A tutori_al on r_ul_e indqction

Peter A. Flach
Department of Computer Science
University of Bristol

Overview

i Introduction
i Learning rules with CN2
§ Learning Prolog rules with ILP

Rule learning with other declarative languages

Example 1: linear classification

Positive
Negative
m Unknown

Example 1: linear classification

Positive
¢ PosPred

Negative
i NegPred

Example 2: decision tree

eClass 1
m Class 2
AClass 3

Class 4

Example 2: decision tree

if X<x1 then @

else if Y<yl then W
else if Y<y2 then A
else

Y, <Y

Example 3: rules

eClass 1
m Class 2
AClass 3

Class 4

Example 3: rules

eClass 1
m Class 2
AClass 3

Class 4

Example 4: clusters

Inductive concept learning

§ Given: descriptions of

I Find. a concept covering
and

too general
(covering

not yet refuted

Version Space

too specific
(not covering

Coverage and subsumption

i (Semi-)propositional languages such as
cannot distinguish between
Instances and concepts.

§I Consequently, testing coverage of an instance by a
concept becomes equivalent to testing
of one concept by another.
I (size=medium or large) and (colour=red)
covers / subsumes
I (size=large) and (colour=red) and
(shape=square)

Generalisation and specialisation

a concept involves enlarging its
extension in order to cover a given instance or
subsume another concept.

Specialising a concept involves restricting its
extension in order to avoid covering a given instance
or subsuming another concept.

= Least General Generalisation

MGS = Most General Specialisation

Overview

§ Introduction
il Learning rules with CN2
§ Learning Prolog rules with ILP

Rule learning with other declarative languages

The CN2 algorithm

I Combine AQ (Michalski) with decision tree learning
(search as for AQ, criteria as for decision trees)
I AQ depends on a seed example
I AQ has difficulties with noise handling

I CN2 learns unordered or ordered rule sets of the
form: {R1, R2, R3, ..., D}
covering approach (but stopping criteria relaxed)

unordered rules: rule Class |F Conditions is learned
by first determining Class and then Conditions

ordered rules: rule Class IF Conditions is learned by
first determining Conditions and then Class

CN2 rule set representation

Form of CNZ2 rules:
IF Conditions THEN MajClass [ClassDistr]

Sample CN2 rule for an 8-class problem ‘early diagnosis of
rheumatic diseases’:

IF Sex = male AND Age > 46 AND
Number_of painful joints > 3 AND
Skin_manifestations = psoriasis

THEN Diagnosis = Crystal_induced_synovitis

[010101200]

CN2 rule base: {R1, R2, R3, ..., DefaultRule}

Original AQ covering algorithm

i for each class C, do
I E =P, UN, (P, positive, N, negative)
I RuleSet(C,) := empty
I repeat {find-set-of-rules}
| find-one-rule R covering some positive examples and no negatives

| add R to RuleSet(C;)
| delete from P, all positive examples covered by R

I until P, = empty

Learning unordered set of rules

§ for each class C, do
I E =P, UN, RuleSet(C,) := empty
I repeat {find-set-of-rules}
| R:= Class=C ; IF Conditions , Conditions :=true

| repeat {learn-one-rule}
R':= Class=C , IF Conditions AND Cond

(general-to-specific beam search of Best R’)

until stopping criterion is satisfied
(no negatives covered or Performance(R’) < ThresholdR)

| add R’ to RuleSet(C;)
| delete from P, all positive examples covered by R’

I until stopping criterion is satisfied (all positives covered or
Performance(RuleSet(C,)) < ThresholdRS)

Unordered rulesets

i rule Class I|F Conditions IS learned by first
determining Class and then Conditions
I NB: ordered sequence of classes C,, ..., C_ in RuleSet

I But: unordered (independent) execution of rules when
classifying a new instance: all rules are tried and predictions of
those covering the example are collected; voting is used to
obtain the final classification

i if no rule fires, then DefaultClass (majority class in E)

