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Abstract

This portfolio represents the preparatory work for an MSc project in Artifi-
cial Intelligence. The aim of the project is to investigate the acceleration of
Evolutionary Algorithms in the solution of cancer chemotherapy drug schedul-
ing problems. The rationale behind the project and a detailed description are
given.
A short discussion on the professional, ethical, legal and social issues is pre-
sented, followed by an outline of the dissertation. This shows clearly the main
elements of the project including: background; literature survey; design and
implementation of the experiments; results and conclusions.
A significant part of the portfolio is the literature survey. This covers the med-
ical background of cancer, chemotherapy and evolutionary algorithms, followed
by modelling methods and current solutions for the drug scheduling problem.
Methods of improving the efficiency of evolutionary algorithms are considered
and provide information for the experimental design.
The conclusion examines which methods can be applied to accelerate solution
finding and experimental work for the project is anticipated.
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GLOSSARY

Adjuvant preventative treatment, often after surgery

Angiogenesis growth of blood vessels

CTL Cytotoxic T Lymphocyte

Cytotoxic toxic to cells

EA Evolutionary Algorithm is a generic term

ES Evolutionary Strategy – an EA which uses integer or real number encoding

GA Genetic Algorithm – an EA which uses binary encoding

GP Genetic Programming – an EA which uses tree structures

LEM Learnable Evolutionary Model

LEMMO Learnable Evolutionary Model for Multi-objective Optimisation

MO Multi-Objective

MRI Magnetic Resonance Imaging

Neo-adjuvant pre-operative treatment

PBIL Population Based Incremental Learning

PD PharmacoDynamic – the effect of a drug on the body

PK PharmacoKinetic – the effect of the body on a drug

PSO Particle Swarm Optimisation.

Regimen Systematic plan (of treatment)

WBC White Blood Cell
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Chapter 1

Aims and Objectives

1.1 Aims and Objectives

As the mathematical models for chemotherapy scheduling become increasingly
complex, the Evolutionary Algorithms to find drug schedules become more com-
putationally expensive. Accelerating EAs is one possible solution, on which this
project will focus.
The objectives are to investigate the use of:

• Fitness Inheritance

• Learnable Evolution Methods (LEM)

to reduce the computation time to find solutions to the drug scheduling problem,
without compromising the quality of results.
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Chapter 2

Rationale and Description

2.1 Rationale

2.1.1 Cancer

Cancer is a major cause of death in modern society. Anti-cancer drugs have been
developed by pharmaceutical research. These drugs attack and kill cancer cells.
But they also damage healthy cells. To prevent damage to healthy organs and
tissue the drug doses have to be limited. A dose of drug is given, then a period
for the body to recovery is followed by another dose of drug and so on in a cyclic
fashion. These dose schedules developed from clinical trials and the experience
of oncologists in practice. The schedules have become more complex with the
increase in the number of drugs and in the use of multi-drug treatments.
Different drugs affect different organs, so limiting the dosage to control side
effects also becomes more complicated. With a treatment schedule of ten or
more dose/rest periods and 20 or 30 drugs available in different doses, there
are a huge number of treatment combinations possible, far too many for clinical
trials to evaluate. So it is possible that the drugs available are not being used
to best advantage.
Extensive clinical trials are not ideal in the search for better treatment schedules.
It would be unethical for oncologists to treat patients with a less than optimum
schedule as part of a research programme. Five and ten year survival rates are
used to measure progress in cancer treatment. This means clinical trials take a
long time to show progress.

2.1.2 Computer Modelling

Computer simulation is a method of investigating problems without physical
trials. One method of solving problems by computer is to mimic nature’s very
successful evolutionary methods using programs called Evolutionary Algorithms
(EA). By representing individual possible solutions to a problem as members
of a population, allowing mutation and then using the better individuals to
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form the next generation, the program gradually evolves good solutions. This
usually takes many generations. Given the right conditions EAs can produce
better solutions than other methods, but there is a computational expense in the
time to simulate the many thousands of generations usually needed. Selection
is a key process and is usually based on some measure of an individual’s fitness
i.e. its quality as a solution to the problem. The fitness value is usually the
result of an evaluation of some mathematical function which may be a simple
formula or a complex mathematical process.

2.1.3 Chemotherapy Scheduling

When EAs are applied to the cancer chemotherapy scheduling problem, each
individual in the population often represents one set of drug dose/rest periods
i.e. one schedule of treatment (regimen). The fitness is found by applying this
treatment schedule to a mathematical model of the tumour growth and the
effect of the drugs. The tumour/drug model simulates the interaction of the
drugs throughout the treatment period and provides a fitness measure to the
EA. This may be a single value, for example tumour size at the end of the
simulated treatment, or several values representing the average tumour size and
the expected patient survival time, etc.
The EA may use this fitness evaluation function for every member of the popula-
tion (maybe hundreds) in every generation (tens of thousands). If the fitness is a
complex function it can limit the effectiveness of an EA, the time for evaluation
creating a bottleneck in the evolutionary simulation.
Developing these simulations of chemotherapy treatment and improving the
models and methods is an ongoing process. Ultimately this should lead to a
better understanding of cancer treatment and encourage further collaboration
between researchers and oncologists. In the long term this may result in clinical
trials and treatments schedules derived with the help of computer modelling.
This is still some (considerable) distance in the future. Progress will depend on
many factors including: better models; faster models; oncologist confidence in
the models and simulations, etc.

