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Abstract— Cancer treatment by chemotherapy involves mul- the remainder, Section Il introduces the problem, Sectibns

tiple applications of toxic drugs over a period of time. Op- and IV describe our experiments and results, and we provide
timising the schedule of these treatments can improve the a concluding discussion in Section V.

outcome for the patient. A schedule of treatment and its effet
on the tumour can be simulated by a mathematical growth
model. However, when used in conjunction with an Evolutionay
Algorithm (EA) to search for effective treatment schedulesthe
frequent use of the model can become computationally onersu ~ A. Cancer and Chemotherapy

One approach to improve the efficiency of EAs is to use ‘fithess : ; ; . ; :
inheritance’, in which, for a proportion of candidate solutions, Ca’.‘cer |.s not a single disease; the biology of cancer; 'S
simple means are used to guess the fitness, rather than use thedescribed in [3], [15]. Cancerous tumours are charactérise
computationally intensive model. We investigate two versins by rapidly dividing cells. Chemotherapy is the application
of fitness inheritance for the chemotherapy schedule optinsa-  of drugs in an attempt to reduce or eliminate the tumour,
ti?f_n _probletrr?,tand dt;amonhs_trat(?j tklle sigr:_ificlant impfr'O\éemetmtr“; whilst managing damage to the immune system and avoiding
efficiency that can be achieved. In particular, we find tha . .
Averaged Inheritance strategy is highly effective in this ase, unacceptable side eﬁegts t(.) the patient. The SChedu'.e.Of
and is strongly recommended for use in further investigatins ~ drugs and doses to be given is thus a balance between killing
of chemotherapy optimisation using population-based seah. cancer cells and limiting damage. For some time the use of
computer simulations of chemotherapy has been developing
I. INTRODUCTION in this field as a method of finding alternative or novel

Cancer is a major cause of death in modern societ eatments.

Chemo-therapy is the treatment of cancer using highly toxi@lodelling Tumours and Chemotherapy
drugs which have been developed by pharmaceutical re-\ogeliing of chemotherapy includes:
search. These drugs attack and Kkill cancer cells, but also_
damage healthy cells. To control damage to vital organs
and tissue the drug doses have to be limited. A dose of |
drug(s) is given, then a period for the body to recover
is followed by another dose, and so on. Dose schedules,
are developed from clinical trials and the experience of
oncologists in practice. They have become more complex
with the increase in the number of drugs available and .
in the use of multi-drug treatments. Different drugs affect F(N) = AN = pNinN @)
different organs, so limiting the dosage to control sideetf =~ Where N is the number of tumour cells andand ;. are
also becomes more complicated. With a treatment sched@gowth parameters. This equation is the basis for much work
of ten or more dose/rest periods and ten or more drud this field[16].

available in different doses, there are a huge number @f gasic Chemotherapy Response Model

treatment combinations possible, far too many for clinical
tnal; to evaluate. Thus it is almost certain that the drugg'dded to model the effect of the drug on the tumour cel
available are not being used to best advantage. EAs have :
been investigated in this context, but since EAs typicaII\FOpUIanon'

. . . If x is the effectiveness and the concentration of a
require tens or hundreds of thousands of fithess evaluations . : o
X S : cytotoxic drug, adding the ‘kill' term-«cV to the Gompertz
the computational cost can be prohibitive in practice. is th

paper we investigate whether fitness inheritance stra;teg%rowth model Martin and Teo [4] show that :

([14]) can yield a useful improvement in efficiency in this AN e
case, without unduly adverse effects on solution quality. | ar N(#)Aln (m) — re(t)N )
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Il. THE PROBLEM: BACKGROUND

tumour growth;

tumour cells killed by drug(s);

constraint(s) on drug application, dose rates and
amounts etc.;

meeting the objective(s) of treatment.