PlayTennis training examples

Day | Outlook | Temperature| Humidity| Wind | PlayTennis

D1

Sunny

Hot

High

Weak

No

D)

Sunny

Hot

High

Strong

No

D3

Overcast

Hot

High

Weak

Yes

D4

Rain

Mild

High

Weak

Yes

D5

Rain

Cool

Normal

Weak

Yes

B]§)

Rain

Cool

Normal

Strong

No

D7

Overcast

Cool

Normal

Strong

Yes

D8

Sunny

Mild

High

Weak

No

D9

Sunny

Cool

Normal

Weak

Yes

D10

Rain

Mild

Normal

Weak

Yes

D11

Sunny

Mild

Normal

Strong

Yes

D12

Overcast

Mild

High

Weak

Yes

D13

Overcast

Hot

Normal

Weak

Yes

D14

Rain

Mild

High

Strong

No

Learn-one-rule as search

Play tennis = yes IF true

Play t(_ennis = yes Play tennis = yes
IF Wind=weak IF Humidity=high

Play tennis = yes Play tennis = yes
IF Wind=strong IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, IF Humidity=normal,
Wind=strong Outlook=sunny

Learn-one-rule as heuristic search

Play tennis = yes IF true [9+,5-] (14)

Plllgyvt/'endnis = ykeS Play tennis = yes
ind=wea IE Humiditv=hiah
6+.2-1 (8) | - umidity=hig
Play tennis = yes Play tennis = yes [3+,4=] ()
IF Wind=strong IF Humidity=normal
[3+,3-] (6) [6+,1-] (V)

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, IF Humidity=normal,
Wind=strong Outlook=sunny
[2+,0-] (2)

Heuristics for learn-one-rule

§ Evaluating accuracy of a rule:
I A(C, IF Conditions) = p(C; | Conditions)

I Estimating probability with relative frequency:

[covered positives / covered examples
[[6+,1-] (7) = 6/7, [2+,0-] (2) = 2/2 =1

Probability estimates

I Relative frequency of covered positives:
| problems with small samples

I Laplace estimate :
| assumes uniform prior distribution of k classes

I m-estimate :
special case: p,(+)=1/k, m=k

takes into account prior probabilities p,(C)
instead of uniform distribution

independent of the number of classes k
| m is domain dependent (more noise, larger m)

Other search heuristics

I Expected accuracy on positives
I AR) =p(+[R)

I Informativity (#bits needed to specify that example

covered by R is +)

I I(R) = -log, p(+|R)

I Accuracy gain (increase in expected accuracy):
I AG(R,R) = p(+|R’) - p(+|R)

I Information gain (decrease in the information needed):
I IG(R',R) = log, p(+|R’) - log, p(+|R)

I Weighted measures in order to favour more general rules:
I WAG(R',R) = n(+R’)/n(+R) * (p(+|R") - p(+|R)
I WIG(R',R) = n(+R’)/n(+R) * (log,p(+|R’) - log,p(+|R))

Ordered rulesets

i rule Class I|F Conditions Is learned by first
determining Conditions and then Class
I NB: mixed sequence of classes C,, ..., C, in RuleSet

I But: ordered execution when classifying a new instance: rules
are sequentially tried and the first rule that ‘fires’ (covers the

example) is used for classification

i if no rule fires, then DefaultClass (majority class in E)

Learning ordered set of rules

RuleList := empty; E_ = E
repeat

| learn-one-rule R
| RuleList := RuleList ++ R
| Egyur = Eqyr - {all examples covered by R}

until performance(R, E_,) < ThresholdR
RuleList := sort RuleList by performance(R,E)
RuleList := RuleList ++ DefaultRule(E

Cu r)

Overview

§ Introduction
i Learning rules with CN2
i Learning Prolog rules with ILP

I Rule learning with other declarative languages

First-order representations

representations:
I datacase is
| features are those given in the dataset

representations:

I datacase is
| sequence, set, graph
| hierarchical: e.g. set of sequences

I features need to be from potentially infinite set

Predicting carcinogenicity

B A molecular compound is carcinogenic if:

Concept learning in logic

I Given:
[
[
I background theory E

i Find: a hypothesis
definitions) such that
I for every . BUH

I for every . B HY

Seliailed,
1 set of predicate definitions;

Clausal logic

[IX: bachelor(X) - male(X)Zadult(X)& married(X)

bachelor(X);married(X):-male(X),adult(X).
~

indefinite clause

male(X):-bachelor(X).

adu|t(X):-bache|or(x)_ <+—— definite (Horn) clauses

— denial
:-bachelor(X),married(X).

