High Performance Data Mining

Chapter 4: Association Rules

Vipin Kumar

Army High Performance Computing Research Center Department of Computer Science University of Minnesota

http://www.cs.umn.edu/~kumar

Chapter 4: Algorithms for Association Rules Discovery

Outline

Serial Association Rule Discovery

- Definition and Complexity.
- Apriori Algorithm.

• Parallel Algorithms

- Need
- Count Distribution, Data Distribution
- Intelligent Data Distribution, Hybrid Distribution
- Experimental Results

Association Rule Discovery: Support and Confidence

TID	Items
1	Bread, Milk
2	Beer, Diaper, Bread, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Bread, Diaper, Milk

Association Rule: $X \Rightarrow_{s,\alpha} y$ Support: $s = \frac{\sigma(X \cup y)}{|T|} (s = P(X, y))$ Confidence: $\alpha = \frac{\sigma(X \cup y)}{\sigma(X)|} (\alpha = P(y | X))$ Example: {Diaper, Milk} $\Rightarrow_{s,\alpha}$ Beer $s = \frac{\sigma(Diaper, Milk, Beer)}{Total Number of Transactions} = \frac{2}{5} = 0.4$ $\alpha = \frac{\sigma(Diaper, Milk, Beer)}{\sigma(Diaper, Milk)|} = 0.66$

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

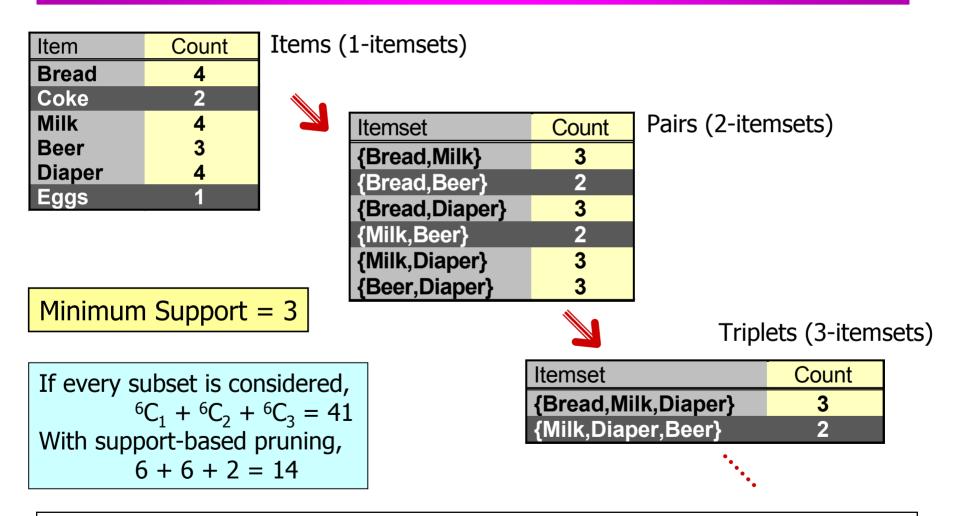
Handling Exponential Complexity

- Given *n* transactions and *m* different items:
 - number of possible association rules: $O(m2^{m-1})$
 - computation complexity: $O(nm2^m)$
- Systematic search for all patterns, based on support constraint [Agarwal & Srikant]:
 - If {A,B} has support at least α , then both A and B have support at least α .
 - If either A or B has support less than α , then {A,B} has support less than α .
 - Use patterns of *n*-1 items to find patterns of *n* items.

- Collect single item counts. Find large items.
- Find candidate pairs, count them => large pairs of items.
- Find candidate triplets, count them => large triplets of items, And so on...
- Guiding Principle: <u>Every subset of a frequent</u> <u>itemset has to be frequent.</u>

Used for pruning many candidates.

