptation of mutation has also been used for na-each bitin each chromosome and exchange bits by crossover
numeric problems. Fogedt al. [47] used self-adaptation toat position ¢ if y/p(parent)i - p(parent). > rnd(0, 1).

control the relative probabilities of the five mutation operatoBesides, the offspring inherits hit; and p?, from its parents.
for the components of a finite state machine. Hinterding [64]he finite state automata they used amounts to updating these
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probabilitiesp’, in the offspring as follows: solve the desired problem, whereas programs on higher levels
are considered as recombination operators.
if f(child) > f(parenjthen

raisep’. in child for i's from parent E. Parent Selection

if f(child) < f(parenjthen The family of the so-called Boltzmann selection mecha-
nisms embodies a method that varies the selection pressure
along the course of the evolution according to a predefined
“cooling schedule” [85]. The name originates from the Boltz-
mann trial from condensed matter physics, where a minimal

where parente {paren, parent}. energy level is sought by state transitions. Being in a state
The mechanism of Spears [124] self-adapts the choigg chance of accepting stafeis

between two different crossovers, two-point crossover and uni-
form crossover, by adding one extra bit to each individual (see Placceptj] = exp <Ez - Ej)
Section 1V). This extra bit decides which type of crossover ’ Ky -T

is used for that individual. Offspring will inherit the ChOicewhereEi, E; are the energy levelds, is a parameter called
for its type of crossover from its parents. Srinivas and Patnafe Boltzmann constant, aridis the temperature. This accep-
[125] replace an individual by its offspring. Each chromosom@nce rule is called the Metropolis criterion. The mechanism
has its own probabilitiesy,,, andp., added to their bitstring. proposed by de la Maza and Tidor [30] applies the Metropolis
Both are adapted in proportion to the population maximum agterion for defining the evaluation of a chromosome. The
mean fitness. In Schaffer and Morishima [108] the number a@f’and deluge EA of Rudolph and Sprave [103] changes the

locations of crossover points was self-adapted. This was dafigection pressure by changing the acceptation threshold over
by introducing special marks into string representation; thegge in a multipopulation GA framework.

marks keep track of the sites in the string where crossover js interesting to note that the parent selection component
occurred. Experiments indicated [108] tha_t adaptive Crossoy§fan EA has not been commonly used in an adaptive manner.
performed as well or better than a classical GA for a set ghere are selection methods, however, whose parameters can

test problems. be easily adapted. For example, linear ranking, which assigns

~ When using multiparent operators [34] & new parameter 4Sse|ection probability to each individual that is proportional
introduced: the number of parents applied in recombinatiog, the individual’s rank;l°

In [37] an adaptive mechanism to adjust the arity of recombi- g g
nation is used, based on competing subpopulations [110]. In p(i) = 2= b+ 2 - 1)/,(p0p’&ze —1)

particular, the population is divided into disjoint subpopula- pop-size

tions, each using a different crossover (arity). Subpopulationdere the parameteb represents the expected number of
develop independently for a certain period of time and ewffspring to be allocated to the best individual. By changing
change information by allowing migration after each periodhis parameter within the range di ... 2] we can vary
Quite naturally, migration is arranged in such a way thahe selective pressure of the algorithm. Similar possibilities
populations showing greater progress in the given period grexist for other ranking and scaling methods and tournament
in size, while populations with small progress become smallaelection.

Additionally, there is a mechanism keeping subpopulations

(and thus crossover operators) from complete extinction. TiFs Replacement Operator—Survivor Selection

method yielded a GA showing comparable performance with

the traditional (one population, one crossover) version usi Simulated annealing (SA) is a generate-and-test search
. itonat poputation, . ver) version u .'?gchnique based on a physical, rather than a biological analogy
a high quality six-parent crossover variant. In the meanwhil