Ancestors:
I ancestor(X,Y):-parent(X,Y).
I ancestor(X,Y):-parent(X,),ancestor(Y).

i Lists:
I member(X,[X|Z]).
I member(X,[Y|Z]):-member(X,2).

I append([],X,X).
I append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).

ILP methods

approach
start with

by applying inverse substitutions and/or
removing literals

approach
start with
by applying substitutions and/or adding literals

Top-down induction: example

example

action

add clause
specialise
specialise

add clause

hypothesis
p(X,Y).
p(X, [VIW]).
p(X, [X|W]).

p(X, [X|W]) .
p(X,[VIW]) :-p(X,W) .

Bottom-up induction: example

I Treat positive examples + ground background facts as body

I Choose two examples as heads and anti-unify

q(ll,2],[3,41,I11,2,3,4]),q(lal,[],[al),q(l]1,[1,[1),

®

q(ll,2],[3,4]1,[1,2,3,4]),q([a]l,[],[al), a([2],[3,41,[2,3,4])

q([AlIB],C,[AID]):-
a(ri,21,[(3,41,[1,2,3,4]1),a([~I=],<, [~IP]) ,q(W,C,X) ,q([S|=],([3,4],[s,T,U|V]),
q([R|G],K, [RIL]),q([a]l,[],[a]l),q(Q,[1,Q),q9([P],K,[P|K]),
q(N,K,0),q(M, [1,M),q([],[]1,[]),q(G,K,L),
qa(lFlGel,[3,4]1,I[F,H,I|J]),q([E],C,[EIC]),q(B,C,D),q([2],[3,4],[2,3,4])

I Generalise by removing literals until negative examples covered

ILP systems

top-down, incremental, non-heuristic

bottom-up (inverting resolution), incremental, compression
top-down, non-incremental, information-gain

bottom-up, non-incremental, compression

transformation to attribute-value learning

hybrid, non-incremental, compression

East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

ol © ITalloool 11—

ILP representation (flattened)

} Example: m
R e, Lo H © A Hooo 53—

Background theory:

car(tl,cl). car(tl,c2). car(tl,c3). car(tl,cd).
rectangle(cl) . rectangle (c2) . rectangle (c3) . rectangle (c4) .
short(cl) . long(c2). short (c3) . long(c4) .

none (cl) . none (c2) . peaked (c3) . none (c4) .

two wheels(cl). three wheels(c2). two wheels(c3). two wheels(c4).
load(cl,11). load(c2,12). load(c3,13). load(c4,14).
circle(1l1l). hexagon (12) . triangle (13) . rectangle (14) .
one load(1ll). one load(1l2). one load(13). three loads(14).

Hypothesis:
eastbound(T) : -car (T,C) ,short (C) ,not none (C).

ILP representation (terms)

ol © I TaTloool [T
Example:

eastbound ([c (rectangle,short,none,2,1(circle,ll)),
c (rectangle, long,none, 3,1 (hexagon,l)),
c (rectangle,short,peaked, 2,1 (triangle,fl)),
c (rectangle,long,none, 2,1 (rectangle,3))]).

Background theory: empty

Hypothesis:
eastbound (T) : -member (C,T) ,arg(2,C,short),
not arg(3,C,none).