Illustrating Apriori Principle



© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

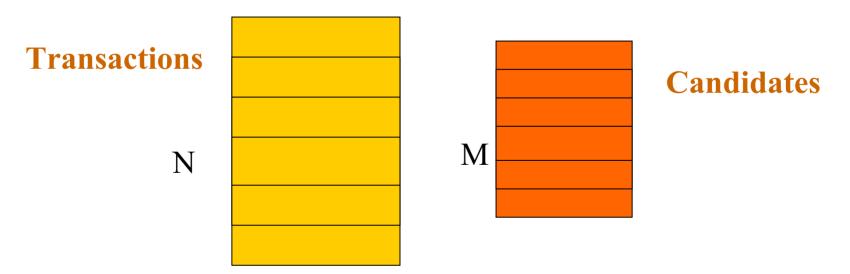
Apriori Algorithm

```
F_1 = \{ \text{frequent 1-item sets} \};
k = 2;
while (F_{k-1} is not empty) {
           C_k = Apriori generate(F_{k-1});
           for all transactions t in T {
                      Subset(C_k, t);
           F_k = \{ c \text{ in } C_k \text{ s.t. c.count} >= \text{minimum support} \};
}
Answer = union of all sets F_k;
```

Association Rule Discovery: Apriori_generate

Counting Candidates

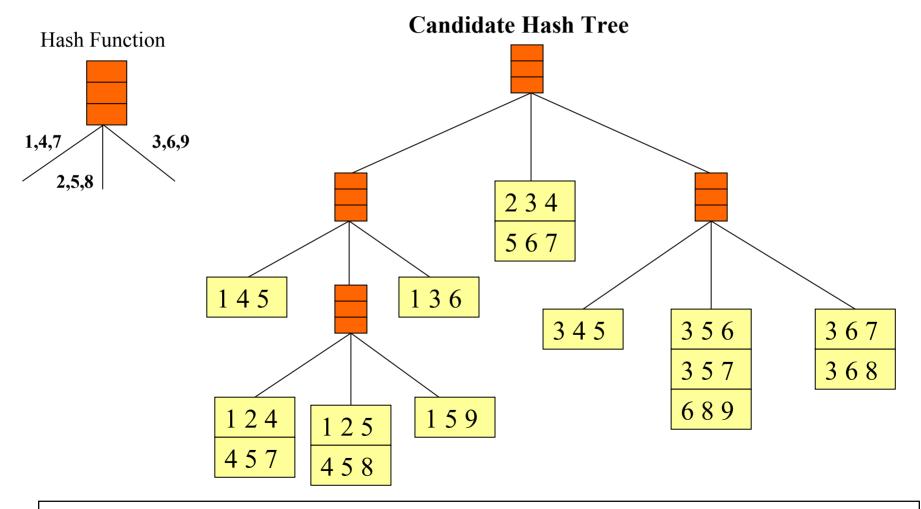
- Frequent Itemsets are found by counting candidates.
- Simple way:
 - Search for each candidate in each transaction.
 Expensive!!!



© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

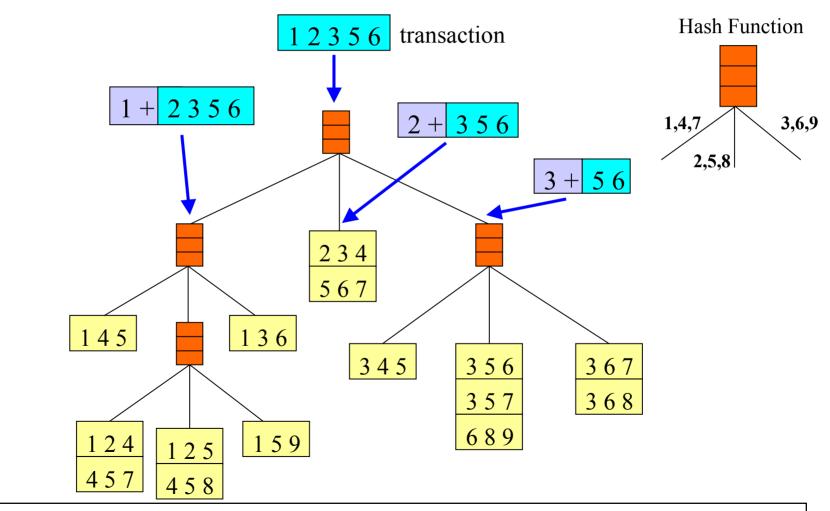
Association Rule Discovery: Hash tree for fast access.



© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

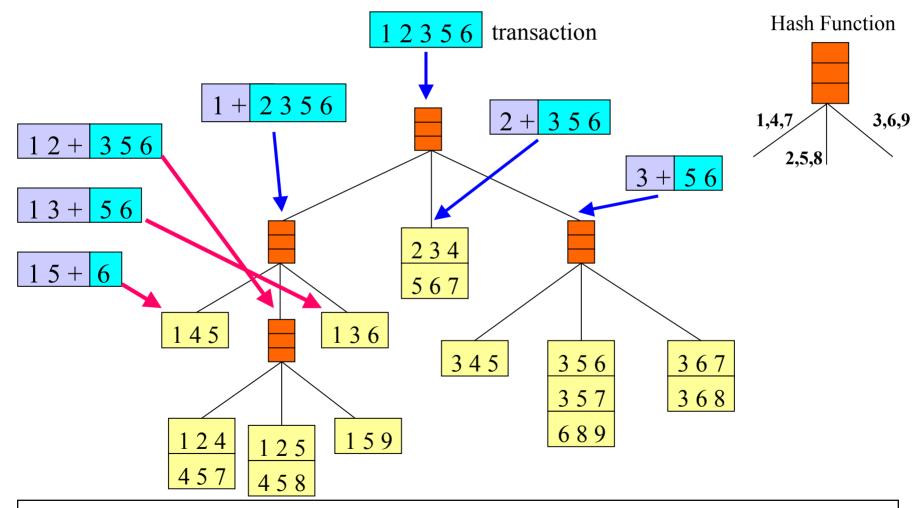
Association Rule Discovery: Subset Operation



© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

Association Rule Discovery: Subset Operation (contd.)



© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

Parallel Formulation of Association Rules

• Need:

- Huge Transaction Datasets (10s of TB)
- Large Number of Candidates.

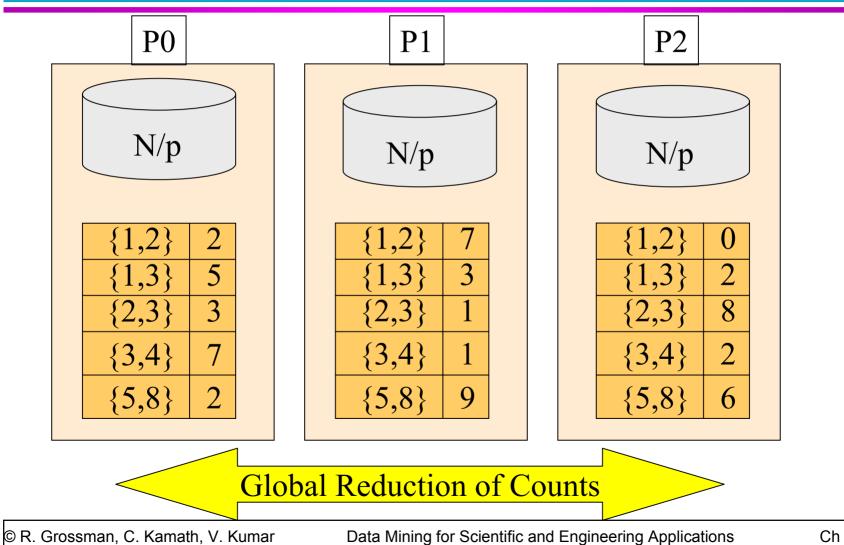
• Data Distribution:

- Partition the Transaction Database, or
- Partition the Candidates, or
- Both

Parallel Association Rules: Count Distribution (CD)

- Each Processor has complete candidate hash tree.
- Each Processor updates its hash tree with local data.
- Each Processor participates in global reduction to get global counts of candidates in the hash tree.
- Multiple database scans are required if the hash tree is too big to fit in the memory.