2.1.4 Aims and Objectives

In the light of this, EA acceleration is one aspect worthy of consideration, on
which this project will focus. The objectives are to investigate the use of:

• Fitness Inheritance

• Learnable Evolution Methods (LEM)

to reduce the computation time to find solutions to the drug scheduling problem,
without compromising the quality of results.
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2.2 Projection Description

Both Fitness Inheritance and Learnable Evolution Models (LEM) as described
later (section 5.5) can be used to reduce the number of fitness evaluations com-
puted to find a solution. EAs will be used with a kinetic tumour/drug model
in this investigation.
The kinetic model used is written in Java and is provided by a researcher in
the field. It uses the Gompertz growth model to compute fitness functions for
a binary encoded multi-drug scenario. Some re-engineering of the code will be
necessary. Integer encoding of the drug schedule will replace binary encoding
and these changes will be tested and validated before use.
The model will be the basis for three sets of experiments: one to solve a drug
scheduling problem using an EA, (the control); one to solve the same problem
using fitness estimation for a proportion of the time; and one to to find solutions
using LEM.
There are various input parameters which are required by the model. Some will
be provided by the individual problem, initial tumour size and growth rate for
example. Others may remain constant in the model: fitness function penalties
for tumour size; drug dose and toxicity; risk factors for major organs etc.
Initial EA control experiments will establish the operating envelope for these
parameters.

Control Set

Having set the model parameters which will remain fixed, the EA will be used
to solve five problems covering a range of tumour sizes, growth rates and drug
selection. These same problems will be used by the other algorithms.
The EA is a generational, elitist, cross-over plus mutation algorithm with tour-
nament selection. Termination criteria will be set after initial experiments to
establish the quality of solutions.

Fitness Estimation

This will be an EA which uses an estimate of fitness, the weighted average
of the parents’ fitness, for a proportion of the time, in place of actual fitness
evaluations. The algorithm used will be an implementation of that detailed in
Section 5.5.1 of the literature survey. The proportion of fitness estimation will
be varied to investigate its influence on results.

Learnable Evolutionary Models (LEM)

The LEM algorithm will be that described in Section 5.5.2 of the literature
review, alternating between machine learning and evolutionary methods until
a solution is reached. Finding appropriate termination criteria for switching
between the two methods and also a final criterion to halt the LEM will require
some investigation.
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Results

Analysis of results will compare the quality of the results from the three exper-
iments over the range of problems examined. Comparison of the efficiency of
the methods will be made on the basis of number of fitness evaluations and also
overall run times. The quality of solutions will also be examined to ensure that
efficiency comparisons are made on an equitable basis.
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Chapter 3

Professional Issues

3.1 Professional, Ethical and Social Issues

The use of the Java code for the tumour model is acknowledged and will be
attributed to the author.
Otherwise there are no professional, ethical or social issues in this project.
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Chapter 4

Project Outline

4.1 Introduction

4.1.1 Aims andddddddddddd Objectives

Aim and Objectives

To explore the feasibility of accelerating Evolutionary Algorithms (EA) in chemother-
apy drug scheduling. Objectives are to reduce the computational effort to find
good solutions and maintain diversity of treatment schedules.

• Estimating fitness function values

• Learning from previous generations

4.1.2 Cancer and Chemotherapy

Cancer

.

Chemotherapy

.

4.1.3 Drug Scheduling

.

Modelling

.
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Implementing Models with EAs

.

4.1.4 The need for EA Efficiency

.

4.2 Literature Review

.

4.2.1 EAs in Medicine

.

Background showing wide range of EA applications

.

4.2.2 Modelling Tumours and Chemotherapy

.

Description of model types

.

4.2.3 Improving EAs

.

4.2.4 Review of Speed-up Strategies

.

Fitness Inheritance

.

Learning

.

4.2.5 Solving the scheduling problem: Current Results

.
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4.3 Research Methods

.

4.3.1 Description of model chosen

.

4.3.2 Source code for model and alterations

.

4.3.3 Design of Experiments

.

4.4 Experiments

.

4.4.1 Control Experiment

.

4.4.2 Experiment 1 – Fitness Inheritance

.

4.4.3 Experiment 2 – LEM

.

.

4.5 Results

.

4.5.1 Present results of experiments

.

4.5.2 Discussion and Interpretation

.
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4.5.3 Compare and Contrast

.

4.6 Conclusions

.

4.6.1 Summary of Achievements

.

4.6.2 Aims and Objectives Achieved?

.

4.6.3 Contribution by this work

.

