
A tutorial on rule inductionA tutorial on rule induction

Peter A. Flach

Department of Computer Science

University of Bristol

www.cs.bris.ac.uk/~flach/

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 2

OverviewOverview

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 3

Example 1: linear classificationExample 1: linear classification

Positive
Negative
Unknown

Positive
Negative
Unknown

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 4

Example 1: linear classificationExample 1: linear classification

Positive
PosPred
Negative
NegPred

Positive
PosPred
Negative
NegPred

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 5

Class 1
Class 2
Class 3
Class 4

Class 1
Class 2
Class 3
Class 4

Example 2: decision treeExample 2: decision tree

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 6

Example 2: decision treeExample 2: decision tree

YY

y Y y1 2< ≤y Y y1 2< ≤
Y y≤ 1Y y≤ 1 y Y2 <y Y2 <

XX

X x≤ 1X x≤ 1 x X1 <x X1 <
if X²x1 then
else if Y²y1 then
else if Y²y2 then
else

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 7

Class 1
Class 2
Class 3
Class 4

Class 1
Class 2
Class 3
Class 4

Example 3: rulesExample 3: rules

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 8

Class 1
Class 2
Class 3
Class 4

Class 1
Class 2
Class 3
Class 4

Example 3: rulesExample 3: rules

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 9

Example 4: clustersExample 4: clusters

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 10

Inductive concept learningInductive concept learning

z Given: descriptions of instances and non-instances

z Find: a concept covering all instances
and no non-instances

z Given: descriptions of instances and non-instances

z Find: a concept covering all instances
and no non-instances

ÑÑ
ÑÑ

ÑÑ

++
++

++

ÑÑ

++

not yet refuted
=

Version Space

not yet refuted
=

Version Space

too general
(covering non-instances)
too general
(covering non-instances)

too specific
(not covering instances)
too specific
(not covering instances)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 11

Coverage and subsumptionCoverage and subsumption

z (Semi-)propositional languages such as attribute-
value languages cannot distinguish between
instances and concepts.

z Consequently, testing coverage of an instance by a
concept becomes equivalent to testing
subsumption of one concept by another.
y (size=medium or large) and (colour=red)

 Ê covers / subsumes
y (size=large) and (colour=red) and

(shape=square)

z (Semi-)propositional languages such as attribute-
value languages cannot distinguish between
instances and concepts.

z Consequently, testing coverage of an instance by a
concept becomes equivalent to testing
subsumption of one concept by another.
y (size=medium or large) and (colour=red)

 Ê covers / subsumes
y (size=large) and (colour=red) and

(shape=square)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 12

Generalisation and specialisationGeneralisation and specialisation

z Generalising a concept involves enlarging its
extension in order to cover a given instance or
subsume another concept.

z Specialising a concept involves restricting its
extension in order to avoid covering a given instance
or subsuming another concept.

z LGG = Least General Generalisation

z MGS = Most General Specialisation

z Generalising a concept involves enlarging its
extension in order to cover a given instance or
subsume another concept.

z Specialising a concept involves restricting its
extension in order to avoid covering a given instance
or subsuming another concept.

z LGG = Least General Generalisation

z MGS = Most General Specialisation

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 13

OverviewOverview

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 14

The CN2 algorithmThe CN2 algorithm

z Combine AQ (Michalski) with decision tree learning
(search as for AQ, criteria as for decision trees)
y AQ depends on a seed example

y AQ has difficulties with noise handling

z CN2 learns unordered or ordered rule sets of the
form: {R1, R2, R3, É, D}
y covering approach (but stopping criteria relaxed)

y unordered rules: rule Class IF Conditions is learned
by first determining Class and then Conditions

y ordered rules: rule Class IF Conditions is learned by
first determining Conditions and then Class

z Combine AQ (Michalski) with decision tree learning
(search as for AQ, criteria as for decision trees)
y AQ depends on a seed example

y AQ has difficulties with noise handling

z CN2 learns unordered or ordered rule sets of the
form: {R1, R2, R3, É, D}
y covering approach (but stopping criteria relaxed)

y unordered rules: rule Class IF Conditions is learned
by first determining Class and then Conditions

y ordered rules: rule Class IF Conditions is learned by
first determining Conditions and then Class

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 15

CN2 rule set representationCN2 rule set representation

z Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

z Sample CN2 rule for an 8-class problem Ôearly diagnosis of
rheumatic diseasesÕ:

IF Sex = male AND Age > 46 AND

 Number_of_painful_joints > 3 AND

 Skin_manifestations = psoriasis

THEN Diagnosis = Crystal_induced_synovitis

 [0 1 0 1 0 12 0 0]

z CN2 rule base: {R1, R2, R3, É, DefaultRule}

z Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

z Sample CN2 rule for an 8-class problem Ôearly diagnosis of
rheumatic diseasesÕ:

IF Sex = male AND Age > 46 AND

 Number_of_painful_joints > 3 AND

 Skin_manifestations = psoriasis

THEN Diagnosis = Crystal_induced_synovitis

 [0 1 0 1 0 12 0 0]

z CN2 rule base: {R1, R2, R3, É, DefaultRule}

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 16

+ +
+
+

++

- -
-

-
-

Original AQ covering algorithmOriginal AQ covering algorithm

z for each class Ci do
y Ei := Pi U Ni (Pi positive, Ni negative)

y RuleSet(Ci) := empty

y repeat {find-set-of-rules}
x find-one-rule R covering some positive examples and no negatives

x add R to RuleSet(Ci)

x delete from Pi all positive examples covered by R

y until Pi = empty

z for each class Ci do
y Ei := Pi U Ni (Pi positive, Ni negative)

y RuleSet(Ci) := empty

y repeat {find-set-of-rules}
x find-one-rule R covering some positive examples and no negatives

x add R to RuleSet(Ci)

x delete from Pi all positive examples covered by R

y until Pi = empty

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 17

Learning unordered set of rulesLearning unordered set of rules

z for each class Ci do
y Ei := Pi U Ni, RuleSet(Ci) := empty

y repeat {find-set-of-rules}
x R := Class = C i IF Conditions , Conditions := true