A well-known growth equation due to Gompertz is:

To a growth equation, a ‘cell kill' or ‘cell loss’ term is



Constraints that try to address it. E.g., Petrovski et al. [12] shows that
Due to the toxicity of anti-cancer drugs, there are limitdhe mutation and crossover probabilities can be signifizant

on doses to protect healthy cells and control side effect§” Performance, and in [8] Petrovski et al. showd that online

Constraints may also be applied to meet treatment Obje!;l:l_ning_of mutation probability and step size was Worth_while
tives, such as keeping the tumour below a certain size B} achieveing faster and better performance. Meanwhile, us
maximising patient suvival time. of parallel hardware resources is obviously applicable, as

studied for chemotherapy optimmisation in Tan et al. [17].

o However, considering the computational demands of com-

Chemotherapy Optimisation and related work plex simulation models, as well as the likely resources

When EAs are applied to the cancer chemotheramwailable in practice, more significant speedup of serial
scheduling problem, each individual in the population repimplementations is needed. Along these lines, one area
resents one set of drug doses and rest periods. Fitnesfsresearch is the general speedup that can be available
estimated via a mathematical model of tumour growth ovewhen EAs are combined with machine learning strategies
time and the effect of the drugs. This tumour model simulatgg.g. [6]), or when techniques are used to wisely bias the
the interaction of the drugs throughout the treatment geriogenetic operators towards good areas. Along these lines,

McCall and Petrovski [5] present a decision support syd?etrovski et al. [10] compare the performance of an EA with
tem called the Oncology WorkbenCH (OWCH) for oncol-Population-based Incremental Learning (PBIL), finding tha
ogists seeking novel treatment schedules. The main theragge reduction in fitness evaluations is possible. meaewhi
is the constrained optimisation of multi-drug chemothgrapGodley et al. [1] use parent fithess to bias the crossover
using a model with the Gompertz equation. The treatmelperator in a single drug chemotherapy problem. Fitness
schedule is encoded in the EA by a control vector (chrdunction evaluations were found to be significantly lessitha
mosome) of binary values. This is simply the dose for eachn EA using either single point or uniform crossover.

drug for each time interval, coded as four bits represerding One highly promising technique that has not yet been

dose of between 0 and 15 units. Constraints are set to imit e for chemotherapy schedule optimisation is Fétnes

drug concentratlonz tot_al exposure and tumour size durirlﬂheritance, originally suggested by Smith et al.[14], and
treatment. The toxic side effects on other organs are a@%

i i . Smith et al. proposed that computationally expensive
constrained using a potency parameter for each drug. TV esq calculations could be done only for a portion of the
EAs are used. An objective function minimising tumour size, ., ,iation. In contrast with Grefenestette and Fitzpksic
determines if a cure is posglple. If this is unsuccessful oposal to only partially evaluate fitness (for all th epop-
second EA determines a palliative schedule. Both EAs app ation), Smith et al. suggests full evaluation of only part
penalties to their objective functions based on violatiohs ¢ 41 p;opulation, with some of the population having their

constraints . . . . .
’ , fithess values derived in a simple way from the fitnesses of
In [9] Petrovski and McCall further explore the problemy,oic narents. Two varieties are describesteraged inher-

of 0 ptimisation posed by multi-drug chemotherapy with EAStance — the arithmetical mean of the parents’ fithess; and
using exponential, von Bertalanffy, Verhulst and Gompertg, ,,tional inheritance- a weighted average based on the
growth equations. Experiments are described which use @llyinutions of genes from each parent. Tests conducted
four grov;th models and b?]th trer?tment gohalz. IThe?ehaB% OneMaxshowed that efficient convergence is achieved
gompared toh a ctc))mmon Cf emot erap% SC eh ule o tlr‘éeen with only 10% actual fitness function evaluations. On
hrugs and show hette:j plerdormanc?f. T eh authors c_(l?nc Ug&nore realistic problem (aircraft routing), Smith et al fidu
;[j e various growt rr]n?j TS o not affect the EAs ability 1Qp4¢ 4 proportional inheritance version of fitness inheita
erive treatment schedules. achieved excellent results even when less than 1% of the

A Particle Swarm Optimisation (PSO) algorithm is invesy, . ation was subject to proper fitness evaluation. Mean-

tigated by Petrovski et al. [11] in experiments simulatingjje “sastry et al.[13] investigated fitness inheritancerf
and optimising chemotherapy schedules. They showed tatheqretical viewpoint, and verified the potential speedup
PSO was effective for this problem, with speed and quality, ijapje through fitness inheritance in certain circumses,
improvements over the EAs with which it was compare Ibeit on a simple (analysable) problem landscape.