ILP representation (strongly typed)

i Type signature:

data Shape = Rectangle | Hexagon | ..; data Length = Long | Short;
data Roof = None | Peaked | ..; data Object Circle | Hexagon | ..;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape, Length,Roof, Wheels, Load) ; type Train = [Car];

eastbound: : Train->Bool;

o o s Hooo 0

Example:

eastbound ([(Rectangle, Short,None, 2, (Circle, 1)),
(Rectangle, Long, None, 3, (Hexagon, 1)),
(Rectangle, Short, Peaked, 2, (Triangle, 1)),
(Rectangle, Long, None, 2, (Rectangle, 3))]) = True

Hypothesis:
eastbound(t) = (exists \c -> member (c,t) &&
LengthP (c)==Short && RoofP (c) !=None)

ILP representation (strongly typed)

i Type signature:

data Shape Rectangle | Hexagon | ..; data Length Long | Short;
data Roof None | Peaked | ..; data Object Circle | Hexagon | ..;

type Wheels Int; type Load = (Object,Number); type Number = Int
type Car (Shape, Length, Roof, Wheels, Load) ; type Train = [Car];

eastbound: : Train->Bool;

o o s Hooo 0

Example:

eastbound ([(Rectangle, Short,None, 2, (Circle, 1)),
(Rectangle, Long, None, 3, (Hexagon, 1)),
(Rectangle, Short, Peaked, 2, (Triangle, 1)),
(Rectangle, Long, None, 2, (Rectangle, 3))]) = True

Hypothesis:
eastbound(t) = (exists \c -> member (c,t) &&
LengthP (c)==Short && RoofP (c) !=None)

ILP representation (database)

LOAD TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
cl circle 1 tl TRUE
c2 hexagon 1 t2 TRUE
c3 triangle 1
c4 rectangle 3

CAR_TABLE
CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2
SELECT DISTINCT FROM , CAR_TABLE WHERE
= CAR_TABLE.TRAIN AND
CAR_TABLE.SHAPE = 'rectangle' AND
CAR_TABLE.ROOF !="'none'

Complexity of ILP problems

i Simplest case: single table with primary key
I example corresponds to tuple of constants
[or learning

§ Next: single table without primary key
I example corresponds to set of tuples of constants
[problem

I Complexity resides in many-to-one foreign keys
I lists, sets, multisets
I non-determinate variables

ILP representations: summary

I Term representatibn collects (almost) all information
about individual in one term

I what about graphs?

i Strongly typed language provides strong bias

I assumes term representation

I Flattened representation for multiple individuals
I structural predicates and utility predicates

I NB. assumes classification problem
I not: logic program synthesis

Generality

I Generality is primarily an extensional notion:
I one predicate definition is more general than another if its
extension is a proper superset of the latter's extension

I This can be used to and the

hypothesis space

I if a rule does not cover a positive example, none of its
specialisations will

I if arule covers a negative example, all of its generalisations will

I We need an notion of generality,

operating on formulae rather than extensions
I generality of terms, clauses, and theories

Generality of terms

e

i The set of first-order terms is a lattice:
I t, is more general than t, iff for some substitution 0: 1,0 = t,
I glb O unification, lub OO anti-unification
I Specialisation [applying a substitution
I Generalisation [0 applying an inverse substitution

Generality of clauses

I The set of (equivalence classes of) clauses is a lattice:
| C, is more general than C, iff for some substitution 6: C,0 U C,
| glb O 6-MGS, lub O 8-LGG
| Specialisation [applying a substitution and/or adding a literal

I

Generalisation I applying an inverse substitution and/or
removing a literal

NB. There are infinite chains!