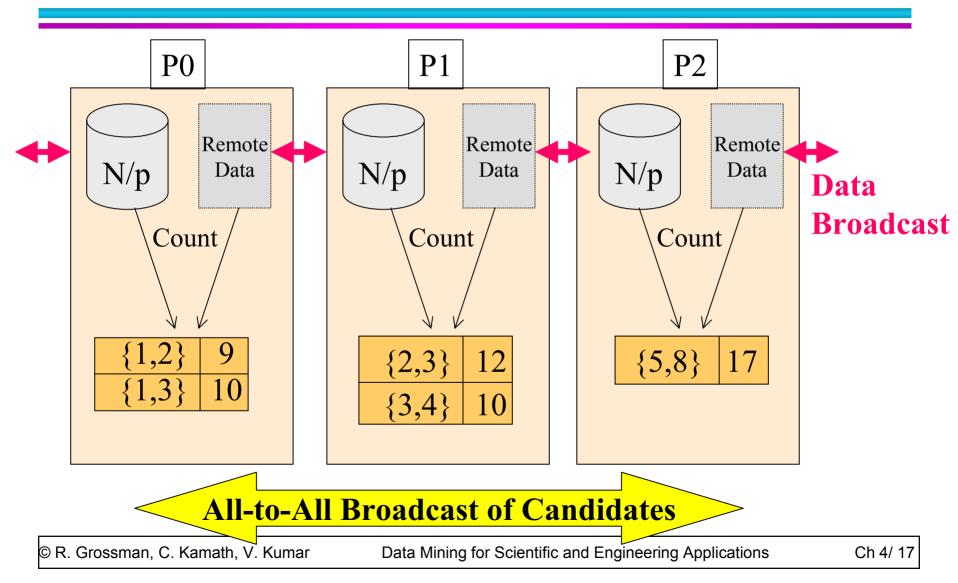
CD: Illustration



Parallel Association Rules: Data Distribution (DD)

- Candidate set is partitioned among the processors.
- Once local data has been partitioned, it is broadcast to all other processors.
- High Communication Cost due to data movement.
- Redundant work due to multiple traversals of the hash trees.