Finally, we note the work of Ochoa et al. [7], which in-

vestigated drug chemotherapy using one drug and a com-Fitness Inheritance is clearly an attractive candidate for
putationally expensive tumour and immune system responé/éstigating in the context of chemotherapy schedule-opti
simulation, in an EA which takes several days for a singlgsation, and has not yet been investigated for this purpose

run, thereby excluding comprehensive statistical anglysi t0 our knowledge. It is attractive partly for its simplicity
but also with excellent results reported on other problems.

We therefore investigate fitness inheritance in this papeat,
Accelerating Evolutionary Algorithms examine what speedup is achievable and how this speedup

Acceleration of optimisation in this context is clearly alntéracts with the quality of solutions.

major issue, and there have been a number studies so far



I1l. EXPERIMENTS. EVALUATING FITNESSINHERITANCE  we focus only on the potential benefits of fithess inheritance
STRATEGIES and maintain a single-objective approach for simplicity.

The Gompertz growth model is chosen because it g Measuring Performance
commonly used in this field and the Java source code for an

Implementation is available. Modelling of the tumour growt hromosome is found which meets the termination critetria, i

and chemotherapy drug interaction is an implementatio(h . |

of equations (1) and (2) and the constraints described IS evaluated using the model and the total number of evalu
9 ntions required to achieve this is recorded and the alguorith

Section I-A due to Petrovski et al. [10]. The encoding Ogerminates. This is described as finding the first feasible

genes for this model is the integer-based drug dose arr . X .
described in [10]. For each of 10 drugs, during a 10 wee Xlu'uon. The count .Of 'mpde'l evaluations dqes not mclyde
ose made at the initialisation of the starting population

schedule, a chromosome simply comprises a list of 100,." " . :

; . . .~ which is the same for all experiments.
integers constrained in the ran@e..15. Each successive
group of 10 numbers relates to the dose concentrations for Inherited Fitness Experiments

each of 10 specified drugs over a specific week. When gy oo inheritance is an extremely simple concept: the

the chrqmosome is interpreted, an m_teger value is Scal_ﬂgness of a child is derived from the fitness of its parents.
appropriately between zero and a maximum dose, accordiagyi et al. [14] define two kinds of inheritance: averaged

to the specific drug represented. and proportional. Using averaged inheritance is to simply
A. Control Experiment assign the arithmetical average of the fitness of the two
parents to the child’s fitness. In proportional inheritance
weighted average is calculated from the contribution of
enetic material by each parent — the larger the number of
arent’s genes that are used in the crossover combination,
more the average is weighted towards the fithess of that

In the control and all subsequent experiments when a

As a control, we use a standard EA which uses th
Gompertz tumour growth model for fitness evaluation, an
which employs no fitness inheritance. This EA is otherwis
the same as that used in the fithess inheritance experime%ﬁ

and uses a steady-state, replace-worst reproductiorgytat ,, .o The implementation of this is straighforward, give
A population of randomly generatgd |nd|\{|duals is evolve he two-point crossover has a probability of 1 in the EA.
for up to 50,000 generations (equivalent in the steady stateA modified version of the EA allows a controlled percent-

moc?jel tlo SO’OQt?] e\t/all:jangrls). Bm_arty tournament S;E(mon_a e of the generated children to have their fithess estimated
uset ,t_a on? Wit slan ard wlo pﬁm cross-overan aUSSIBainheritance instead of evaluated by the tumour modes. Thi
mutation ot a singie randomly chosen gene. reduces the number of times the model is used. The fraction

Cross-over and mutation are used with probability of 1'Oof children whose fitness is estimated by inheritance varies

and if the same parent is selected twice this is effectivel%om zero i.e. the base EA, in steps of 5% up to 95%
mutation only. This schema is chosen for its simplicity ad | Both types of inheritance are used in separate experiments.

not tuned in any way. However, some prghmmary work WaActual model evaluations are counted until the termination
done to establish a suitable population size and the numb 1

f ired t d it 4 find teria given in Section IlI-A are met. The actual fitness of
ot runs required to produce results and find a reasonab[ at first solution is evaluated using the model, recordetl an
number of feasible solutions to the problem.

the run ended. Model evaluations to initialise the popafati
B. Termination Criteria are not included in the count for the first feasible solution.