x repeat {learn-one-rule}
RÕ := Class = C i IF Conditions AND Cond
(general-to-specific beam search of Best RÕ)

x until stopping criterion is satisfied
(no negatives covered or Performance(RÕ) < ThresholdR)

x add RÕ to RuleSet(Ci)

x delete from Pi all positive examples covered by RÕ

y until stopping criterion is satisfied (all positives covered or
Performance(RuleSet(Ci)) < ThresholdRS)

z for each class Ci do
y Ei := Pi U Ni, RuleSet(Ci) := empty

y repeat {find-set-of-rules}
x R := Class = C i IF Conditions , Conditions := true

x repeat {learn-one-rule}
RÕ := Class = C i IF Conditions AND Cond
(general-to-specific beam search of Best RÕ)

x until stopping criterion is satisfied
(no negatives covered or Performance(RÕ) < ThresholdR)

x add RÕ to RuleSet(Ci)

x delete from Pi all positive examples covered by RÕ

y until stopping criterion is satisfied (all positives covered or
Performance(RuleSet(Ci)) < ThresholdRS)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 18

Unordered rulesetsUnordered rulesets

z rule Class IF Conditions is learned by first
determining Class and then Conditions
y NB: ordered sequence of classes C1, É, Cn in RuleSet

y But: unordered (independent) execution of rules when
classifying a new instance: all rules are tried and predictions of
those covering the example are collected; voting is used to
obtain the final classification

z if no rule fires, then DefaultClass (majority class in E)

z rule Class IF Conditions is learned by first
determining Class and then Conditions
y NB: ordered sequence of classes C1, É, Cn in RuleSet

y But: unordered (independent) execution of rules when
classifying a new instance: all rules are tried and predictions of
those covering the example are collected; voting is used to
obtain the final classification

z if no rule fires, then DefaultClass (majority class in E)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 19

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

PlayTennis training examplesPlayTennis training examples

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 20

Learn-one-rule as searchLearn-one-rule as search

Play tennis = yes IF true

Play tennis = yes
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes
IF Humidity=normal,

 Wind=weak

Play tennis = yes
IF Humidity=normal,

 Wind=strong

Play tennis = yes
IF Humidity=normal,

 Outlook=sunny

Play tennis = yes
IF Humidity=normal,

 Outlook=rain

...

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 21

Learn-one-rule as heuristic searchLearn-one-rule as heuristic search

Play tennis = yes
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes
IF Humidity=normal,

 Wind=weak

Play tennis = yes
IF Humidity=normal,

 Wind=strong

Play tennis = yes
IF Humidity=normal,

 Outlook=sunny

Play tennis = yes
IF Humidity=normal,

 Outlook=rain

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)

Play tennis = yes IF true

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 22

Heuristics for learn-one-ruleHeuristics for learn-one-rule

z Evaluating accuracy of a rule:
y A(Ci IF Conditions) = p(Ci | Conditions)

z Estimating probability with relative frequency:
y covered positives / covered examples

y [6+,1-] (7) = 6/7, [2+,0-] (2) = 2/2 = 1

z Evaluating accuracy of a rule:
y A(Ci IF Conditions) = p(Ci | Conditions)

z Estimating probability with relative frequency:
y covered positives / covered examples

y [6+,1-] (7) = 6/7, [2+,0-] (2) = 2/2 = 1

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 23

)(

)(
)|(

Rn

Rn
Rp

+

=+

kRn
Rn

Rp
+
+=+

+

)(
1)(

)|(

mRn

pmRn
Rp a

+
+⋅+=+

+

)(

)()(
)|(

Probability estimatesProbability estimates

y Relative frequency of covered positives:
x problems with small samples

y Laplace estimate :
x assumes uniform prior distribution of k classes

y m-estimate :
x special case: pa(+)=1/k, m=k

x takes into account prior probabilities pa(C)
instead of uniform distribution

x independent of the number of classes k

x m is domain dependent (more noise, larger m)

y Relative frequency of covered positives:
x problems with small samples

y Laplace estimate :
x assumes uniform prior distribution of k classes

y m-estimate :
x special case: pa(+)=1/k, m=k

x takes into account prior probabilities pa(C)
instead of uniform distribution

x independent of the number of classes k

x m is domain dependent (more noise, larger m)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 24

Other search heuristicsOther search heuristics

y Expected accuracy on positives
x A(R) = p(+|R)

y Informativity (#bits needed to specify that example
covered by R is +)
x I(R) = - log2 p(+|R)

y Accuracy gain (increase in expected accuracy):
x AG(RÕ,R) = p(+|RÕ) - p(+|R)

y Information gain (decrease in the information needed):
x IG(RÕ,R) = log2 p(+|RÕ) - log2 p(+|R)

y Weighted measures in order to favour more general rules:
x WAG(RÕ,R) = n(+RÕ)/n(+R) * (p(+|RÕ) - p(+|R)

x WIG(RÕ,R) = n(+RÕ)/n(+R) * (log2p(+|RÕ) - log2p(+|R))

y Expected accuracy on positives
x A(R) = p(+|R)

y Informativity (#bits needed to specify that example
covered by R is +)
x I(R) = - log2 p(+|R)

y Accuracy gain (increase in expected accuracy):
x AG(RÕ,R) = p(+|RÕ) - p(+|R)

y Information gain (decrease in the information needed):
x IG(RÕ,R) = log2 p(+|RÕ) - log2 p(+|R)

y Weighted measures in order to favour more general rules:
x WAG(RÕ,R) = n(+RÕ)/n(+R) * (p(+|RÕ) - p(+|R)

x WIG(RÕ,R) = n(+RÕ)/n(+R) * (log2p(+|RÕ) - log2p(+|R))

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 25

Ordered rulesetsOrdered rulesets

z rule Class IF Conditions is learned by first
determining Conditions and then Class
y NB: mixed sequence of classes C1, É, Cn in RuleSet

y But: ordered execution when classifying a new instance: rules
are sequentially tried and the first rule that ÔfiresÕ (covers the
example) is used for classification

z if no rule fires, then DefaultClass (majority class in E)

z rule Class IF Conditions is learned by first
determining Conditions and then Class
y NB: mixed sequence of classes C1, É, Cn in RuleSet

y But: ordered execution when classifying a new instance: rules
are sequentially tried and the first rule that ÔfiresÕ (covers the
example) is used for classification

z if no rule fires, then DefaultClass (majority class in E)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 26