6-LGG: examples

a([l,21,13,41,101,2,3,4]):-a([2]1,1[3,4]1,102,3,41])
, [a]

a([al=],C , [A|D]

m(c, [a,b,c]) :—m(c, [b,c]) ,m(c, [c])
m(a/ [a/b]):_m(a/ [a])

m(P/ [a/bl]) :_m(P/ [RI]) /m(P/ [P])

G-subsumptio@Vvs. Tmplication

i Logical implication is stiggtly stronger than
0-subsumption

I edg. b ([X,Y]2]) :-p(2)

I this happens when the resolution derivation requires the
left-hand clause more than once

I i-LGG of definite clauses is not unique
I i-LGG(,
e ([X1Y]):-p(Y),p([X,Y[|Z]) :-p(V)}

§ Logical implication between clauses is undecidable,
0-subsumption is NP-complete

Generality of theories

Simplification 1: T,=BUJ{C,} and T,=BLI{C,} differ just
In one clause

Simplification 2: approximate B by finite ground
model B’

form clauses C,z and C,z by adding ground facts in
B’ to bodies

0-RLGG(C,,C,,B) = 8-LGG(C,z,CR)

6-RLGG: example

[:
a(ll,2],[03,4]1,[1,2,3,4]),

a(ll,[1,01),

a([A|B],
a (

C , [A|D])

1,21,103,41,11,2,3,41)

GIB],I[3,4]1,I[G,H,I|J])

KIL M, [KIN]), a(la]l,I

P],M, [PIM]),
M,) a(s,[1,8), acll,[1,[1), a(L,M,N),
| [T,0,vIiw]), a(X,C,[X|C]), a(B,C,D),
] 131

1) .

L], [3,4]

a (
(
(
(Q,
(LT ’
(2,[34] [2

[
[
[
[
Q
[
[

6-RLGG: example

[:
a(ll,2],[03,4]1,[1,2,3,4]),

a(ll,[1,01),
a([a|B],C , [A|D]) 1 -

[3 4], [G,H,I|J]),
r [KIN]

a(LIMIN) 14
a(x,¢c, [XIC]), a(B,C,D),

6-RLGG: example

a(fa] ,I] :
a(ll,2],[03,4]1,[1,2,3,4]),

a(ll,[1,01),
a([a|B],C , [A|D]) 1 -

a(lGIB],[3,4],[G,H,I|Jd]),

a(x,C, [X|C]), a(B,C,D),

Traditional view of rule learning

: find a set of n rules

I usually simplified by n separate rule constructions
| exception: HYPER

§I Rule construction: find a pair (Head, Body)

I e.g. select class and construct body
| exceptions: CN2, APRIORI

: find a set of m literals

I usually simplified by adding one literal at a time
| problem (ILP): literals introducing new variables

The role of feature construction

i : find a set of n rules
I Rule construction: find a pair (Head, Body)
i : find a set of m features

I Feature construction: find a set of k literals
I e.g. interesting subgroup, frequent itemset
I discovery task rather than classification task

First-order features

Features concern interactions of local variables

i The following rule has two features °
and "
eastbound (T) : -

§ The following rule has one feature ‘has a short

closed car’:

eastbound (T) : -hasCar (T,C) ,clength (C, short),
not croof (C,none).

Propositionalising rules

i Equivalently:

eastbound (T) : -

§ Given a way to construct (or choose) first-order
features, body construction in ILP is propositional

I learn non-determinate clauses with LINUS by saturating
background knowledge

Declarative bias for first-order features

I Flattened representation, but derived from strongly-
typed term representation
one free global variable

each (binary) structural predicate introduces a new
existential local variable and uses either global variable or
local variable introduced by other structural predicate

utility predicates only use variables
all variables are used

§ NB. features can be non-boolean

Example: mutagenesis

I 42 regression-unfriendly molecules
[
I LINUS using CN2: 83%

mutagenic (M, false) : -
logP(M,L),L>1.99,1<5.64.
mutagenic (M, false) : -

lumo (M, Lu) ,Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.
mutagenic (M, false) :—1lumo (M, Lu) , Lu>-0.77.

mutagenic (M, true) : -
lumo (M, Lu) , Lu<-1.21.
mutagenic (M, true) :-logP (M, L),L>5.64,1<6.36.
mutagenic (M, true) : —1lumo (M, Lu) , Lu>-0. 95,
logP (M, L),L<2.21.