4.6.4 Future work

.
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Chapter 5

Literature Review

5.1 Introduction

Cancerous tumours are characterised by rapidly dividing cells. Chemotherapy
is the application of drugs in an attempt to reduce or eliminate the tumour,
without compromising the immune system or causing unacceptable side effects
to the patient.
Clare et al.[4] report that breast cancer mortality rates in the USA have only
improved slightly since 1970, despite the extensive use of chemotherapy. The
use of mathematical modelling in cancer treatment is reviewed. The Gompertz
model for solid tumours is commonly used. It does not model the natural
history of breast cancer, which often shows dormant phases and growth spurts.
Unfortunately there is limited scope to improve natural history modelling as
there is little clinical data available – once a tumour is diagnosed there may
be one previous mammogram, but little else to establish the dormancy/growth
spurt history. Cited by Clare et al., Norton and Simon[21, 22], were among the
first to model chemotherapy using the Gompertzian model for tumour growth,
regression and re-growth. Clonal resistance is also discussed, citing Goldie et
al.[8, 9] as putting tumour drug resistance on a mathematical basis and also
suggesting alternating drug chemotherapy.
Smith et al.[31] investigate the use of neoadjuvant (pre-operative) chemotherapy
to increase breast conservation and improve survival. It’s use has been increasing
for 30 years and this comparative study of two different drugs shows that one
is significantly better than the other. Five percent of the women actually got
worse during the trial before being withdrawn. In human terms experiments in
vivo are so very expensive compared to in silico.

5.2 Evolutionary Algorithms in Medicine

Evolutionary Algorithms (EAs) are computer programs which mimic nature by
making a series of small random steps to gradually find the solution to a problem
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and are used in a wide range of applications in medicine.
For example, the reliable diagnosis of Parkinson’s disease is notoriously difficult.
An EA classification technique by Smith et al.[33] can identify a Parkinson’s
disease symptom, bradykinesia, by the analysis of the figure copying ability of
patients.
A useful improvement to MRI scanners would be to reduce the length of the
two metre long tunnel which causes a claustrophobic reaction in some patients.
MRI Magnet design is a very complex problem addressed by Yuan et al.[41].
An EA design shows the feasibility of reducing the length to around one metre.
Medical practitioners of keyhole surgery benefit from a simulator developed by
Bosman[3] to help acquire the difficult practical skills necessary to safely insert
a catheter and guide wire into the artery of a patient. The simulator uses an
EA model which outperforms a problem-specific analytical algorithm.
The three dimensional problem of beam direction design for radiotherapy treat-
ment is complex. Using a multi-objective EA, Goldbarg et al.[7] develop a model
which generates options for an oncologist to select a treatment regimen.

5.3 Modelling Tumours and Chemotherapy

5.3.1 Oncology and Mathematics

Gatenby and Maini[6] bemoan the lack of biologists’ and oncologists’ enthusiasm
for mathematical modelling. Despite a huge volume of oncological data and
molecular biology theory there is no overall model for considering this data.
According to Gatenby, “Articles in cancer journals rarely feature equations.
Clinical oncologists and those who are interested in the mathematical modelling
of cancer seldom share the same conference platforms”. Referring to genetic
and molecular biology Gatenby observes “Critical parameters that emerge from
mathematical modelling focus attention on issues that require further theoretical
and experimental work”. This is also relevant in cancer chemotherapy.

5.3.2 Biological Aspects

Cancer is not a single disease; the biology of cancers is described in[14, 34].
Consider first the free growth of a tumour. This does not proceed at a fixed
rate. Once a tumour is established, initial growth rate is high, whilst the tumour
receives nutrients from local blood vessels. Tumour cells can produce proteins
which stimulate angiogenesis, the production of blood vessels in the tumour
which supply food, oxygen and remove waste. As the tumour grows outwards
the centre may consist of dead cells. If no angiogenesis occurs, the tumour size
is limited by the nutrition available. In any case, the growth rate reaches a
maximum and then reduces until the tumour attains a maximum size when it
is in equilibrium with the nutrient supply.
But the body’s immune system reacts to cancer. White blood cells include
Cytotoxic T Lymphocytes (CTL) which can stimulate programmed cell death
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(apoptosis) of cancerous and other faulty cells.This is distinct from necrosis (un-
controlled cell death) which leads to inflammation and health problems. Apop-
tosis is triggered by CTL detecting a faulty cell, binding with it and expressing
a surface enzyme which kills the target cell – by triggering a mechanism which
causes the cell to self-destruct in a controlled fashion, allowing debris to be
removed by other processes.
Cells have a life cycle consisting of periods of replication, quiescence and death.
The replication period or cell cycle is characterised by four phases:

• G1 – Growth and preparation for replication;

• S phase – Synthesis;

• G2 – Preparation for mitosis ;

• M phase – Mitosis.

Quiescent cells are in stage G0.
M phase is the shortest part of the cycle and mitosis actually takes place in
four (sub-)phases, progressing from a single parent cell in Prophase, through
Metaphase and Anaphase to Telophase, at the end of which two daughter cells
exist.
If the DNA in a cell is damaged, the levels of protein p53 increase in the cell,
allowing time for repairing the DNA by keeping the cell in phase G1. If a cell
is severely damaged, apoptosis in induced. Because of p53’s ability to initiate
apoptosis in faulty cells, it has a key role in the control of cancer. However
many cancers have p53 mutations, which cannot perform this function.
Tumour cells and normal cells proliferate by the same cell cycle/mitosis mecha-
nism, but different cell types replicate at different rates. Cancer is characterised
by uncontrolled cell production. High rates are seen in the digestive tract, hair
follicles and in tumours. The cytotoxic drugs used in chemotherapy usually
target the rate of cell replication by affecting cells in the M-phase of the cell
cycle. Unable to distinguish tumour cells from other fast replicating cells, drug-
induced apoptosis also affects the normal cell population. This explains the
well-known chemotherapeutic side effects of hair-loss and nausea.