Learning ordered set of rulesLearning ordered set of rules

y RuleList := empty; Ecur:= E

y repeat
x learn-one-rule R

x RuleList := RuleList ++ R

x Ecur := Ecur - {all examples covered by R}

y until performance(R, Ecur) < ThresholdR

y RuleList := sort RuleList by performance(R,E)

y RuleList := RuleList ++ DefaultRule(Ecur)

y RuleList := empty; Ecur:= E

y repeat
x learn-one-rule R

x RuleList := RuleList ++ R

x Ecur := Ecur - {all examples covered by R}

y until performance(R, Ecur) < ThresholdR

y RuleList := sort RuleList by performance(R,E)

y RuleList := RuleList ++ DefaultRule(Ecur)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 27

OverviewOverview

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 28

First-order representationsFirst-order representations

z Propositional representations:
y datacase is fixed-size vector of values

y features are those given in the dataset

z First-order representations:
y datacase is flexible-size, structured object

x sequence, set, graph

x hierarchical: e.g. set of sequences

y features need to be selected from potentially infinite set

z Propositional representations:
y datacase is fixed-size vector of values

y features are those given in the dataset

z First-order representations:
y datacase is flexible-size, structured object

x sequence, set, graph

x hierarchical: e.g. set of sequences

y features need to be selected from potentially infinite set

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 29

Predicting carcinogenicityPredicting carcinogenicity

zA molecular compound is carcinogenic if:
(1) it tests positive in the Salmonella assay; or
(2) it tests positive for sex-linked recessive lethal mutation in Drosophila; or
(3) it tests negative for chromosome aberration; or
(4) it has a carbon in a six-membered aromatic ring with a partial charge of

-0.13; or
(5) it has a primary amine group and no secondary or tertiary amines; or
(6) it has an aromatic (or resonant) hydrogen with partial charge ³ 0.168; or
(7) it has an hydroxy oxygen with a partial charge ³ -0.616 and an aromatic (or

resonant) hydrogen; or
(8) it has a bromine; or
(9) it has a tetrahedral carbon with a partial charge ² -0.144 and tests positive on

ProgolÕs mutagenicity rules.

zA molecular compound is carcinogenic if:
(1) it tests positive in the Salmonella assay; or
(2) it tests positive for sex-linked recessive lethal mutation in Drosophila; or
(3) it tests negative for chromosome aberration; or
(4) it has a carbon in a six-membered aromatic ring with a partial charge of

-0.13; or
(5) it has a primary amine group and no secondary or tertiary amines; or
(6) it has an aromatic (or resonant) hydrogen with partial charge ³ 0.168; or
(7) it has an hydroxy oxygen with a partial charge ³ -0.616 and an aromatic (or

resonant) hydrogen; or
(8) it has a bromine; or
(9) it has a tetrahedral carbon with a partial charge ² -0.144 and tests positive on

ProgolÕs mutagenicity rules.

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 30

z Given:
y positive examples P: ground facts to be entailed,

y negative examples N: ground facts not to be entailed,

y background theory B: a set of predicate definitions;

z Find: a hypothesis H (one or more predicate
definitions) such that
y for every p∈ P: B ∪ H = p (completeness),

y for every n∈ N: B ∪ H = n (consistency).

z Given:
y positive examples P: ground facts to be entailed,

y negative examples N: ground facts not to be entailed,

y background theory B: a set of predicate definitions;

z Find: a hypothesis H (one or more predicate
definitions) such that
y for every p∈ P: B ∪ H = p (completeness),

y for every n∈ N: B ∪ H = n (consistency).

Concept learning in logicConcept learning in logic

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 31

Clausal logic

z predicate logic:
∀ X: bachelor(X) ↔ male(X)∧ adult(X)∧¬ married(X)

z clausal logic:
bachelor(X);married(X):-male(X),adult(X).

male(X):-bachelor(X).

adult(X):-bachelor(X).

:-bachelor(X),married(X).

indefinite clause

definite (Horn) clauses

denial

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 32

Prolog

z Ancestors:
y ancestor(X,Y):-parent(X,Y).

y ancestor(X,Y):-parent(X, Z),ancestor(Z,Y).

z Lists:
y member(X,[X|Z]).

y member(X,[Y|Z]):-member(X,Z).

y append([],X,X).

y append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).

z Ancestors:
y ancestor(X,Y):-parent(X,Y).

y ancestor(X,Y):-parent(X, Z),ancestor(Z,Y).

z Lists:
y member(X,[X|Z]).

y member(X,[Y|Z]):-member(X,Z).

y append([],X,X).

y append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 33

ILP methodsILP methods

z bottom-up:
y data-driven approach

y start with long, specific clause

y generalise by applying inverse substitutions and/or
removing literals

z top-down:
y generate-then-test approach

y start with short, general clause

y specialise by applying substitutions and/or adding literals

z bottom-up:
y data-driven approach

y start with long, specific clause

y generalise by applying inverse substitutions and/or
removing literals

z top-down:
y generate-then-test approach

y start with short, general clause

y specialise by applying substitutions and/or adding literals

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 34

Top-down induction: exampleTop-down induction: example

example action hypothesis

+p(b,[b]) add clause p(X,Y).

-p(x,[]) specialise p(X,[V|W]).

-p(x,[a,b]) specialise p(X,[X|W]).

+p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).

exampleexample actionaction hypothesishypothesis

+p(b,[b]) add clause p(X,Y).

-p(x,[]) specialise p(X,[V|W]).

-p(x,[a,b]) specialise p(X,[X|W]).