; . ) . ']. Formally, SA can be envisioned as an evolutionary process
the mechanism failed to clearly identify the better operatofl y yp

by making th . ndin b lations laraer. This | ith population size of one, undefined (problem dependent)
inyfac? ingacc?)rfj%nizp\?vith tﬁes;ilngi(:]p'; ?)fossearge[l.z 4] ; ra%presentation and mutation mechanism, and a specific sur-
self-a d‘a tive framework 9 P vivor selection mechanism. The selective pressure increases
P ' . .during the course of the algorithm in the Boltzmann-style.
In GP a few methods were proposed which allow adaptati . . . ]
: - e main cycle in SA is as follows:

of crossover operators by adapting the probability that a
particular position is chosen as a crossing point [3], [68], [69]. begin
Note that in GP there is aI;o .implicit adaptation of all var.iation generate(j € S;);
operators because of variation of the genotype: e.g., introns, it £(j)f(i) then i := j;
which appear in genotypes during the evolutionary process, ) ) then e = g
change the probability that a variation operator is applied to else ) )
particular regions. ) ) if exp <7f(L) — f(1)> > random|0, 1) then i := j;

A meta-evolution approach in the context of genetic pro- Ck
gramming is considered in [78]. The proposed system consistsend
of several levels; each level CQI’]SiStS of a population of graphORank of the worst individual is zero, whereas the rank of the best
programs. Programs on the first level (so-called base levebividual is pop_size — 1.

lower p’. in child for #’s from parent
else modify randomly
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In this mechanism the parametey, the temperature, is to report positive results in such simpler cases. Combining
decreasing, making the probability of accepting inferior sderms of control is much more difficult as the interactions
lutions smaller and smaller (for minimization problems, i.eqf even static parameter settings for different components
the evaluation functionf is being minimized). From an of EA’s are not well understood, as they often depend on
evolutionary point of view, we have here a (4 1) EA the objective function [61] and representation used [129].
with increasing selection pressure. Similarly to parent selecti@everal empirical studies have been performed to investigate
mechanisms, survivor selection is not commonly used in #me interactions between various parameters of an EA [43],

adaptive fashion. [106], [142]. Some stochastic models based on Markov chains
were developed and analyzed to understand these interactions
G. Population [25], [95], [126], [137].

Several researchers have investigated population size for ge? ¢0mbining forms of control, the most common method

netic algorithms from different perspectives. A few researchdrsélated to mutation. With Gaussian mutation we can have a
provided a theoretical analysis of the optimal population siZ/mPer of parameters that control its operation. We can dis-
[51], [52], [121]. As usual, however, a large effort was made {ipguish the setting of the standard deviation of the mutations
find “the optimal” population size empirically. As mentioneC)(mUtation step size) atgglobal .Iev'el', for each individual, or for
in Section I, De Jong [29] experimented with population sizdenes (parame.ters)' within an |r!d|V|duaI. We can also control
from 50100, whereas Grefenstette [58] applied a meta-GAlfl® Preferred direction of mutation. ,
control parameters of another GA (including populations size); " évolution strategies [112], the self-adaptation of the
the population size range was [3080]. Additional empirical combination of the mutation step-size with the direction of
effort was made by Schaffest al. [106]; the recommended mutation is quite common. Also the adaptation of the mutation
range for population size was [20. 30]_' step-size occurs at both the individual and the gene level.
Additional experiments with population size were reportedhiS combination has been used in EP as well [104]. Other
in [75] and [24]. Recently Smith [120] proposed an algorithrﬁxamples of coml_olmng the adaptation of the dlfft_arent mutation
which adjusts the population size with respect to the probaprameters are given in Yao al. [143] and Ghozeil and Fogel
ity of selection error. In [66] the authors experimented with a9l Yao et al. combine the adaptation of the step size with
adaptive GA’s which consisted of three subpopulations, andt3¢ Mixing of Cauchy and Gaussian mutation in EP. Here the
regular intervals the sizes of these populations were adjusfBgtation step size is self-adapted, and the step size is used

on the basis of the current state of the search; see Sectioni@enerate two new individuals from one parent: one using
for a further discussion of this method. Cauchy mutation and the other using Gaussian mutation; the

Schlierkamp-Voosen and iMilenbein [109] use a Compe_“worse" individual in terms of fitness is discarded. The results