Feature construction: summary

i All the expressiveness of ILP is in the features
I body construction is essentially propositional
I every ILP system does constructive induction

i Feature construction is a discovery task
I use of discovery systems such as Warmr, Tertius or Midos
| alternative: use a relevancy filter

Overview

§ Introduction
i Learning rules with CN2
Learning Prolog rules with [LP

I Rule learning with other declarative languages

Attribute-value learning in Escher

i Type definitions:

data Outlook = Sunny | Overcast | Rain;
data Temperature = Hot | Mild | Cool;
data Humidity = High | Normal | Low;
data Wind = Strong | Medium | Weak;

type Weather = (Outlook, Temperature,Humidity,Wind)
playTennis: :Weather->Bool;

I Examples:

playTennis (Overcast, Hot,High, Weak) =
playTennis (Sunny, Hot, High, Weak) =

Attribute-value learning in Escher

outlookP: :Weather->Outlook;
I Hypothes|s outlookP(o,t,h,w) = o;

playTennis (w) =
1f (outlookP (w)==Sunny && humidityP (w)==High) then
else 1f (outlookP(w)==Rain && windP (w)==Strong) then
else ;

Outlook

SLHHI%//////// ()VeTcast \\\\\\ji?h1

Humidity Wind

}ﬁg?/////// IﬁoTnal \\\\\\E?“f Su?f§>//// hdeThnn \\\\\1Yfak

Attribute-value learning in Escher

outlookP: :Weather->Outlook;
I Hypothes|s outlookP(o,t,h,w) = o;

playTennis (w) =
1f (outlookP (w)==Sunny && humidityP (w)==High) then
else 1f (outlookP(w)==Rain && windP (w)==Strong) then
else H

Outlook

Sunny;/////// ()Ve{cast ‘\\\\\ji?hl

Humidity Wind

}ﬁg?/////// IﬁoTnal \\\\\\E?“f Su?f§>//// hdeThnn \\\\\1Yfak

Attribute-value learning in Escher

outlookP: :Weather->Outlook;
I Hypothes|s outlookP(o,t,h,w) = o;

playTennis (w) =
1f (outlookP (w)==Sunny && humidityP (w)==High) then
else if (outlookP(w)==Rain && windP (w)==Strong) then
else H

Outlook

Sunny;/////// ()VeTcast ”\\\\\ji?hl

Humidity Wind

}ﬁg?/////// IﬁoTnal \\\\\\E?“f Snﬁfg;//// DAeThnn \\\\\jifak

Multi-instance learning in Escher

o /\A QA

i Type definitions:
data Shape = Circle | Triangle | In (Shape, Shape);
data Class = |
type Diagram = { (Shape, Int) };

class::Diagram—->Class;

Multi-instance learning in Escher

6 o
I Examples:

class ({ (In(Circle,Triangle),1)}) = 5
class({ (Triangle, 1), (In(Circle,Triangle), 1) })
class({ (In(Triangle,Circle), 1), (Triangle,1) })

§ Hypothesis:

class (d) =
if (exists \p -> p 'in' d && (exists \s t ->
shapeP (p) In(s,t) && s == Circle))
then ;

Multi-instance learning in Escher

6 o
I Examples:

class({ (In(Circle,Triangle),1)}) =

= o
4

class({ (Triangle, 1), (In(Circle,Triangle), 1) })
class({ (In(Triangle,Circle), 1), (Triangle,1) })

§ Hypothesis:
class (d) =

if (exists \p -> p 'in' d && (exists \s t ->

shapeP (p) == In(s,t) && s == Circle))
then else

o
4

Mutagenesis in Escher

i Type definitions:
data Element = Br | C |

type Indl Bool;

type IndA Bool;

type Lumo Float;

type LogP Float;

type Label = Int;

type AtomType = Int;

type Charge = Float;

type BondType = Int;

type Atom = (Label,Element,AtomType,Charge);
type Bond = ({Label},BondType)

type Molecule = (Indl, IndA, Lumo, LogP, {Atom}, {Bond}) ;

mutagenic: :Molecule->Bool;