In the approach we undertake in this paper (following
[11], [5], [9]), the model returns fitness values that indéca IV. RESULTS

the size of the tumour following the end of the treatment : . . . .
Experiments are presented in chronological order in this

schedule, and indications of the damage caused to various_. .
. . : L .. _section and the results are discussed.
organs. These are combined into a single objective fitneSs

value, however a ‘good’ fitness value does not necessarily. Control Experiment
mean the solution is feasible, since it may unduly tradeoff & \yice that, given the criteria discussed in section IIItB i

fsmall tulmgur S'ZE fodr a h'%hf levi')lOf damage_ The criterig, expected that some runs will not find a feasible solution at
or a solution to be deemed feasible are: all. Meanwhile, in order to ensure that sample sizes of tesul

« a positive value of fitness; are sufficiently large for statistical testing without extion

« no penalties applied for side effects on organs; times being excessively long, an experimental regime of

« no penalties for exceeding instantaneous or cumulatiVRoups of 500 runs each with a population of 500 evolving
drug dose limits; for up to 50,000 generations is chosen.

« tumour does not exceed its original size during the A single set of 2,000 runs was executed to produce a
treatment period. larger sample to establish the mean and standard devidtion o

These criteria apply to all experiments described in thikey parameters for the experiments. Table | shows the sesult
paper. Clearly, multi-objective approaches need to bdediud of this effort. In this table, the number of model evaluation
for this problem, and this is the topic of future work. Heres that required to find the first feasible solution in the run.



For each of the the two types of inheritance a secondar TABLE I
yp X\/IEAN EVALUATIONS UNTIL FIRST FASIBLE SOLUTION, AND SUCCESS

baseline run is conducted, in which the parameters were set
. . . . . . . RATES, FOR BOTH PROPORTIONAL INHERITANCE AND AVERAGED
to make it equivalent to the baseline EA (i.e. inheritation
. . INHERITANCE, FOR INHERITANCE PROPORTIONS RANGING FRON TO
proportion set at zero). These checks validated that the 95%
fitness inheritance code variants were performing cogrect : : :
The results of these runs are referred to later as baselineg| ° |[_Proportional Inheritance || _Averaged Inheritance

for th iated . ¢ d | h in th Est. || Evals | Fitness| Succ || Evals [ Fitness| Succ
or the associlated experiments, and are also snown In 0 10460 0403 49 10529 0395 50

lower part of Table I. 5 || 10,178 | 0.395| 47 | 9,947 | 0394 | 49
10 9,550 0.396 | 46 10,061 | 0.400 51
15 9,695 0.395 51 9,354 0.397 49
TABLE | 20 9,186 0.402 48 9.079 0.401 50
25 9,262 0.402 48 8,804 0.400 51
30 8,451 0.396 | 47 8,470 0.397 50
VARIANTS, 2,000RUNS WERE DONE EACH FOR A TOTAL OF50,000 35 7,750 0.396 A7 8,235 0.399 48

EVALUATIONS, AND THE TABLE REPORTS THE MEAN AND STANDARD 40 8,132 0.396 | 49 7,825 | 0.401 49
45 7,910 0.395 46 7,517 0.400 54

RESULTS OF BASELINEEA RUNS. FOR EACH OF THE THREEEA

DEVIATION OF THE NUMBER OF EVALUATIONS TAKEN TO FIND THE 50 7574 | 0394| 40 6.996 | 0401 | 43
FIRST FEASIBLE SOLUTION(OVER RUNS WHICH ACHIEVED AT LEAST 55 7,544 | 0.395| 41 6,611 | 0.400 | 49
ONE FEASIBLE SOLUTION), AND SIMILAR STATISTICS FOR BEST FITNESS 60 7,663 0.401| 40 5,977 | 0.400 | 48

65 7,593 0.396 | 40 5,757 | 0.398 50

OBTAINED. T-TESTS CONFIRM THAT THEEA VARIANTS WITH 70 7,909 0.395 38 5,255 0.395 46

INHERITANCE PROPORTION SET AT0 ARE NO DIFFERENT FROM THE 75 7,559 0398 | 30 4,896 | 0.401 43
STANDARD EA. 80 6,901 0.389 25 4,409 0.396 42