tition scheme that changes the sizes of subpopulations, wifidicate that the method is generally better or equal to using
keeping the total number of individuals fixed—an idea whicfither just Gaussian or Cauchy mutations even though the
was also applied in [37]. In a followup to [109] a competitiorPoF?‘{lat'on size was halved to comp_ensate for generating two
scheme is used on subpopulations that also changes the thdividuals from each parent. Ghozeil and Fogel compare the
population size [110]. use of polar coordinates for the mutatlon step size and d.II’eCtIO!’l
The genetic algorithm with varying population sizé?Ver the generglly used Cart_es[an representation. While their
(GAVaPS) [7] does not use any variation of selectiofesults are preliminary, they |nd|c_at§ tha}t superior results can
mechanism considered earlier but rather introduces the condgptoPtained when a lognormal distribution is used to mutate
of the “age” of a chromosome, which is equivalent to thihe self-adaptive polar parameters on some problems.
number of generations the chromosome stays “alive.” ThusCOmbining forms of control where the adapted parameters
the age of the chromosome replaces the concept of selecff taken from different components of the EA are much
and, since it depends on the fitness of the individual, influendé@er. Hinterdinget al. [66] combined self-adaptation of the

the size of the population at every stage of the process. mutation step size with the feedback-based adaptation of
the population size. Here feedback from a cluster of three

EA’s with different population sizes was used to adjust the
) _ ) _population size of one or more of the EA’s at 1000 evaluation

As we explained in Section |, “control of parameters iRnochs, and self-adaptive Gaussian mutation was used in each
EA’s” includes any change of any of the parameters thg ihe EA's. The EA adapted different strategies for different
influence the action of the EA, whether it is done by gne of test functions: for unimodal functions it adapted to
deterministic rule, feedback-based rule, or a self-adaptivga|| population sizes for all the EA’s; while for multimodal
mechamsrﬁ.l Also, as has been shown in the previous sectioRgnciions, it adapted one of the EA’s to a large but oscillating
of this paper, it is possible to control the various parameteﬁgpmaﬂon size to help it escape from local optima. Smith
of an evolutionary algorithm during its run. Most studiesyq Fogarty [118] self-adapt both the mutation step size
however, considered control of one parameter only (Or fiq preferred crossover points in a EA. Each gene in the
few parameters which relate to a single component of EA)aromosome includes: the problem encoding component; a
This is probably because: 1) the exploration of capabilitistation rate for the gene; and two linkage flags, one at each
of adaptation was done experimentally and 2) it is easighq of the gene which are used to link genes into laisrks

INote that in many papers, the term “control” is referred to as “adaptatiorvhen two adjacent genes have their adjacent linkage flags

VI. COMBINING FORMS OF CONTROL
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set. Crossover is a multiparent crossover and occurs at block s,

boundaries, whereas the mutation can affect all the components

of a block and the rate is the average of the mutation rates in

a block. Their method was tested against a similar EA on-a ‘. / ’

variety of NK problems and produced better results on the

more complex problems. N

The most comprehensive combination of forms of controlis .

by Lis and Lis [84], as they combine the adaptation of mutation . ) S

probability, crossover rate, and population size, using adaptive o

control. A parallel GA was used, over a number of epochsig. 2 An evolutionary algorithm EA for problen® as a single point in

in each epoch the parameter settings for the individual GAlke search spacfra of all possible evolutionary algorithms. EA searches
. . . . .(broken line) the solution spac&p of the problemP. S represents a

was determined by using the Latin squares experiment desi pace of classical GA’'s, where&§,,—a subspace which consists of

This was done so that the best combination of three values &élutionary algorithms which are identical except their mutation pate

each of the three parameters could be determined using the ) )
fewest number of experiments. At the end of each epoch, fhgfore the run of the algorithm. Even if we assume for a

middle level parameters for the next epoch were set to be fR@Ment that there is a perfect configuration, however, finding
best values from the last epoch. it is an almost hopeless task. Fig. 2 illustrates this point: the

It is interesting to note that all but one of the EA’s whictP®arch spac&ra of all possible evolutionary algorithms is

combine various forms of control use self-adaptation. In HiflY9e. much larger than the search spage of the given
terding et al. [66] the reason that feedback-based rather thgfoPlem L, SOI our chances of guessing the right configuration
self-adaptation was used to control the population size wdgOne exists!) for an EA are rather slim (e.g., much smaller
to minimize the number of separate populations. This leafft@n the chances of guessing the optimum permutation of cities
us to believe that while the interactions of static parametdf @ large instance of the traveling salesman problem). Even
setting for the various components of an EA are compleBt we restrict our attention to a relatively narrow subclass,
the interactions of the dynamics of adapting parameters usffy Sca Of classical GA's, the number of possibilities is

either deterministic or feedback-based adaptation will be eveH! prohibitive 2 Note that within this (relatively small) class
more complex and hence much more difficult to work outhere are many possible algorithms with different population