+p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 35

Bottom-up induction: exampleBottom-up induction: example

z Treat positive examples + ground background facts as body

z Choose two examples as heads and anti-unify

q([1,2],[3,4],[1,2,3,4]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([a],[],[a]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([A|B],C,[A|D]):-
q([1,2],[3,4],[1,2,3,4]),q([A|B],C,[A|D]),q(W,C,X),q([S|B],[3,4],[S,T,U|V]),
q([R|G],K,[R|L]),q([a],[],[a]),q(Q,[],Q),q([P],K,[P|K]),
q(N,K,O),q(M,[],M),q([],[],[]),q(G,K,L),
q([F|G],[3,4],[F,H,I|J]),q([E],C,[E|C]),q(B,C,D),q([2],[3,4],[2,3,4])

z Generalise by removing literals until negative examples covered

z Treat positive examples + ground background facts as body

z Choose two examples as heads and anti-unify

q([1,2],[3,4],[1,2,3,4]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([a],[],[a]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([A|B],C,[A|D]):-
q([1,2],[3,4],[1,2,3,4]),q([A|B],C,[A|D]),q(W,C,X),q([S|B],[3,4],[S,T,U|V]),
q([R|G],K,[R|L]),q([a],[],[a]),q(Q,[],Q),q([P],K,[P|K]),
q(N,K,O),q(M,[],M),q([],[],[]),q(G,K,L),
q([F|G],[3,4],[F,H,I|J]),q([E],C,[E|C]),q(B,C,D),q([2],[3,4],[2,3,4])

z Generalise by removing literals until negative examples covered

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 36

ILP systemsILP systems

z MIS (Shapiro, 1983)
y top-down, incremental, non-heuristic

z CIGOL (Muggleton & Buntine, 1988)
y bottom-up (inverting resolution), incremental, compression

z FOIL (Quinlan, 1990)
y top-down, non-incremental, information-gain

z GOLEM (Muggleton & Feng, 1990)
y bottom-up, non-incremental, compression

z LINUS (Lavrac, Dzeroski & Grobelnik, 1991)
y transformation to attribute-value learning

z PROGOL (Muggleton, 1995)
y hybrid, non-incremental, compression

z MIS (Shapiro, 1983)
y top-down, incremental, non-heuristic

z CIGOL (Muggleton & Buntine, 1988)
y bottom-up (inverting resolution), incremental, compression

z FOIL (Quinlan, 1990)
y top-down, non-incremental, information-gain

z GOLEM (Muggleton & Feng, 1990)
y bottom-up, non-incremental, compression

z LINUS (Lavrac, Dzeroski & Grobelnik, 1991)
y transformation to attribute-value learning

z PROGOL (Muggleton, 1995)
y hybrid, non-incremental, compression

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 37

East-West trainsEast-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 38

ILP representation (flattened)ILP representation (flattened)

z Example:
eastbound(t1).

z Background theory:
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). load(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).

z Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).

z Example:
eastbound(t1).

z Background theory:
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). load(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).

z Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 39

ILP representation (terms)ILP representation (terms)

z Example:
eastbound([c(rectangle,short,none,2,l(circle,1)),
 c(rectangle,long,none,3,l(hexagon,1)),
 c(rectangle,short,peaked,2,l(triangle,1)),
 c(rectangle,long,none,2,l(rectangle,3))]).

z Background theory: empty

z Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short),
 not arg(3,C,none).

z Example:
eastbound([c(rectangle,short,none,2,l(circle,1)),
 c(rectangle,long,none,3,l(hexagon,1)),
 c(rectangle,short,peaked,2,l(triangle,1)),
 c(rectangle,long,none,2,l(rectangle,3))]).

z Background theory: empty

z Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short),
 not arg(3,C,none).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 40

ILP representation (strongly typed)ILP representation (strongly typed)

z Type signature:
data Shape = Rectangle | Hexagon | É; data Length = Long | Short;
data Roof = None | Peaked | É; data Object = Circle | Hexagon | É;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,None,2,(Circle,1)),
 (Rectangle,Long,None,3,(Hexagon,1)),
 (Rectangle,Short,Peaked,2,(Triangle,1)),
 (Rectangle,Long,None,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=None)

z Type signature:
data Shape = Rectangle | Hexagon | É; data Length = Long | Short;
data Roof = None | Peaked | É; data Object = Circle | Hexagon | É;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,None,2,(Circle,1)),
 (Rectangle,Long,None,3,(Hexagon,1)),
 (Rectangle,Short,Peaked,2,(Triangle,1)),
 (Rectangle,Long,None,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=None)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 41

ILP representation (strongly typed)ILP representation (strongly typed)

z Type signature:
data Shape = Rectangle | Hexagon | É; data Length = Long | Short;
data Roof = None | Peaked | É; data Object = Circle | Hexagon | É;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,None,2,(Circle,1)),
 (Rectangle,Long,None,3,(Hexagon,1)),
 (Rectangle,Short,Peaked,2,(Triangle,1)),
 (Rectangle,Long,None,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=None)

z Type signature:
data Shape = Rectangle | Hexagon | É; data Length = Long | Short;
data Roof = None | Peaked | É; data Object = Circle | Hexagon | É;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,None,2,(Circle,1)),
 (Rectangle,Long,None,3,(Hexagon,1)),
 (Rectangle,Short,Peaked,2,(Triangle,1)),
 (Rectangle,Long,None,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=None)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 42

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rec tangle 3

… … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rec tangle 3

… … …

LOAD_TABLELOAD_TABLE

ILP representation (database)ILP representation (database)

TRAIN EASTBOUND
t 1 TRUE

t 2 TRUE

… …

t6 FALSE
… …

TRAIN EASTBOUND
t 1 TRUE

t 2 TRUE

… …

t6 FALSE
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t 1 rec tangle short none 2

c2 t 1 rec tangle long none 3

c3 t 1 rec tangle short peaked 2

c4 t 1 rec tangle long none 2

… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t 1 rec tangle short none 2

c2 t 1 rec tangle long none 3

c3 t 1 rec tangle short peaked 2

c4 t 1 rec tangle long none 2

… … … …

CAR_TABLECAR_TABLE

SELECT DISTINCT TRAIN_TABLE.TRAIN FROM TRAIN_TABLE, CAR_TABLE WHERE
TRAIN_TABLE.TRAIN = CAR_TABLE.TRAIN AND
CAR_TABLE.SHAPE = 'rectangle' AND
CAR_TABLE.ROOF != 'none'

