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Chapter 4: Algorithms for Association
Rules Discovery

Outline
® Serial Association Rule Discovery
— Definition and Complexity.
— Apriori Algorithm.
® Parallel Algorithms
— Need
— Count Distribution, Data Distribution
— Intelligent Data Distribution, Hybrid Distribution
— Experimental Results
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Association Rule Discovery:
Support and Confidence

TID Items

1 Bread, Milk

2 Beer, Diaper, Bread, Eggs
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Bread, Diaper, Milk

.. Example:
Association Rule: . .
K=Y {Diaper,Milk} = Beer
. o(XuU : :
Support: s = ( y) (s = P(X,y)) ‘o o (Diaper, Mllk,Beer). _ 2 _04
| T | Total Number of Transactions 5
Confidence: ¢ = M(a - P(y| X)) ., o(Diaper,Milk,Beer) _
o(X)| o(Diaper, Milk) | '
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Handling Exponential Complexity

® Given n transactions and m different items:
— number of possible association rules:O(m2"™)
— computation complexity: O(nm2™)

® Systematic search for all patterns, based on
support constraint [Agarwal & Srikant]:

— If {A,B} has support at least a, then both A and B have
support at least a.

— If either A or B has support less than a, then {A,B} has
support less than a.

— Use patterns of n-1 items to find patterns of # items.
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Apriori Principle
® Collect single item counts. Find large items.

® Find candidate pairs, count them => large pairs
of items.

® Find candidate triplets, count them => large
triplets of items, And so on...

® Guiding Principle:_Every subset of a frequent
itemset has to be frequent,

— Used for pruning many candidates.
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lllustrating Apriori Principle

ltem Count | Items (1-itemsets)
N ltemset Count | Pairs (2-itemsets)
{Bread,Milk}
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
—  {Beer,Diaper} 3
Minimum Support = 3 _ _
N Triplets (3-itemsets)
If every subset is considered, I Count
°Cy + %G, o+ G, = 41 e —
With support-based pruning, ’ : .
6+6+2=14
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Apriori Algorithm

F, = {frequent 1-item sets};
k=2;
while( F_; 1s not empty ) {
Ci = Aprior1_generate( Fy; );
for all transactions t in T {
Subset( Cy, t );

;

F,. = { ¢ in Cy s.t. c.count >= minimum_support};

b

Answer = union of all sets Fy;
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Association Rule Discovery:
Apriori_generate

Aprior1_generate( F(k-1) ) {
jOil’l Fk_1 with Fk_1 such that,
ci=@0;,1,.,54)and c;=(1, ]2, .. , Ji1) Join together 1f
1,= ], for 1 <=p <=k-1,
and then new candidate, c, has a form
C = (11,125 51k 15 Jie1)-
c 1s then added to a hash-tree structure.
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Counting Candidates

® Frequent Itemsets are found by counting
candidates.
® Simple way:

— Search for each candidate in each transaction.
Expensive!!l

Transactions .
Candidates

N
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Association Rule Discovery:

Hash tree for fast access.

Hash Function

1,4,7 3,6,9

2,5,8

124

Candidate Hash Tree

457

125

159

689

458

© R. Grossman, C. Kamath, V. Kumar

Data Mining for Scientific and Engineering Applications

Ch 4/ 10




Association Rule Discovery:

Subset Operation

1+

2356

124
457

transaction

2+

356

125

458

159

689

Hash Function

1,4,7 3,6,9
2,5,8
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Association Rule Discovery:
Subset Operation (contd.)

Hash Function

] 2 3 5 6 | transaction
|
1+]2356 2+356 14,7 3,6,9
12+]356 X 58
3+56
13+]56 <
234
15+]6 . 5 67
145 136
345 356 367
357 368
124|125/ L159 6389
45711458
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Parallel Formulation of
Association Rules

® Need:
— Huge Transaction Datasets (10s of TB)
— Large Number of Candidates.

® Data Distribution:
— Partition the Transaction Database, or

— Partition the Candidates, or
— Both
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Parallel Association Rules:
Count Distribution (CD)

® Each Processor has complete candidate hash
tree.