5.3.3 Mathematical modelling

Modelling of chemotherapy treatment includes:

• tumour growth

• tumour cells killed by drug(s)

• constraint(s) on drug application, dose rates and amounts etc.

• meeting the objective(s) of treatment
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Tumour Growth

Whilst there is a proliferation of models for tumour development, many are at
the molecular or genetic level and have not been used for tumour chemother-
apy modelling. Several general models of growth can be applied to tumours –
Petrovski and McCall[26] cite Marusic et al.[16] as listing four common models
of growth:

• exponential: f(N) = λN

• von Bertalanffy: f(N) = λ 3
√

N2 − µN

• Verhulst: f(N) = λN − µN2

• Gompertz: f(N) = λN − µNlnN

where N is the number of tumour cells and λ and µ are growth parameters.
Marusic et al found the von Bertalanffy equation inadequate and the Gompertz
model the most appropriate for spheroid growth.
The Gompertz equation is currently the basis for much work in this field.
Useful models are constructed by adding features to a basic growth model to
account for the effect of drugs and the immune system and so on.

Cell Kill (Cell Loss)

The rate at which a cytotoxic drug kills cells will depend on its efficacy and its
concentration at the kill site.

Constraints

Due to the toxicity of chemotherapy drugs, there are limits on drug dose, both on
instantaneous dose rate and total dose over a period of treatment. These limits
are to protect healthy cells and control side effects of the drug. Constraints may
also be applied to meet objective requirements, for example tumour size must
never get any larger than a certain size.

Objectives

Tumour reduction is the primary aim but there may be details of how to measure
the success of that. For example the primary objective may be for a small
tumour at the end of treatment (curative), or minimising the average tumour
size throughout treatment (palliative).

5.3.4 A Basic Model

To a growth equation, add a ‘cell kill’ or ‘cell loss’ term to model the effect of
the drug on the tumour cell population.
If κ is the effectiveness and c the concentration of a cytotoxic drug, adding the
‘kill’ term −κcN to the growth equation gives [26] :
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N = f(N)− κcN (5.1)

where f(N) is a tumour growth function.
Using the Gompertz growth model and differentiating equation (5.1) McCall et
al.[19] show that this becomes :

dN

dt
= N(t)λln

(
Θ

N(t)

)
− κc(t) (5.2)

where N(t) is the number of tumour cells at time t, c(t) is the drug concentration
at time t and λ, Θ are tumour parameters.
This equation can be extended to cover multiple drugs by summing the kill
terms for each drug.

5.3.5 Swan’s Review 1990

Swan[35] conducts a wide ranging review of optimal control modelling in cancer
chemotherapy scheduling, characterising the main types of models as:

1. Cell cycle models

2. Cell population models

3. Kinetic tumour growth models

Cell Cycle models

In examining cell cycle modelling, Swan gives the main assumptions:

• Cell cycle mechanisms apply to cancerous cells

• Cells not in the cycle are in stage G0

• One model unusually assumes cells move from G0 directly to the S phase

Stating that many people believe chemotherapy can be effective in some phase
of the cell cycle, Swan conducts critical reviews of the work of about a dozen
researchers in the area of optimal control of drug scheduling. Built on a sound
basis in biology, it is clear Swan favours cell cycle model development over
other models and believes that development of the modelling of drug resistance
in tumours will be of key importance in future work.

Cell population models

Several models containing both tumour and other cell populations are discussed.
Swan reviews four pieces of work which model either two populations – tumour
and normal cells – or a single population of tumour cells.
To some extent this work is similar to the kinetic models discussed below, but
attention is drawn to a more sophisticated modelling of drug concentration and
toxicity.
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Kinetic tumour growth models

Classed as kinetic tumour growth models, the Gompertz, Verhulst and Cox
equations are examined in detail. Key issues discussed are the nature of the cell
loss term and drug concentration and delivery.
The cell loss term is related to drug concentration. Using a constant rate of cell
loss proportional to the drug concentration assumes that experimental results
carry over into human tumours – an assumption that Swan states is not accepted
by many clinicians. An alternative term is proposed which limits the cell loss
rate when the drug concentration reaches a (saturation) level.
The drug delivery and it’s concentration at the tumour site is based on assump-
tions – instantaneous mixing with blood plasma and immediate delivery to the
tumour. Incorporation of some delay into models is suggested.
Discussing the optimal control theory, Swan describes earlier work which ex-
amined cyclic chemotherapy for myeloma, a bone marrow cancer affecting the
cells in blood plasma. Due to the toxicity of the cyclic treatment a case is then
made for low level continuous drug infusion as a better solution, in contrast to
dose/rest treatment.
Swan critically reviews works on optimal control as a tool for chemotherapy
scheduling and highlights common assumptions including:

• Tumours are homogeneous

• No biological justification for Gompertz growth – just consistency with
data

• Growth rate parameters are assumed – no human data available

• Drug kills a constant fraction of tumour cells, irrespective of tumour size

• Drug concentration is proportional to drug delivered to patient

• All tumour cells are susceptible to drug action (i.e. no drug resistance)

• Instantaneous mixing of drug in blood plasma

• Instantaneous delivery of drug to cancer site

Swan urges the exploration of other equations and theories. The lack of verifi-
cation of growth models with clinical data is a recurring theme in the review.
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5.4 Recent Work on Chemotherapy Scheduling

The following sections describe some of the recent work on the three model
types discussed by Swan : Cell Cycle, Cell Populations and Growth Models.