SELECT DISTINCT TRAIN_TABLE.TRAIN FROM TRAIN_TABLE, CAR_TABLE WHERE
TRAIN_TABLE.TRAIN = CAR_TABLE.TRAIN AND
CAR_TABLE.SHAPE = 'rectangle' AND
CAR_TABLE.ROOF != 'none'

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 43

Complexity of ILP problemsComplexity of ILP problems

z Simplest case: single table with primary key
y example corresponds to tuple of constants

y attribute-value or propositional learning

z Next: single table without primary key
y example corresponds to set of tuples of constants

y multiple-instance problem

z Complexity resides in many-to-one foreign keys
y lists, sets, multisets

y non-determinate variables

z Simplest case: single table with primary key
y example corresponds to tuple of constants

y attribute-value or propositional learning

z Next: single table without primary key
y example corresponds to set of tuples of constants

y multiple-instance problem

z Complexity resides in many-to-one foreign keys
y lists, sets, multisets

y non-determinate variables

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 44

ILP representations: summaryILP representations: summary

z Term representation collects (almost) all information
about individual in one term
y what about graphs?

z Strongly typed language provides strong bias
y assumes term representation

z Flattened representation for multiple individuals
y structural predicates and utility predicates

z NB. assumes individual-centred classification problem
y not: logic program synthesis

z Term representation collects (almost) all information
about individual in one term
y what about graphs?

z Strongly typed language provides strong bias
y assumes term representation

z Flattened representation for multiple individuals
y structural predicates and utility predicates

z NB. assumes individual-centred classification problem
y not: logic program synthesis

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 45

Generality

z Generality is primarily an extensional notion:
y one predicate definition is more general than another if its

extension is a proper superset of the latterÕs extension

z This can be used to structure and prune the
hypothesis space
y if a rule does not cover a positive example, none of its

specialisations will
y if a rule covers a negative example, all of its generalisations will

z We need an intensional notion of generality,
operating on formulae rather than extensions
y generality of terms, clauses, and theories

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 46

Generality of terms

p(f(f(a)),X)p(f(X),f(a)) p(f(X),X)

p(f(X),Y)

p(f(f(a)),f(a))

z The set of first-order terms is a lattice:
y t1 is more general than t2 iff for some substitution θ: t1θ = t2
y glb ⇒ unification, lub ⇒ anti-unification

y Specialisation ⇒ applying a substitution

y Generalisation ⇒ applying an inverse substitution

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 47

Generality of clauses

m(X,Y)

m(X,[Y|Z])
m([X|Y],Z) m(X,Y):-m(Y,X)

m(X,[X|Z])

m(X,X)

m(X,[Y|Z]):-m(X,Z)

y The set of (equivalence classes of) clauses is a lattice:
x C1 is more general than C2 iff for some substitution θ: C1θ ⊆ C2

x glb ⇒ θ-MGS, lub ⇒ θ-LGG

x Specialisation ⇒ applying a substitution and/or adding a literal

x Generalisation ⇒ applying an inverse substitution and/or
removing a literal

x NB. There are infinite chains!

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 48

θ-LGG: examples

a([1,2],[3,4],[1,2,3,4]):-a([2],[3,4],[2,3,4])

a([a] ,[] ,[a]):-a([] ,[] ,[])

a([A|B],C ,[A|D]):-a(B ,C ,D)

m(c,[a,b,c]):-m(c,[b,c]),m(c,[c])

m(a,[a,b]):-m(a,[a])

m(P,[a,b|Q]):-m(P,[R|Q]),m(P,[P])

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 49

θ-subsumption vs. implication

z Logical implication is strictly stronger than
θ-subsumption
y e.g. p([V|W]):-p(W) = p([X,Y|Z]):-p(Z)

y this happens when the resolution derivation requires the
left-hand clause more than once

z i-LGG of definite clauses is not unique
y i-LGG(p([A,B|C]):-p(C), p([P,Q,R|S]):-p(S)) =

{p([X|Y]):-p(Y), p([X,Y|Z]):-p(V)}

z Logical implication between clauses is undecidable,
θ-subsumption is NP-complete

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 50

Generality of theories

z Simplification 1: T1=B∪ {C1} and T2=B∪ {C2} differ just
in one clause

z Simplification 2: approximate B by finite ground
model B′

z form clauses C1B and C2B by adding ground facts in
B′ to bodies

z θ-RLGG(C1,C2,B) = θ-LGG(C1B,C2B)

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 51

θ-RLGG: example

a([1,2],[3,4],[1,2,3,4]):-
a([1,2],[3,4],[1,2,3,4]), a([a],[],[a]),
a([],[],[]), a([2],[3,4],[2,3,4]).

a([a] ,[] ,[a]):-
a([1,2],[3,4],[1,2,3,4]), a([a],[],[a]),
a([],[],[]), a([2],[3,4],[2,3,4]).

a([A|B],C ,[A|D]):-
a([1,2],[3,4],[1,2,3,4]), a([A|B],C,[A|D]), a(E,C,F),
a([G|B],[3,4],[G,H,I|J]),
a([K|L,M,[K|N]), a([a],[],[a]), a(O,[],O),
a([P],M,[P|M]),
a(Q,M,R), a(S,[],S), a([],[],[]), a(L,M,N),
a([T|L],[3,4],[T,U,V|W]), a(X,C,[X|C]), a(B,C,D),
a([2],[3,4],[2,3,4]).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 52

θ-RLGG: example

a([1,2],[3,4],[1,2,3,4]):-
a([1,2],[3,4],[1,2,3,4]), a([a],[],[a]),
a([],[],[]), a([2],[3,4],[2,3,4]).

a([a] ,[] ,[a]):-
a([1,2],[3,4],[1,2,3,4]), a([a],[],[a]),
a([],[],[]), a([2],[3,4],[2,3,4]).