_ 85 5,559 0.394 14 3,830 0.393 42

Model Evalg Fitnesd t-test 90 4219 0.383 4 3029 | 0.396 35

Reference Sid. Sid. p value 95 0 0 0 1945 | 0.384 20
Experiment Mean | Devn | Mean | Devn | rel to EA 9% 1:662 0.391 11
Base EA 10,603 | 2354 | 0.396 | 0.045 1.000 97 1,230 0.379 4
Prop. Inhrt. | 10,460 [ 2438 | 0.403 | 0.046 0.625 98 949 0.418 1
Aver. Inhrt. | 10,529 | 2375 | 0.395 | 0.043 0.661 99 337 0.345 0

The Student’s t-test p-values in Table | show that these
secondary baseline figures for the number of evaluatiofégh rates of inheritance, with very little effect on fitness
and fitness are representative of the EA and are not lovalues. The value of Proportional Inheritance drops skarpl
probability outlying samples which could skew results.  beyond the region of 80% inheritance — although there
remain significant savings in model evaluations, the sugcces
B. Fitness Inheritance: Model Savings rate becomes very low. In contrast, Average Inheritance doe

Experiments were performed with the amount of fitnesgot suffer a sharp drop in success rate until around 90%
estimation by inheritance varying from 0% in 5% incrementiheritance.
for both proportional and averaged inheritance up to 95%.
For each inheritance method and inheritance proportior
500 trial runs were performed and the figures provided art 5
averaged over the successful runs. Results are also ofbtain
at very high averaged inheritance rates. Table Il shows th
results.

The Evals column shows the number of model evaluation:
to find a feasible solution (as defined in section IlI-B) aver-
aged over the number of runs which found solutions. Fithes
values are also averaged over the runs which found feasib

12,000

B.000 -+

6,000

Model Evaluations

4,000

2,000

solutions. The Success Rate is defined as the number of ru o - -

. . . ] 10 20 30 40 50 B0 7o 80 a0 100
which found a feasible solution expressed as a percentag s#/nge dnbesited
of the total number of runs (500). For example (clarifying wr Proportions| m=Averaged

the meaning of the table) we note that when Proprtional

Inheritance is used and 65% of children receive an inheritéd. 1. Visualising the savings in model evaluations ackdeusing different
fitness (rather than a time consuming model eva|uation|7,vels of inheritance, for both Averaged and Proportion&leritance.

the first feasible solution is found on average after 7,593

evaluations, and 40% of runs achieve a feasible solution; Figure 1 illustrates the data from Table Il. Averaged
when Averaged Inheritance is used, and 85% of childreinheritance can produce large savings: 80% saving of model
receive an inherited fitness, the corresponding figures aggaluations at 95% inheritance. This is a significant reduact
3,830 evaluations and 42%. It is clear from Table Il thain computational burden. When the success rate is examined,
substantial savings in model evaluations are achieved labwever, there is another aspect to consider.



® D. Averaged Inheritance

Table Il p-values show that the reduction in evaluations is
statistically significant for averaged inheritance. Siigance
testing of fitness (not shown) finds that fitness values are as
good as the control EA.

Success %

120

Q 10 20 30 40 50 60 70 & a0 100

% age Inherited

=nProportional == Averaged

Delta

Fig. 2. The success rates (percentage of runs that achieeasible .
solution) as a function of the level of inheritance, shownldoth Averaged 20 LY
and Proportional inheritance %

1] 10 20 30 40 50 &0 70 0 a0 100

. . . % age Inherited
It can be seen from Figures 1 and 2 that inheritance rate == Proportional = Averaged

up to about 60% can achieve significant savings and still
find almost as many solutions as the control EA. Howevetig. 3. Delta Values (normalised success rates) for Avetaged Pro-
the Iarge savings achieved by values of averaged inhedtantional Inheritance, as a function of the level of inherie.