Hence it is likely that using self-adaptation is the mosiizes, different frequencies of the two basic operators (whether

promising way of combining forms of control, as we leave it t§ttic or dynamic), etc. Besides, guessing the right values of

evolution itself to determine the beneficial interactions amorRrameters might be of limited value anyway: in this paper
various components (while finding a near-optimal solution e have grgued that any set of stguc p"?“ameFerS seems t.o be
the problem). inappropriate, as any run of an EA is an intrinsically dynamic,

It should be pointed out, however, that any combinatigidaptive process. So the use of rigid parameters that do not

of various forms of control may trigger additional problem&hange their values may not be optimal, since different values
related to “transitory” behavior of EA’s. Assume, for example‘?f parameters may work better/worse at different stages of the

that a population is arranged in a number of disjoint subpofYolutionary process. , , ,
ulations, each using a different crossover (e.g., as describe@®n the other hand, adaptation provides the opportunity to

in Section V-D). If the current size of subpopulation depend&Stomize the evolutionary algorithm to the problem and to
on the merit of its crossover, the operator which perfornfgodify the configuration and the strategy parameters used

poorly (at some stage of the process) would have difficulti®d"le the problem solution is sought. This possibility enables
“to recover” as the size of its subpopulation shrunk in thids not only to incorporate domain information and multiple

meantime (and smaller populations usually perform wor&gProduction operators into the EA more easily, but, as indi-

than larger ones). This would reduce the chances for utiliziﬁé‘ted earlier, aIIovys the algorithm itself to select those values
“good” operators at later stages of the process. and operators which provide better results. Of course, these

values can be modified during the run of the EA to suit the
situation during that part of the run. In other words, if we allow
VII. DISCUSSION some degree of adaptation within an EA, we can talk about

. . . two different searches which take place simultaneously: while
The effectiveness of an evolutionary algorithm depends gon . : : .
. : e problemP is being solved (i.e., the search spate is

many of its components, e.g., representation, operators, etc. i
. . . €ing searched), a part St:4 is searched as well for the best

and the interactions among them. The variety of parameters_ >’ X
. . . . evolutionary algorithm EA for some stage of the search pf
included in these components, the many possible choices (el'-ﬁ)

to change or not to change?), and the complexity of Wwever, in all experiments reported by various researchers

interactions between various components and parameters m Ke Section V) only a tiny part of the search spagg was

the selection of a “perfect” evolutionary algorithm for a giverﬁ:ons'dered' For example, by adapting the mutationgateve

problem very difficult, if not impossible. consider only a subspacs, (see Fig. 2), which consists of

So, how can we find the “best” EA for a given problem? As 12p subspace ofclassical genetic algorithms,Sga C Ska, consists
volutionary algorithms where individuals are represented by binary

. o f
discussed ea”.'er n the papgr, Wwe can perform some amoung&f&d fixed-length strings, and 1-point crossover, a bit-flip mutation, and
parameter tuning, trying to find good values for all parametegeportional selection are used.
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all evolutionary algorithms with all parameters fixed except At this stage of research it is unclear just “how much
the mutation rate. Similarly, early experiments of Grefenstetparameter control” might be useful. Is it feasible to consider
[58] were restricted to the subspafe s only. the whole search spacez4 of evolutionary algorithms and

An important objective of this paper is to draw attention tallow the algorithm to select (and change) the representation
the potentials of EA’s adjusting their own parameters on-linef individuals together with operators? At the same time
Given the present state of the art in evolutionary computaticshould the algorithm control probabilities of the operators used
what could be said about the feasibility and the limitations d¢bgether with population size and selection method? It seems
this approach? that more research on the combination of the types and levels