5.4.1 Cell Cycle models

Estimation of cell-cycle parameters is considered by Swierniak et al.[36] and
Panetta and Fister[24] investigate the effects of drugs on the immune system,
aiming to maintain the White Blood Cell (WBC) count in the spirit of clinical
oncologists who use WBC count to determine the next step in chemotherapy
treatment.
Ochoa et al.[23] study chemotherapy optimisation using previous cell cycle spe-
cific drug modelling, [40] and improving the implementation of earlier work[39].
Three objective functions are modelled: Final tumour size; Average tumour size
during treatment and Preference for shorter treatment period.
An Evolutionary Strategy Algorithm implements the model and the quality of
solutions found is measured by:

• Area under the curve of drug dose i.e. total drug administered

• Tumour size deviation from the target level

• Immune system level above the threshold

• Diversity of solutions (deviation from average)

High computational cost precluded a comprehensive statistical analysis. The
main conclusion is two-fold: results are dependent on the modelling system
chosen and the desired goals in the the form of the objective functions.

It seems that the expansion of work in cell cycle modelling anticipated by Swan
has been slow to get under way. Studies are largely confined to the use of a
single drug. Ochoa et al. require no less than 22 parameter values to derive re-
sults, which together with the high computational cost for these mathematically
and numerically intensive algorithms may explain the current level of research
activity in this area.

5.4.2 Cell Population models

PharmacoKinetic (PK) and PharmacoDynamic (PD) Modelling by Iliadias and
Barbolosi[11] considers a single drug and attempts to optimise drug adminis-
tration in the first cycle of chemotherapy. Iliadias and Barbolosi echo Swan’s
concern over the difficulty of modelling drug toxicity. The approach is to use
Pharmacokinetics (effect of body on drug) to model drug concentration and
elimination. Two differential equations are used. One considers the mass bal-
ance in the blood plasma. The second equation models the drug elimination.
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Pharmacodynamic (effect of drug on body) equations model the tumour growth
using the Gompertz equation, the cell-loss term being directly proportional to
drug concentration.
The toxicity equation models normal White Blood Cell (WBC) turnover with
a cell-loss term for the toxic effect of drugs. This term is proportional to the
WBC concentration and the drug concentration, but the drug concentration is
time-shifted by a fixed amount to model the lag for reduced WBC production
from bone marrow (5 days in the simulation).
Constraints are applied to limit drug concentration and total drug exposure.
Numerical solutions show an improvement over the clinical protocols used.
With a model requiring 18 estimated parameters and considering only a single
drug dose, it may be the comparison with a clinical protocol is somewhat pre-
mature.

Matveev and Savkin[17] develop a theoretical model which includes the effect
of the tumour on normal cells. Citing Afenya[1] and Zeitz[42] the effects of
cytotoxic drugs on tumour and normal cells are considered explicity and also
the effect of cancerous cells on normal cells. The model consists of differential
equations for :

1. Tumour growth and regression by drugs

2. Normal cell growth and effect of drugs

3. Normal cell growth and effect of tumour

The tumour growth equation is Gompertzian and the sum of the effect of the
drugs on the tumour is added.
There are several populations of normal cells and the second differential equation
uses exponential growth and adds terms for cell loss due to drugs and cell loss
due to the tumour, for each population.
The third equation covers the remaining normal cell populations where the ef-
fect of the tumour is taken into account, but the drug has no significant effect.

The constraints are :

• Drug concentrations at the tumour site kept below maximum levels

• Normal cell populations maintained above a required minimum level

Assumptions are mostly those enumerated by Swan, with the addition of two
covering individual drugs damaging only specific cell populations of normal cells
and that drugs have little effect on the cells attacked severely by the cancer cells.
No justification is given for these assumptions.
The objective is to minimise the tumour at the end of the treatment period.
The analysis finds that the optimal treatment is cyclical for a single drug. Main-
taining the maximum dose until the normal cell population falls to it’s minimum
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level, then allowing recovery followed by another period of high dosage, and re-
peating this cycle until the end of treatment. No problem is given to illustrate
the theory.
Matveev and Savkin propose to investigate the multi-drug problem in future
work and suggest the inclusion of pharmacokinetic equations to model the ef-
fects of infusion rates on drug concentration.

Models which involve populations of tumour cells and healthy cells interacting
with each other and with chemotherapy drugs seem to have a better basis in
biology than kinetic growth models. However analysis of single drug, single dose
treatments with theoretical models is perhaps best described as research in the
early stages.