greater than 80% are associated with a rapidly declining _ o )
success rate. There is clearly a trade-off between modelWhilst success rates in Figure 2 are generally lower than in
saving and success rate. the control experiment EA, the delta values in Figure 3 rise

noticeably above the control: quite dramatically up to 90%
averaged inheritance. Additional runs to 99% inheritarree a
V. DISCUSSION ANDINTERPRETATION conducted and a rapid decline in delta is observed.
In [14] Smith reports'Surprisingly, the best results were
) ] ~ obtained with only one individual actually evaluated per
A lower success rate means fewer solutions in a givefeneration.”Our best result of 337 model evaluations to find

number of runs. The definition of success rate given i gq|ytion also occurs at the highest rate of inheritanckeén t
Section IV-B makes no distinction between a solution Whlcféxperimems_

uses only a few evaluations and one which requires a large
number of model evaluations to arrive at a feasible solutiofe. Comparison

It is useful to introduce a normalising measure which From Figure 2 it is clear that for each type of inheritance
combines success rate and model evaluations{fis the the success rate curves are of similar shapes, with averaged
number of feasible solutions found iN,..,s ande is the inheritance performing better above 40%. The delta curves
average number of evaluations to find a feasible solution ang Figure 3 show a different picture. Although similar at
low inheritance rates, proportional values decline ab®## 4
in contrast to averaged inheritance, whose delta increases

€% Nruns dramatically.

then ¢ (delta) represents the number of solutions per For inheritance rates up to 50%, proportional inheritance
million run evaluations. The scale factor d®° renders the is as successful as the control EA and achieves delta values
values foré as userfriendly numbers in the order of 10 toabove the EA, so could possibly be a useful tool in the
100 feasible solutions per million run-evaluations. chemotherapy scheduling problem. However at rates above

o 60%, averaged inheritance is much better than proportional

B. Significance of Results and achieves large model savings and yields high numbers

Detailed results are subjected to significance testing amd solutions per million run-evaluations at inheritancéesa
shown in Table Ill. Student’s t-test p-values are relative tup to 95%. Exploiting these properties to reduce the compu-
the control EA i.e. the top (zero inheritance) row of the éabl tational load in EAs looks to be a promising prospect.

A. A Measure of Success

Nfs * 106

VI. CONCLUSIONS

C. Proportional Inheritance A summary of good results from the experiments is shown
The t-test figures shown in Table Il show that the redudn Table IV. Ranking results by the number of model evalua-
tion in the number of evaluations is statistically signifita tions shows that averaged inheritance is productive intigndi
as the p-values are generally less thamS. Significance feasible solutions, and gives the best savings by a large
testing of fitness values (not shown) is inconclusive. margin. As well as being a very simple method to implement,



RESULTS NORMALISED IN TERMS OF NUMBER OF FEASIBLE SOLUTIONSGUOND PER FULL MODEL EVALUATION, AND ASSOCIATED STATISTICS

TABLE Il

Proportional Inheritance Averaged Inheritance

% age | Model | No. of t-test Delta Model | No. of t-test Delta % age

Inherit- | Evals| Solns.| p val. Solns10® || Evals | Solns.| p val. Solns perl0° | Inherit-

ance Found Evals run-evals Found Evals run-evals ance
0 10,460 243 | 1.000000 46 10,529 248 | 1.000000 47 0
5 10,178 237 | 0.183803 47 9,947 246 | 0.004426 49 5
10 9,550 220 | 0.000017 46 10,061 256 | 0.018719 51 10
15 9,695 256 | 0.000267 53 9,354 243 | <107 52 15
20 9,186 242 | <1076 53 9,079 249 | <107 55 20
25 9,262 239 | <10°¢ 52 8,804 254 | <10 58 25
30 8,630 236 | <107 55 8,470 251| <107 59 30
35 8,451 235| <107 56 8,235 242 | <107 59 35
40 8,132 246 | <1076 61 7,825 244 <107 62 40
45 7,910 230| <10°¢ 58 7,517 271 | <1076 72 45
50 7,574 202 | <10°¢ 53 6,996 215| <10°° 61 50
55 7,544 207 | <1076 55 6,611 245| <107 74 55
60 7,663 202 | <1076 53 5,977 241| <107 81 60
65 7,593 200| <1076 53 5,757 248 | <107 86 65
70 7,909 191 | <1076 48 5,255 230| <10°° 88 70
75 7,559 149 | <1076 39 4,896 214 | <107 87 75
80 6,901 124 | <1076 36 4,409 209 | <107 95 80
85 5,559 72| <1076 26 3,830 212 | <107 111 85
90 4,219 20| <107 9 3,029 174 | <1076 115 90
95 0 0 1,945 102 | <1076 105 95
96 1,662 54| <1076 65 96
97 1,230 18| <10°°¢ 29 97
98 949 3| <1076 6 98
99 337 1] <10 6 99