One of the main obstacles of optimizing parameter settingé parameter control needs to be done. Clearly, this could lead
of EA’s is formed by the epistasic interactions between these significant improvements to finding good solutions and to
parameters. The mutual influence of different parameters the speed of finding them.
each other and the combined influence of parameters togetheinother aspect of the same issue is “how much parameter
on EA behavior is very complex. A pessimistic conclusionontrol is worthwhile?” In other words, what computational
would be that such an approach is not appropriate, sincests are acceptable? Some researchers have offered that
the ability of EA’s to cope with epistasis is limited. On theadaptive control substantially complicates the task of EA
other hand, parameter optimization falls in the category ehd that the rewards in solution quality are not significant
ill-defined, not well-structured (at least not well understoodd justify the cost [20]. Clearly, there is some learning cost
problems preventing an analytical approach—a problem cldsgolved in adaptive and self-adaptive control mechanisms.
for which EA’s usually provide a reasonable alternative tBither some statistics are collected during the run, or additional
other methods. Roughly speaking, we might not have a bettgrerations are performed on extended individuals. Comparing
way to do it than letting the EA figuring it out. To this endthe efficiency of algorithms with and without (self-)adaptive
note that the self-adaptive approach represents the highesichanisms might be misleading, since it disregards the time
level of reliance on the EA itself in setting the parametergeeded for the tuning process. A more fair comparison could
With a high confidence in the capability of EA’s to solvebe based on a model which includes the time needed to set up
the problem of parameter setting this is the best option. (80 tune) and to run the algorithm. We are not aware of any
more skeptical approach would provide some assistance in gugh comparisons at the moment.
form of heuristics on how to adjust parameters, amountingOn-line parameter control mechanisms may have a par-
to adaptive parameter control. At this moment there are riggular significance in nonstationary environments. In such
enough experimental or theoretical results available to magavironments often it is necessary to modify the current solu-
any reasonable conclusions on the (dis)advantages of differé@n due to various changes in the environment (e.g., machine
options. breakdowns, sickness of employees, etc.). The capabilities

A theoretical boundary on self-adjusting algorithms in ger®f evolutionary algorithm to consider such changes and to
eral is formed by the no free lunch theorem [140]. Howevelrack the optimum efficiently have been studied [4], [15],
while the theorem certainly applies to a self-adjusting EA134], [135]. A few mechanisms were considered, including
it represents a statement about the performance of the séelf-)adaptation of various parameters of the algorithm, while
adjusting features in optimizing parameters compared to ott@gher mechanisms were based on maintenance of genetic diver-
algorithms for the same task. Therefore, the theorem is ity and on redundancy of genetic material. These mechanisms
relevant in the practical sense, because these other algoritiafien involved their own adaptive schemes, e.g., adaptive
hardly exist in practice. Furthermore, the comparison shou@minance function.
be drawn between the self-adjusting features and the humatt seems that there are several exciting research issues
“oracles” setting the parameters, this latter being the comme@nnected with parameter control of EA’s. These include the
practice. following.

It could be argued that relying on human intelligence « Developing models for comparison of algorithms with
and expertise is the best way of drawing an EA design, and without (self-)adaptive mechanisms. These models
including the parameter settings. After all, the “intelligence”  should include stationary and dynamic environments.
of an EA would always be limited by the small fraction ¢ Understanding the merit of parameter changes and inter-
of the predefined problem space it encounters during the actions between them using simple deterministic controls.
search, while human designers (may) have global insight of For example, one may consider an EA with a constant
the problem to be solved. This, however, does not imply population-size versus an EA where population-size de-
that the human insight leads to better parameter settings (see creases, or increases, at a predefined rate such that the
our discussion of the approaches called parameter tuning total number of function evaluations in both algorithms
and parameter setting by analogy in Section Il). Furthermore, remain the same (it is relatively easy to find heuristic
human expertise is costly and might not be easily available for justifications for both scenarios).
the given problem at hand, so relying on computer power ise Justifying popular heuristics for adaptive control. For
often the most practicable option. The domain of applicability instance, why and how to modify mutation rates when
of the evolutionary problem solving technology as a whole the allele distribution of the population changes?
could be significantly extended by EA's that are able to ¢ Trying to find the general conditions under which adaptive
configure themselves, at least partially. control works. For self-adaptive mutation step sizes there
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are some universal guidelines (e.g., surplus of offspring4]
extinctive selection), but so far we do not know of any
results regarding adaptation.

Understanding the interactions among adaptively coms)
trolled parameters. Usually feedback from the search
triggers changes in one of the parameters of the algorith 5]
However, the same trigger can be used to change the
values of other parameters. The parameters can also
directly influence each other.

Investigating the merits and drawbacks of self-adaptati%ﬂ
of several (possibly all) parameters of an EA.

Developing a formal mathematical basis for the prd18]
posed taxonomy for parameter control in evolutionary
algorithms in terms of functionals which transform thesg;
operators and variables they require.

In the next few years we expect new results in these areas,g,
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