5.4.3 Kinetic Growth models

McCall and Petrovski[18] present a decision support system (OWCH) for oncol-
ogists seeking novel chemotherapy regimens. The main theme is the constrained
optimisation of multi-drug chemotherapy using a kinetic model with the Gom-
pertz equation. The treatment schedule is encoded in the GA by a control vector
of binary values. This is simply the dose for each drug for each time interval,
coded as four bits representing a dose of between 0 and 15 units. Constraints
are set to limit drug concentration and total exposure, tumour size during treat-
ment. The toxic side effects on other organs are also constrained using a potency
parameter for each drug. Two GAs are used. An objective function minimising
tumour size determines if a cure is possible, defined as reducing the tumour to
under 1,000 cells in three consecutive intervals. If this is unsuccessful a sec-
ond GA determines a palliative regimen and estimates Patient Survival Time
(PST). Both GAs apply penalties to their objective functions based on violations
of constraints.
OWCH allows the oncologist to explore a variety of chemotherapy regimens us-
ing these GAs.

In[26] Petrovski and McCall further explore the problem of optimisation posed
by multi-drug chemotherapy drug with GAs using exponential, von Bertalanffy,
Verhulst and Gompertz growth equations.
The encoding used is essentially the same as in[18]. An alternative delta or sign
coding is also described which is similar but allows a value of -1 to be utilised
when searching for modifications to a treatment vector, although no details of
its use are given.
A fitness function is required to measure effectiveness of treatment. This takes
account of tumour size, constraint violation and whether the goal of the treat-
ment is a curative (tumour eradication)or palliative (prolonging survival time)
one.
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Experiments are described which use all four growth models and both treat-
ment goals. These are compared to a common chemotherapy schedule (CAF)
and show better performance. (Although how the CAF values were obtained
is not clear). The authors claim the various growth models do not affect the
GA’s ability to derive treatment regimens. There is no discussion on the relative
quality of solutions found.

A Particle Swarm Optimisation (PSO) algorithm is compared with a GA by
Petrovski et al.[28] in experiments simulating and optimising chemotherapy
treatment schedules. The multi-drug kinetic model and binary encoded GA
are essentially those used by the authors in [18]. The GA uses elitist, roulette
wheel selection with two point crossover followed by mutation.
The PSO algorithm uses a population of 50 particles and iterates through a
sequence of adjusting each particle’s velocity on the basis of it’s own best, the
local best and the global best fitness, to produce a new generation. Parameters
are set using guidance given by Trelea[38], equal weighting being assigned to
the local and global terms.
Another version of PSO is also considered – a ‘local best’ algorithm which
concentrates on a neighbourhood of 20% of the population for each particle.
The three algorithms are run 30 times, using the same initial populations as a
basis to ensure a fair comparison. It is shown that the PSO algorithms find fea-
sible solutions in considerably fewer generations than the GA and are of better
quality in terms of fitness function values, the global PSO performing better
than the local algorithm. Analysis shows the improvements in performance and
quality found by the PSO algorithms are statistically significant.
The authors suggest that the disparate nature of the areas of feasible solutions
within the problem search space may be responsible for the PSO algorithms’
success. If good solutions are near the boundary of these regions, it may be that
the GA recombination operations can push the search out of the feasible areas.
Whereas the PSO tends to keep within the feasible solution regions utilising
each particle’s memory of its performance. Little comment is made on the
‘local best’ algorithm and it is not clear whether it offers any advantage over
the global algorithm. Perhaps further investigations into its ability to find good
local solutions would be worth pursuing.
Petrovski et al. conclude that PSO is a realistic tool for chemotherapy schedul-
ing problems, although no further work on this seems to have emerged as yet.

5.4.4 GA performance tuning

Using a problem from their previous work[18] seven GA performance factors are
identified by Petrovski et al.[29]. They are: penalty coefficients 1 and 2, proba-
bility of mutation, probability of crossover, selection pressure parameters 1 and
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2 and a number of breaking points. Analysis of these factors for this problem
of multi-drug chemotherapy optimisation using a kinetic model with gompertz
growth shows that only the mutation and crossover probabilities are significant
in GA performance.

Extending their previous work on GA performance[29] Petrovski et al.[25] state
that in order to tune the factors affecting a GA’s performance, an efficiency
measure is needed. The number of generations Ψ to reach a solution is found to
be a suitable parameter. Since Ψ is a random variable and the distribution of
log(Ψ) is approximately Gaussian, this enables analysis of variance to be used
to study GA factor tuning. Although the problem is said to be the same as that
examined in[29], it is unclear if the GA is the same, as eight factors affecting
efficiency are now listed: probability of crossover, probability of mutation, selec-
tion method, crossover method, mutation method, creep mutation step, fitness
normalisation slope and population size.
The tuning process starts with screening to reduce the eight factors to only
those which will affect the results with statistical significance. This reduced set
of factors is then used in a regression model to find optimal values.
The re-coding of the problem from binary to integer is introduced as an advanced
representation of the solution space. Strictly this converts the GA into an ES.
This chemotherapy optimisation problem ES is tuned using the above procedure.
It is found that the mutation probability, creep mutation step and population
size are the significant factors to tune and optimal values for these are derived.
The results show the tuned ES performs better than the previously tuned GA,
both in Ψ and fitness values achieved.
The authors conclude that whilst the ES is unaffected by the crossover rate, it
is sensitive to mutation probability and step size and tuning these is worthwhile
to improve performance.