® Each Processor updates its hash tree with local
data.

® Each Processor participates in global reduction
to get global counts of candidates in the hash
tree.

® Multiple database scans are required if the hash
tree is too big to fit in the memory.
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CD: lllustration

PO Pl P2
EEST
12v]2 12y 7 12710
13V 5 13} 3 1372
2373 231 2378
341 |7 3.4 1 3412
58] 2 58119 5816

< Global Reduction of Counts>
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Parallel Association Rules:
Data Distribution (DD)

® Candidate set is partitioned among the
Processors.

® Once local data has been partitioned, it is
broadcast to all other processors.

® High Communication Cost due to data
movement.

® Redundant work due to multiple traversals of
the hash trees.
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DD: lllustration

Count
127]9
1,31 [10

0 Remote 4_’
Data

Remote
Data

Count

12,3}
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Remote
Data
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Data

Count

19,8)
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Broadcast
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|
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Parallel Association Rules:
Intelligent Data Distribution (IDD)

® Data Distribution using point-to-point communication.

® Intelligent partitioning of candidate sets.
— Partitioning based on the first item of candidates.
— Bitmap to keep track of local candidate items.

® Pruning at the root of candidate hash tree using the
bitmap.

® Suitable for single data source such as database server.

® With smaller candidate set, load balancing is difficult.
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IDD: lllustration

PO Pl P2
D D D
—> m Remote === m Remote_’ m Remote_>
Data Data Data
Data
Shift
2,3 5
Count Count l Count
1,25 1 9 231112 (5.8 |17
Loy | 1 3.4 10

@‘FO-AH Broadcast of Candidb

\I I/
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Filtering Transactions in IDD

bitmask 1 2 3 5 6| transaction
‘\»? kipped!
1+H2356 @

56

145
367
368
124]|125| 159 689
45711458
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Parallel Association Rules: Hybrid

Distribution (HD)

® Candidate set is partitioned into G groups to just

fit in main memory

— Ensures Good load balance with smaller
candidate set.

® Logical processor mesh G x P/G is formed.

® Perform IDD along the column processors
— Data movement among processors is
minimized.
® Perform CD along the row processors

— Smaller number of processors is global
reduction operation.
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Hlustration

@to-All Broadcast of Candid@

IDD along Columns
G Groups of Processors

P/G Processors per Group

@
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Parallel Association Rules:
Experimental Setup

® 128-processor Cray T3D
— 150 MHz DEC Alpha (EV4)
— 64 MB of main memory per processor

— 3-D torus interconnection network with peak unidirectional
bandwidth of 150 MB/sec.

® MPI used for communications.

® Synthetic data set: avg transaction size 15 and 1000
distinct items.

® For larger data sets, multiple read of transactions in
blocks of 1000.

® HD switch to CD after 90.7% of the total computation is
done.
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Parallel Association Rules:
Scaleup Results (100K,0.25%)
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Parallel Association Rules:
Sizeup Results (np=16,0.25%)
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Parallel Association Rules:
Response Time (np=16,50K)
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Parallel Association Rules:
Response Time (np=64,50K)
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Parallel Association Rules:
Minimum Support Reachable

Number of Processors 1 2 4 8 16 32 64
Successful Down to 0.25 0.2 0.15 0.1 0.06 0.04 0.03
Ran out of memory at 0.2 0.15 0.1 0.06 0.04 0.03 0.02
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Parallel Association Rules:
Processor Configuration in HD

64 Processors and 0.04 minimum support

Pass 2 3 4 S 6 7 8
Configuration 8x8 64x1 |(4x16 2x32 2x32 [2x32 2x32
# of Candidates 351K 4348K 115K |76 K (56K [|34K |16K
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Parallel Association Rules:
Summary of Experiments

® HD shows the same linear speedup and
sizeup behavior as that of CD.

® HD Exploits Total Aggregate Main
Memory, while CD does not.

® IDD has much better scaleup behavior
than DD
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