Mutagenesis in Escher

I Examples:

mutagenic (True, False,-1.246,4.23,
{(1,C,22,-0.117),
(2,C,22,-0.117),

atoms
(26,0,40,-0.388) },
{({1,2},7),

} bonds
({24,26},2)1})

= True;

I NB. Naming of sub-terms cannot be avoided here,
because molecules are graphs rather than trees

Mutagenesis in Escher

§ Hypothesis:
mutagenic (m) =

indlP (m) == True || lumoP (m) <= -2.072 ||

(exists \a -> a 'in' atomSetP (m) && elementP (a)==C &&
atomTypeP(a)==26 && chargeP(a)==0.115) ||

(exists \bl b2 -> bl '"in' bondSetP(m) && b2 '"in' bondSetP (m) &&
bondTypeP (bl)==1 && bondTypeP(b2)==2 &&
not disjoint(labelSetP (bl),h labelSetP(b2)) | |

(exists \a -> a 'in' atomSetP (m) &&
elementP (a)==C && atomTypeP (a)==29 &&

(exists \bl b2 ->
bl '"in' bondSetP(m) && b2 'in' bondSetP (m) &&
bondTypeP (bl)==7 && bondTypeP (b2)==1 &&
labelP(a) 'in' labelSetP (bl) &&
not disjoint (labelSetP(bl) , labelSetP(b2)))) ||

Further reading on ILP

A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Classification of individuals with complex structure. In P. Langley, editor,
Proceedings of the 17th International Conference on Machine Learning, pages 81--88. Morgan Kaufmann, 2000.

P.A. Flach, C. Giraud-Carrier, and J.W. Lloyd. Strongly Typed Inductive Concept Learning. In D. Page, editor, Proceedings
of the 8th International Conference on Inductive Logic Programming, volume 1446 of Lecture Notes in Artificial
Intelligence, pages 185--194. Springer-Verlag, 1998.

P.A. Flach. Knowledge representation for inductive learning. In Anthony Hunter and Simon Parsons, editors, Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), volume 1638 of Lecture Notes in Artificial
Intelligence, pages 160--167. Springer-Verlag, July 1999.

P.A. Flach and N. Lavrac. The role of feature construction in inductive rule learning. In L. De Raedt and S. Kramer, editors,
Proceedings of the ICML2000 workshop on Attribute-Value Learning and Relational Learning: Bridging the Gap,
Stanford University, 2000.

N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning Nonrecursive Definitions of Relations with LINUS. In Y. Kodratoff,
editor, Proceedings of the 5th European Working Session on Learning, volume 482 of Lecture Notes in Artificial
Intelligence, pages 265--281. Springer-Verlag, 1991.

S. Muggleton and W. Buntine. Machine invention of first order predicates by inverting resolution. In Proceedings of the 5th
International Workshop on Machine Learning, pages 339--351. Morgan Kaufmann, 1988.

S. Muggleton and C. Feng. Efficient Induction in Logic Programs. In S. Muggleton, editor, Inductive Logic Programming,
pages 281--298. Academic Press, 1992.

S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming,
13(3-4):245--286, 1995.

J.R. Quinlan. Learning logical definitions from Relations. Machine Learning, 5:239--266, 1990.

E.Y. Shapiro. An algorithm that infers theories from facts. In Proceedings of the 7th International Joint Conference on
Artificial Intelligence, pages 446--452. Morgan Kaufmann, 1981.

See also the ILPnet2 on-line library at http://www.cs.bris.ac.uk/~ILPnet2/Library/

Acknowledgements

Nada Lavrac (Ljubljana) for the CN2 slides

§ John Lloyd, Christophe Giraud-Carrier, Nicolas
Lachiche, and other (former) members of the Bristol
Machine Learning group for joint research

§ This tutorial was financially supported by ILPnet2,
the European Network of Excellence on Inductive

Logic Programming
I http://www.cs.bris.ac.uk/~ILPnet2/