Tan et al.[37] find that intermediate tumour size rather than final size can be
a significant consideration in chemotherapy. A single drug kinetic model is
described in terms of differential equations cited by Tan as due to Martin[15]
using a Gompertz growth equation and constraints imposed by drug toxicity.
It is aimed to reduce the tumour size by 50% every three weeks. This adds
three constraints to the model and is described as a method to combat tumour
cells becoming drug resistant, by keeping the tumour burden as low as possible,
especially early in the treatment.
A multi-computer distributed EA for chemotherapy drug scheduling is imple-
mented. Encoding is with pairs of variables representing dose level and starting
day and the model is computed using numerical differentiation. An interesting
feature of the distributed EA is the sharing of sub-populations between comput-
ers in the system with a migration rate of 0.5% between populations to simulate
natural evolution niches and (infrequent) elite individuals. The two best solu-
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tions found involve no drug application for the first 18 and 41 days respectively,
but the authors make no comment on the clinical acceptability of doing nothing
for this period of ‘treatment’. Tan concludes that distributed EAs can find good
solutions and that the unconstrained solution is better than the three constraint
one and therefore reducing intermediate tumour size is not beneficial.

According to Clare et al.[4] the Goldie-Coldman[8] model of clonal resistance
showed that by the time it is detected a tumour will have some drug resistant
mutant cells present. This clearly means that there is no benefit in delaying
drug application.

Liang et al.[13] follow Tan et al.[37] using a single drug kinetic model after
Martin[15] but using an exponential tumour growth equation with constraints
imposed by drug toxicity and three constraints to the model. The authors
modify Martin’s third equation for cumulative toxicity to allow for the reduction
in total accumulated toxicity by metabolic drug elimination during treatment.
An EA with adaptive elitist crossover and mutation is described. The encoding
is unusual and each chromosome consists of two parts: an initial dose then the
repetition of a pattern e.g. a dose of followed by a short rest period repeated
for the rest of the treatment period. This effectively builds in an additional
constraint on the system, but giving the first drug dose on day one eliminates
the ‘do nothing’ period which Tan et al. found.
Liang et al. justify the use of the kinetic model by claiming that “some experts”
suggest that tumour characteristics such as the distribution of tumour cells
among the phases of the cell cycle, the metabolic activity in the tumour, etc.
can be accommodated by the adjusting values of parameters λ and κ described
in section 5.3.4. The experts remain anonymous. It is also stated that “anti-
cancer drugs have been shown to kill cells by first-order kinetics” to justify the
use of the cell kill term in equation 5.1 in section 5.3.4. No evidence is offered
for this view, which is diametrically opposite to that of Swan given in section
5.3.5.
Results show improvements over those previously reported by Tan and others
by a substantial margin, reducing the tumour size to a few hundred cells.
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5.5 Accelerating Evolutionary Algorithms

5.5.1 Fitness Inheritance

Smith et al.[32] suggest that if fitness evaluation is computationally expensive
there is the possibility of avoiding this calculation for every member of the popu-
lation. In contrast with Grefenestette and Fitzpatrick’s 1985[10] proposal cited
by[32] to only partially evaluate fitness of all the population, Smith suggests
that the full evaluation of only part of the population may be beneficial. The
simple idea presented is that a child is given the average fitness of the parents,
described as average inheritance, to distinguish it from Proportional inheritance,
a weighted average based on the contributions of genes from each parent. Tests
conducted on a simple problem called OneMax where the fitness of a 64 bit
binary string is the count of set bits in the string showed that efficient conver-
gence is achieved even with only 10% evaluations. A more realistic problem is
presented using an EA analysis of aircraft routing through a threat field. The
fitness function is the length of the route with penalties added for threats de-
tected. This is inverted to give a fitness maximisation goal. Experiments use
proportional inheritance in an EA using roulette wheel selection and evalua-
tion of all the initial population. With a population of 250, the best results
are obtained by evaluating (surprisingly) only one individual per generation. It
is suggested that the use of inheritance allows high selection pressure and still
achieves convergence.
Sastry et al.[30] investigate convergence times, population sizing, optimal inher-
itance proportions and speed increases from a theoretical standpoint and verify
and extend Smith’s work[32]. However only the OneMax problem with average
fitness inheritance is covered and so this work does not represent any substantial
practical advance.
Ducheyne[5] cites a well-known suite of Multi-objective Optimisation (MO)
problems by Zitzler (1999)[44] for testing GAs. Use of this suite establishes
that the Pareto-front must be convex and continuous for fitness inheritance to
be effective. It is suggested that running a GA for a few generations can de-
termine if the Pareto-front is convex and continuous. If so, use of the weighted
average fitness inheritance is recommended, as in a few MO problems it is better
than average, although usually they are both the same.

The simplicity of fitness inheritance makes it an attractive option for improving
EA efficiency.

5.5.2 Machine Learning Assistance

Baluja [2] proposes to combat the tendency of EA populations to gravitate to
local rather than global solutions by the use of sub-populations instead of a
single large population. On the basis of a binary encoding for a population of
chromosomes, Population Based Incremental Learning (PBIL) creates a Proba-
bility Vector (PV) to represent the population. This PV has the same number
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of features as the population chromosome has genes. Each PV feature value
is the frequency of that bit in the population i.e. the probability of that bit
being set. The PBIL algorithm conducts operations on the PV in the way GA
operations are applied to individuals of the population.
The PBIL algorithm is generational:

• Initialise a PV with values of 0.5
Repeat

• Generate a population of individuals from the PV, evaluate all fitnesses

• Use the fittest individual and the Learning Rate to update the PV with
some probability, Mutation Rate (typically 0.02) by a small fixed amount,
Mutation Shift (typically 0.05).
Until a termination condition is met.