a([A|B],C ,[A|D]):-
a([1,2],[3,4],[1,2,3,4]), a([A|B],C,[A|D]), a(E,C,F),
a([G|B],[3,4],[G,H,I|J]),
a([K|L,M,[K|N]), a([a],[],[a]), a(O,[],O),
a([P],M,[P|M]),
a(Q,M,R), a(S,[],S), a([],[],[]), a(L,M,N),
a([T|L],[3,4],[T,U,V|W]), a(X,C,[X|C]), a(B,C,D),
a([2],[3,4],[2,3,4]).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 53

θ-RLGG: example

a([1,2],[3,4],[1,2,3,4]):-
a([1,2],[3,4],[1,2,3,4]), a([a],[],[a]),
a([],[],[]), a([2],[3,4],[2,3,4]).

a([a] ,[] ,[a]):-
a([1,2],[3,4],[1,2,3,4]), a([a],[],[a]),
a([],[],[]), a([2],[3,4],[2,3,4]).

a([A|B],C ,[A|D]):-
a([1,2],[3,4],[1,2,3,4]), a([A|B],C,[A|D]), a(E,C,F),
a([G|B],[3,4],[G,H,I|J]),
a([K|L,M,[K|N]), a([a],[],[a]), a(O,[],O),
a([P],M,[P|M]),
a(Q,M,R), a(S,[],S), a([],[],[]), a(L,M,N),
a([T|L],[3,4],[T,U,V|W]), a(X,C,[X|C]), a(B,C,D),
a([2],[3,4],[2,3,4]).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 54

Traditional view of rule learningTraditional view of rule learning

z Hypothesis construction: find a set of n rules
y usually simplified by n separate rule constructions

x exception: HYPER

z Rule construction: find a pair (Head, Body)
y e.g. select class and construct body

x exceptions: CN2, APRIORI

z Body construction: find a set of m literals
y usually simplified by adding one literal at a time

x problem (ILP): literals introducing new variables

z Hypothesis construction: find a set of n rules
y usually simplified by n separate rule constructions

x exception: HYPER

z Rule construction: find a pair (Head, Body)
y e.g. select class and construct body

x exceptions: CN2, APRIORI

z Body construction: find a set of m literals
y usually simplified by adding one literal at a time

x problem (ILP): literals introducing new variables

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 55

The role of feature constructionThe role of feature construction

z Hypothesis construction: find a set of n rules

z Rule construction: find a pair (Head, Body)

z Body construction: find a set of m features

z Feature construction: find a set of k literals
y e.g. interesting subgroup, frequent itemset

y discovery task rather than classification task

z Hypothesis construction: find a set of n rules

z Rule construction: find a pair (Head, Body)

z Body construction: find a set of m features

z Feature construction: find a set of k literals
y e.g. interesting subgroup, frequent itemset

y discovery task rather than classification task

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 56

First-order featuresFirst-order features

z Features concern interactions of local variables

z The following rule has two features Ôhas a short carÕ
and Ôhas a closed carÕ:
eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

z The following rule has one feature Ôhas a short
closed carÕ:
eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

z Features concern interactions of local variables

z The following rule has two features Ôhas a short carÕ
and Ôhas a closed carÕ:
eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

z The following rule has one feature Ôhas a short
closed carÕ:
eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 57

Propositionalising rulesPropositionalising rules

z Equivalently:
eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):-hasCar(T,C),clength(C,short).

hasClosedCar(T):-hasCar(T,C),not croof(C,none).

z Given a way to construct (or choose) first-order
features, body construction in ILP is propositional
y learn non-determinate clauses with LINUS by saturating

background knowledge

z Equivalently:
eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):-hasCar(T,C),clength(C,short).

hasClosedCar(T):-hasCar(T,C),not croof(C,none).

z Given a way to construct (or choose) first-order
features, body construction in ILP is propositional
y learn non-determinate clauses with LINUS by saturating

background knowledge

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 58

Declarative bias for first-order featuresDeclarative bias for first-order features

z Flattened representation, but derived from strongly-
typed term representation
y one free global variable

y each (binary) structural predicate introduces a new
existential local variable and uses either global variable or
local variable introduced by other structural predicate

y utility predicates only use variables

y all variables are used

z NB. features can be non-boolean

z Flattened representation, but derived from strongly-
typed term representation
y one free global variable

y each (binary) structural predicate introduces a new
existential local variable and uses either global variable or
local variable introduced by other structural predicate

y utility predicates only use variables

y all variables are used

z NB. features can be non-boolean

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 59

Example: mutagenesisExample: mutagenesis

y 42 regression-unfriendly molecules

y 57 first-order features with one utility literal

y LINUS using CN2: 83%

mutagenic(M,false):-not (has_atom(M,A),atom_type(A,21)),
logP(M,L),L>1.99,L<5.64.

mutagenic(M,false):-not
(has_atom(M,A),atom_type(A,195)),
lumo(M,Lu),Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.

mutagenic(M,false):-lumo(M,Lu),Lu>-0.77.

mutagenic(M,true):-has_atom(M,A),atom_type(A,21),
lumo(M,Lu),Lu<-1.21.

mutagenic(M,true):-logP(M,L),L>5.64,L<6.36.
mutagenic(M,true):-lumo(M,Lu),Lu>-0.95,
logP(M,L),L<2.21.

y 42 regression-unfriendly molecules

y 57 first-order features with one utility literal

y LINUS using CN2: 83%

mutagenic(M,false):-not (has_atom(M,A),atom_type(A,21)),
logP(M,L),L>1.99,L<5.64.

mutagenic(M,false):-not
(has_atom(M,A),atom_type(A,195)),
lumo(M,Lu),Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.

mutagenic(M,false):-lumo(M,Lu),Lu>-0.77.

mutagenic(M,true):-has_atom(M,A),atom_type(A,21),
lumo(M,Lu),Lu<-1.21.

mutagenic(M,true):-logP(M,L),L>5.64,L<6.36.
mutagenic(M,true):-lumo(M,Lu),Lu>-0.95,
logP(M,L),L<2.21.