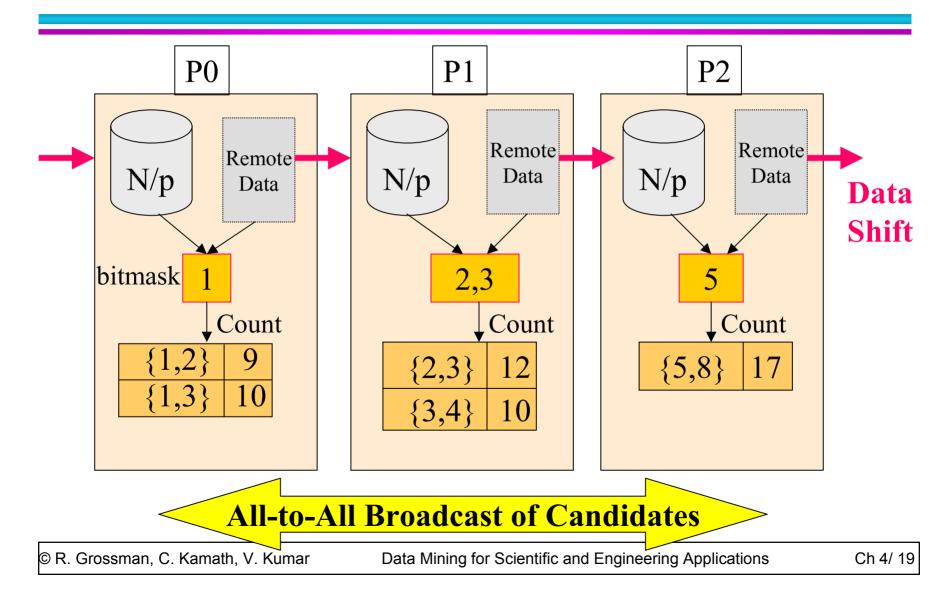
DD: Illustration



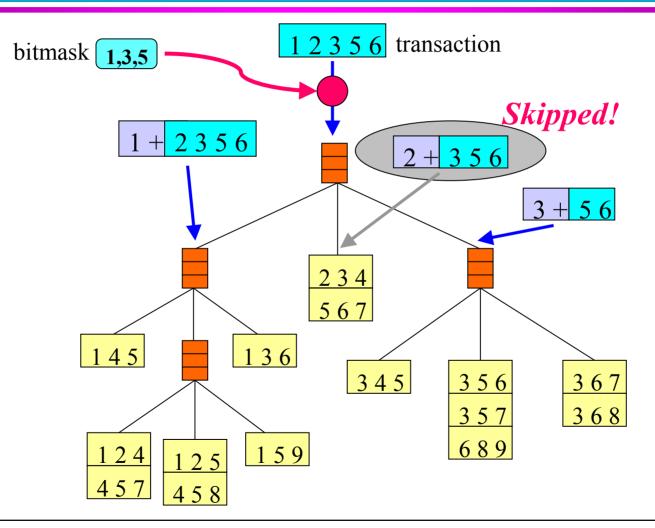
Parallel Association Rules: Intelligent Data Distribution (IDD)

- Data Distribution using point-to-point communication.
- Intelligent partitioning of candidate sets.
 - Partitioning based on the first item of candidates.
 - Bitmap to keep track of local candidate items.
- Pruning at the root of candidate hash tree using the bitmap.
- Suitable for single data source such as database server.
- With smaller candidate set, load balancing is difficult.

IDD: Illustration



Filtering Transactions in IDD



© R. Grossman, C. Kamath, V. Kumar

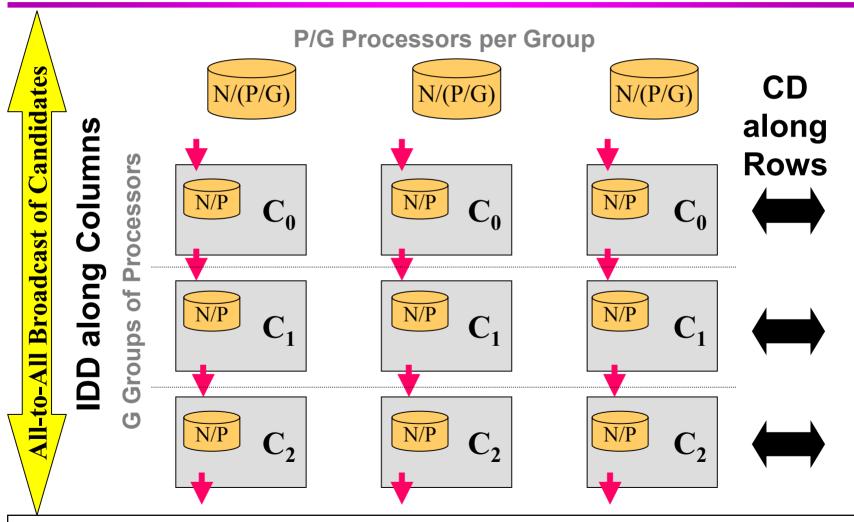
Data Mining for Scientific and Engineering Applications

Parallel Association Rules: Hybrid Distribution (HD)

- Candidate set is partitioned into G groups to just fit in main memory
 - Ensures Good load balance with smaller candidate set.
- Logical processor mesh G x P/G is formed.
- Perform IDD along the column processors
 - Data movement among processors is minimized.
- Perform CD along the row processors

- Smaller number of processors is global reduction operation.