Mutation is important, particularly in the later stages of search, whilst crossover
is more significant in the early stages.
Of the PBIL parameters of population, learning rate, mutation rate and muta-
tion shift, only learning rate is discussed, since the other parameters correspond
with those in GAs and Baluja expects tuning methods will carry over. The
learning rate affects the speed with which the PV approaches a good individual.
It also influences the areas of the search space to be investigated. Two exten-
sions to the basic PBIL algorithm are suggested – using several individuals to
update the PV instead of one, and using the poorest individual to update the
PV by adjusting away from it. This second option may not be successful at the
end of a search when the best and worst individuals are close together.
An extensive analysis is conducted of six PBIL algorithm variants and two GAs
on 12 problems including the classic Travelling Sales Person and Bin packing
problems.
Baluja concludes that the PBIL Algorithm benefits from simplicity of implemen-
tation and a reduction in the number of fitness evaluations and can outperform
GAs in the range of problems examined.

In[27] Petrovski et al. compare the performance of a Genetic Algorithm (GA)
and a PBIL algorithm (after Baluja [2])which uses a binary chromosome rep-
resentation. The GA is that described in an earlier work [25] using fitness
proportionate selection. Using the same population size (100) as the GA and a
learning rate of 0.3, the PBIL algorithm achieves considerably better efficiency;
finding feasible solutions in under 6,700 fitness function evaluations compared
to the GA’s 32,900. The value of fitness found in this experiment is not given,
the comparative results being presented as a graph of run length distribution.
A second experiment to compare the quality of solutions uses the tuned GA and
an adjusted learning rate of 0.05 to find solutions after 200,000 fitness evalua-
tions. The improvement in fitness values found by the PBIL algorithm is shown
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to be statistically significant. Petrovski et al. state that “this result can have
practical implications.” But there is no mention of the extent of the trade-off
which may exist between getting fast results in 7,000 evals and good results
after 200,000 evals. So the practical implications are nebulous, due to lack of
some absolute values.

According to Michalski[20] EAs can be inefficient for complex problems. This
is partly due to the random nature of evolution. In contrast with Baluja’s
PBIL, where each generation stands alone, Michalski alternates Machine Learn-
ing (ML) to guide the production of each new generation from previous ones,
with conventional EA methods to get the best of both worlds.
The main steps in the process are:

1. Generate an initial population by some method, or randomly.

2. Using a fitness function evaluation as criterion, identify two groups – one
of High Performance (HP) and one of Low Performance (LP) in the popu-
lation. Apply an ML method to distinguish between the groups. Generate
new individuals and use ML to select HP individuals. Combine these with
the previous generation HP group and select to form a new generation.
Repeat until ML mode termination condition is met.

3. If LEM termination condition is met Stop.

4. Use EA methods of mutation, crossover and selection to generate a new
population. Repeat until EA termination condition is met.

5. Repeat steps 2 and 4 alternately until LEM termination condition is met.

Methods in ML mode for generation and selection of individuals can be similar
to EA methods for these operations.
Michalski concludes that ML can significantly improve EA performance and can
also sequentially reduce the search subspaces which may contain a solution.

Jourdan et al.[12] cite Michalski[20] as part inspiration to address the need to
accelerate EA solutions in multi-objective problems like large water distribu-
tions networks, which have complex and slow simulations to evaluate fitness.
Finding a suitable quality measure is not trivial and the S metric by Zitzler[43]
is used as a reference point for comparison. The largest pipe diameters (i.e. the
maximum cost) and the smallest pipe diameters (i.e. the biggest head loss) are
used to compute the metric. Adapting the LEM of Michalski[20] and a deci-
sion tree algorithm for machine learning necessitated addressing the problems
of defining a training set for learning and how to use the rules generated by the
decision tree to generate new population members for the EA. Focusing on one
objective at a time and alternating between the two objectives simplified the
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training set selection. Applying the (positive) learned rules produces new indi-
viduals for the next evolutionary phase. Experiments running a learning phase
every ten generations show improved results in fewer evaluations. An interesting
counter-intuitive conclusion is that the reduction in required evaluations seems
to increase with the problem size.

It seems in the field of chemotherapy drug schedule optimisation, there are pos-
sibilities for improving efficiency by tuning GAs, fitness inheritance and machine
learning methods.
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Chapter 6

Conclusions

6.1 Discussion

Several methods of optimising chemotherapy regimens have been investigated.
They are often computationally expensive. This project aims to find ways to re-
duce the time to find chemotherapy drug schedules, by conducting experiments
as described earlier. These will be derived from the study of existing methods
found in the literature, namely fitness estimation and machine learning tech-
niques. Success will be measured in terms of reduction in fitness evaluations
required in comparison with the control EA.

6.2 Conclusion

Experiments will determine whether these methods can reduce the number of
fitness function evaluations and thus reduce EA computation time in the drug
scheduling problem, while maintaining the quality of solutions.
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