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 60

Feature construction: summaryFeature construction: summary

z All the expressiveness of ILP is in the features
y body construction is essentially propositional

y every ILP system does constructive induction

z Feature construction is a discovery task
y use of discovery systems such as Warmr, Tertius or Midos

y alternative: use a relevancy filter

z All the expressiveness of ILP is in the features
y body construction is essentially propositional

y every ILP system does constructive induction

z Feature construction is a discovery task
y use of discovery systems such as Warmr, Tertius or Midos

y alternative: use a relevancy filter

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 61

OverviewOverview

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

z Introduction

z Learning rules with CN2

z Learning Prolog rules with ILP

z Rule learning with other declarative languages

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 62

z Type definitions:
data Outlook = Sunny | Overcast | Rain;
data Temperature = Hot | Mild | Cool;
data Humidity = High | Normal | Low;
data Wind = Strong | Medium | Weak;

type Weather = (Outlook,Temperature,Humidity,Wind)

playTennis::Weather->Bool;

z Examples:
playTennis(Overcast,Hot,High,Weak) = True;
playTennis(Sunny,Hot,High,Weak) = False;

Attribute-value learning in EscherAttribute-value learning in Escher

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 63

Attribute-value learning in EscherAttribute-value learning in Escher

z Hypothesis:
playTennis(w) =
if (outlookP(w)==Sunny && humidityP(w)==High) then False
else if (outlookP(w)==Rain && windP(w)==Strong) then False
else True;

z Hypothesis:
playTennis(w) =
if (outlookP(w)==Sunny && humidityP(w)==High) then False
else if (outlookP(w)==Rain && windP(w)==Strong) then False
else True;

outlookP::Weather->Outlook;
outlookP(o,t,h,w) = o;

Outlook

Humidity Wind

Sunny Overcast Rain

High Normal Low Strong Medium Weak

false true true false true true

true

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 64

Attribute-value learning in EscherAttribute-value learning in Escher

z Hypothesis:
playTennis(w) =
if (outlookP(w)==Sunny && humidityP(w)==High) then False
else if (outlookP(w)==Rain && windP(w)==Strong) then False
else True;

z Hypothesis:
playTennis(w) =
if (outlookP(w)==Sunny && humidityP(w)==High) then False
else if (outlookP(w)==Rain && windP(w)==Strong) then False
else True;

outlookP::Weather->Outlook;
outlookP(o,t,h,w) = o;

Outlook

Humidity Wind

Sunny Overcast Rain

High Normal Low Strong Medium Weak

false true true false true true

true

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 65

Attribute-value learning in EscherAttribute-value learning in Escher

z Hypothesis:
playTennis(w) =
if (outlookP(w)==Sunny && humidityP(w)==High) then False
else if (outlookP(w)==Rain && windP(w)==Strong) then False
else True;

z Hypothesis:
playTennis(w) =
if (outlookP(w)==Sunny && humidityP(w)==High) then False
else if (outlookP(w)==Rain && windP(w)==Strong) then False
else True;

outlookP::Weather->Outlook;
outlookP(o,t,h,w) = o;

Outlook

Humidity Wind

Sunny Overcast Rain

High Normal Low Strong Medium Weak

false true true false true true

true

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 66

Multi-instance learning in EscherMulti-instance learning in Escher

z Type definitions:
data Shape = Circle | Triangle | In(Shape,Shape);

data Class = Positive | Negative;
type Diagram = {(Shape,Int)};

class::Diagram->Class;

z Type definitions:
data Shape = Circle | Triangle | In(Shape,Shape);

data Class = Positive | Negative;
type Diagram = {(Shape,Int)};

class::Diagram->Class;

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 67

z Examples:
class({(In(Circle,Triangle),1)}) = Positive;
class({(Triangle,1),(In(Circle,Triangle),1)}) = Positive;
class({(In(Triangle,Circle),1),(Triangle,1)}) = Negative;

z Hypothesis:
class(d) =

if (exists \p -> p 'in' d && (exists \s t ->
shapeP(p) == In(s,t) && s == Circle))

then Positive else Negative;

z Examples:
class({(In(Circle,Triangle),1)}) = Positive;
class({(Triangle,1),(In(Circle,Triangle),1)}) = Positive;
class({(In(Triangle,Circle),1),(Triangle,1)}) = Negative;

z Hypothesis:
class(d) =

if (exists \p -> p 'in' d && (exists \s t ->
shapeP(p) == In(s,t) && s == Circle))

then Positive else Negative;

Multi-instance learning in EscherMulti-instance learning in Escher

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 68

z Examples:
class({(In(Circle,Triangle),1)}) = Positive;
class({(Triangle,1),(In(Circle,Triangle),1)}) = Positive;
class({(In(Triangle,Circle),1),(Triangle,1)}) = Negative;

z Hypothesis:
class(d) =

if (exists \p -> p 'in' d && (exists \s t ->
shapeP(p) == In(s,t) && s == Circle))

then Positive else Negative;

z Examples:
class({(In(Circle,Triangle),1)}) = Positive;
class({(Triangle,1),(In(Circle,Triangle),1)}) = Positive;
class({(In(Triangle,Circle),1),(Triangle,1)}) = Negative;

z Hypothesis:
class(d) =

if (exists \p -> p 'in' d && (exists \s t ->
shapeP(p) == In(s,t) && s == Circle))

then Positive else Negative;

Multi-instance learning in EscherMulti-instance learning in Escher

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 69

Mutagenesis in Escher

z Type definitions:
data Element = Br | C | Cl | F | H | I | N | O | S;

type Ind1 = Bool;

type IndA = Bool;
type Lumo = Float;

type LogP = Float;

type Label = Int;

type AtomType = Int;

type Charge = Float;

type BondType = Int;

type Atom = (Label,Element,AtomType,Charge);

type Bond = ({Label},BondType);

type Molecule = (Ind1,IndA,Lumo,LogP,{Atom},{Bond});

mutagenic::Molecule->Bool;

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 70

z Examples:
mutagenic(True,False,-1.246,4.23,

{(1,C,22,-0.117),
 (2,C,22,-0.117),
 É,
 (26,O,40,-0.388)},
{({1,2},7),
 É,
 ({24,26},2)})
= True;

z NB. Naming of sub-terms cannot be avoided here,
because molecules are graphs rather than trees