HD: Illustration



© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

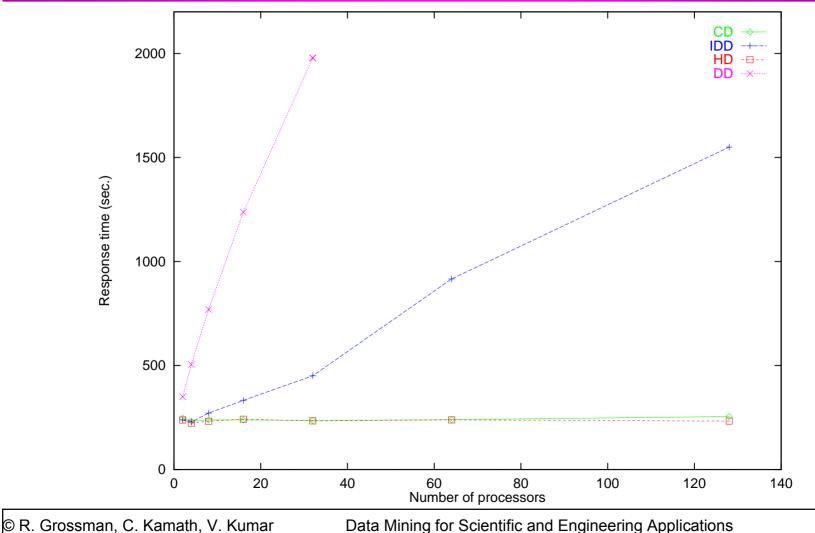
Parallel Association Rules: Experimental Setup

• 128-processor Cray T3D

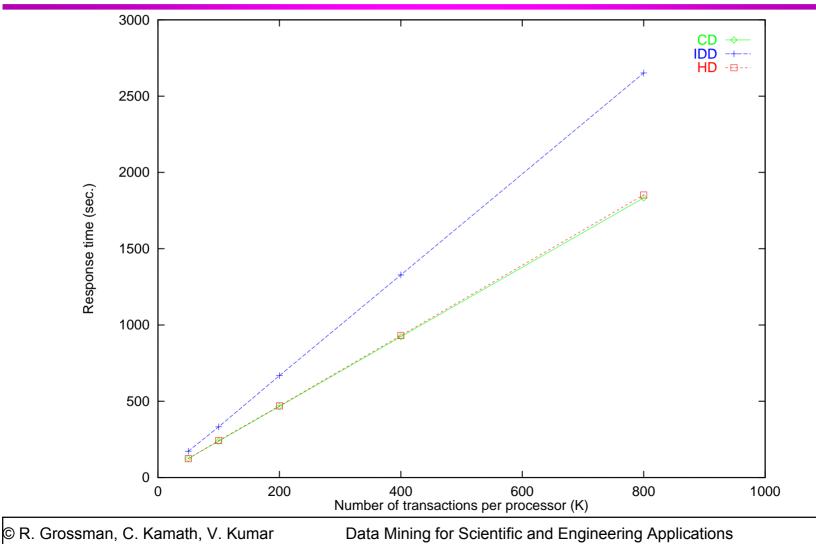
- 150 MHz DEC Alpha (EV4)
- 64 MB of main memory per processor
- 3-D torus interconnection network with peak unidirectional bandwidth of 150 MB/sec.
- MPI used for communications.
- Synthetic data set: avg transaction size 15 and 1000 distinct items.
- For larger data sets, multiple read of transactions in blocks of 1000.
- HD switch to CD after 90.7% of the total computation is done.