Mutagenesis in Escher

atoms

bonds

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 71

z Hypothesis:
mutagenic(m) =

ind1P(m) == True || lumoP(m) <= -2.072 ||

(exists \a -> a 'in' atomSetP(m) && elementP(a)==C &&
 atomTypeP(a)==26 && chargeP(a)==0.115) ||

(exists \b1 b2 -> b1 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
 bondTypeP(b1)==1 && bondTypeP(b2)==2 &&
 not disjoint(labelSetP(b1),labelSetP(b2)) ||

(exists \a -> a 'in' atomSetP(m) &&
 elementP(a)==C && atomTypeP(a)==29 &&
 (exists \b1 b2 ->
 b1 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
 bondTypeP(b1)==7 && bondTypeP(b2)==1 &&
 labelP(a) 'in' labelSetP(b1) &&
 not disjoint(labelSetP(b1),labelSetP(b2)))) ||

É;

Mutagenesis in Escher

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 72

Further reading on ILPFurther reading on ILP

A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Classification of individuals with complex structure. In P. Langley, editor,
Proceedings of the 17th International Conference on Machine Learning, pages 81--88. Morgan Kaufmann, 2000.

P.A. Flach, C. Giraud-Carrier, and J.W. Lloyd. Strongly Typed Inductive Concept Learning. In D. Page, editor, Proceedings
of the 8th International Conference on Inductive Logic Programming, volume 1446 of Lecture Notes in Artificial
Intelligence, pages 185--194. Springer-Verlag, 1998.

P.A. Flach. Knowledge representation for inductive learning. In Anthony Hunter and Simon Parsons, editors, Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), volume 1638 of Lecture Notes in Artificial
Intelligence, pages 160--167. Springer-Verlag, July 1999.

P.A. Flach and N. Lavrac. The role of feature construction in inductive rule learning. In L. De Raedt and S. Kramer, editors,
Proceedings of the ICML2000 workshop on Attribute-Value Learning and Relational Learning: Bridging the Gap,
Stanford University, 2000.

N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning Nonrecursive Definitions of Relations with LINUS. In Y. Kodratoff,
editor, Proceedings of the 5th European Working Session on Learning, volume 482 of Lecture Notes in Artificial
Intelligence, pages 265--281. Springer-Verlag, 1991.

S. Muggleton and W. Buntine. Machine invention of first order predicates by inverting resolution. In Proceedings of the 5th
International Workshop on Machine Learning, pages 339--351. Morgan Kaufmann, 1988.

S. Muggleton and C. Feng. Efficient Induction in Logic Programs. In S. Muggleton, editor, Inductive Logic Programming,
pages 281--298. Academic Press, 1992.

S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming,
13(3-4):245--286, 1995.

J.R. Quinlan. Learning logical definitions from Relations. Machine Learning, 5:239--266, 1990.
E.Y. Shapiro. An algorithm that infers theories from facts. In Proceedings of the 7th International Joint Conference on

Artificial Intelligence, pages 446--452. Morgan Kaufmann, 1981.

See also the ILPnet2 on-line library at http://www.cs.bris.ac.uk/~ILPnet2/Library/

A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Classification of individuals with complex structure. In P. Langley, editor,
Proceedings of the 17th International Conference on Machine Learning, pages 81--88. Morgan Kaufmann, 2000.

P.A. Flach, C. Giraud-Carrier, and J.W. Lloyd. Strongly Typed Inductive Concept Learning. In D. Page, editor, Proceedings
of the 8th International Conference on Inductive Logic Programming, volume 1446 of Lecture Notes in Artificial
Intelligence, pages 185--194. Springer-Verlag, 1998.

P.A. Flach. Knowledge representation for inductive learning. In Anthony Hunter and Simon Parsons, editors, Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), volume 1638 of Lecture Notes in Artificial
Intelligence, pages 160--167. Springer-Verlag, July 1999.

P.A. Flach and N. Lavrac. The role of feature construction in inductive rule learning. In L. De Raedt and S. Kramer, editors,
Proceedings of the ICML2000 workshop on Attribute-Value Learning and Relational Learning: Bridging the Gap,
Stanford University, 2000.

N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning Nonrecursive Definitions of Relations with LINUS. In Y. Kodratoff,
editor, Proceedings of the 5th European Working Session on Learning, volume 482 of Lecture Notes in Artificial
Intelligence, pages 265--281. Springer-Verlag, 1991.

S. Muggleton and W. Buntine. Machine invention of first order predicates by inverting resolution. In Proceedings of the 5th
International Workshop on Machine Learning, pages 339--351. Morgan Kaufmann, 1988.

S. Muggleton and C. Feng. Efficient Induction in Logic Programs. In S. Muggleton, editor, Inductive Logic Programming,
pages 281--298. Academic Press, 1992.

S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming,
13(3-4):245--286, 1995.

J.R. Quinlan. Learning logical definitions from Relations. Machine Learning, 5:239--266, 1990.
E.Y. Shapiro. An algorithm that infers theories from facts. In Proceedings of the 7th International Joint Conference on

Artificial Intelligence, pages 446--452. Morgan Kaufmann, 1981.

See also the ILPnet2 on-line library at http://www.cs.bris.ac.uk/~ILPnet2/Library/

18/4/2001 Rule induction tutorial Ñ IDA Spring School 2001 73

AcknowledgementsAcknowledgements

z Nada Lavrac (Ljubljana) for the CN2 slides

z John Lloyd, Christophe Giraud-Carrier, Nicolas
Lachiche, and other (former) members of the Bristol
Machine Learning group for joint research

z This tutorial was financially supported by ILPnet2,
the European Network of Excellence on Inductive
Logic Programming
y http://www.cs.bris.ac.uk/~ILPnet2/

z Nada Lavrac (Ljubljana) for the CN2 slides

z John Lloyd, Christophe Giraud-Carrier, Nicolas
Lachiche, and other (former) members of the Bristol
Machine Learning group for joint research

z This tutorial was financially supported by ILPnet2,
the European Network of Excellence on Inductive
Logic Programming
y http://www.cs.bris.ac.uk/~ILPnet2/