© R. Grossman, C. Kamath, V. Kumar

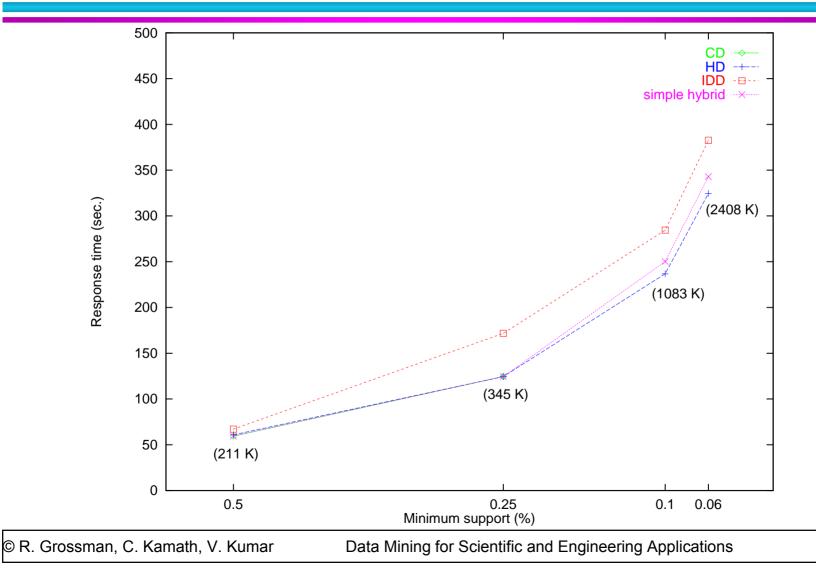
Parallel Association Rules: Scaleup Results (100K,0.25%)



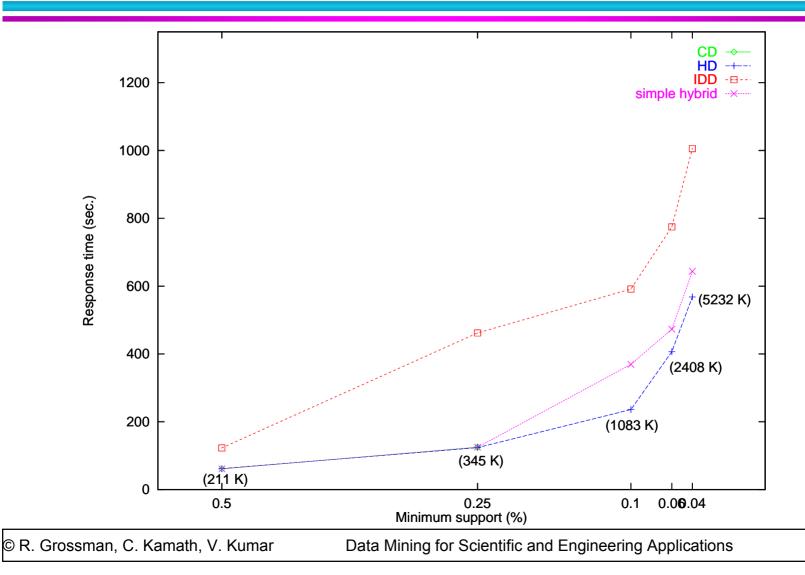
Parallel Association Rules: Sizeup Results (np=16,0.25%)



Parallel Association Rules: Response Time (np=16,50K)



Parallel Association Rules: Response Time (np=64,50K)



Parallel Association Rules: Minimum Support Reachable

Number of Processors	1	2	4	8	16	32	64
Successful Down to	0.25	0.2	0.15	0.1	0.06	0.04	0.03
Ran out of memory at	0.2	0.15	0.1	0.06	0.04	0.03	0.02

Parallel Association Rules: Processor Configuration in HD

64 Processors and 0.04 minimum support

Pass	2	3	4	5	6	7	8
Configuration	8 x 8	64 x 1	4 x 16	2 x 32	2 x 32	2 x 32	2 x 32
# of Candidates	351 K	4348 K	115 K	76 K	56 K	34 K	16 K

Parallel Association Rules: Summary of Experiments

- HD shows the same linear speedup and sizeup behavior as that of CD.
- HD Exploits Total Aggregate Main Memory, while CD does not.
- IDD has much better scaleup behavior than DD