TABLE IV

It is interesting to speculate on the relative performarfce o
Averaged and Proprtional Inheritance. Averaged Inhec#an
was clearly more successful in maintaining valid progress

SUMMARY OF THE BEST RESULTS ACHIEVED FROM EACH OFAVERAGED
AND PROPRTIONALINHERITANCE, COMPARED WITH THE CONTROLEA

% age | Model | Delta | Success : : : - :
Algorithm Est | Evals 5 % in the search process, whlle_ we mlght_wew the rel_at|vely
Averaged Inheritancd 90 3.029 115 35 poorer performance of Proprtional Inheritance as a sigh tha
Proportl Inheritance | 90 4,219 9 4 the inherited fithesses in this case were more likely to be
Control EA 0 |10529] 47 50 misleading. Consider a combination of a quite fit and a quite

poor parent; in the case of Averaged Inheritance, the fitness
assigned to the child will always be the modest average of

the averaged inheritance technique itself has an extremdfie two parents; such a solution will not unduly influence

low computational burden and therefore is potentially a/verth® search, since we can expect a fair proportion of the

useful technique in chemotherapy scheduling. population to be fitter, and hence more likely to be selected.
It is worth emphasising that thé speedup values are However, in Proprtional Inheritance, it is possible thattsa

useful for estimating the effective speedup that can be ofDild may be quite poor in real fitness, but — if it happens to
tained when we execute the optimisation on serial resourcd@Nerit mostly the genes of the fitter parent — be given ayfairl
However, with proper use of multicore hardware (or othelnfluential f|_tne_ss value, whlc_h W|II_then_m|sIea}d t_he search
parallel resources) the effective speedups, in terms of wall '€ key point is that proportional inheritance is likely to b
clock time to achieve first feasible solution, become claser V€Y Sensitive to the ruggedness of the landscape in questio
those suggested in the Model Evals column in table I11. E.g. }¥here it is possible for near-neighbours to have significant
we use 97% inheritance in the Averaged Inheritance methd@ifferences in fitness (which is quite so in this case), the

and execute (say) 50 runs in parallel, speedup of eight e c_>f Proportiqnal Inh_eritance is prone to the possibdi’ty
nine-fold is achievable in finding first feasible solutiorhem  Yi€lding unduly influential poor chromosomes. With Average

compared to the (similarly implemented in parallel) cohtrolMheritance, the potential damage from such chromosomes is
EA. more limited by a stricter bound on the fitness value they



can inherit.

Ongoing research (some of which we mention earlier in[l]

this paper) is investigating a range of alternative optatids

algorithms for the cheotherapy scheduling problem, as well
as the use of a range of alternative tumour growth modelsl;z]
active and promising areas in this field include further
investigation of particle swarm optimisation approactees,
well as further investigation of multi-objective approash
(and of course approaches that may combine the two). A
obvious avenue for further study will be to investigate fithe

inheritance in the context of these approaches.

Meanwhile, this study has concentrated on trying to ef-
ficiently find the first feasible solution on each run. This
was a convenient measure to form the basis of comparisor[b]

although the first feasible solution is itself rarely fit egbuo

ensure a treatment effective enough for use. Further ss:tudie7
are needed to test whether the continued use of fitnegs]

inheritance, beyond the point of first feasible solutiorglite

to maintain the speed advantage without compromising th&l

ultimate fitness values achieved.

Finally, it is interesting to speculate on the relative perf
mance of Averaged and Proprtional Inheritance. Averagedf!
Inheritance was clearly more successful in maintaininglval
progress in the search process, while we might view theo)

relatively poorer performance of Proportional Inheritars

a sign that the inherited fitnesses in this case were morlg like

to be misleading. Consider a combination of a quite fit and
a quite poor parent; in the case of Averaged Inheritancgll
the fithess assigned to the child will always be the modest
average of the two parents; such a solution will not unduly
influence the search, since we can expect a fair proportion
of the population to be fitter, and hence more likely to btﬁz]
selected. However, in Proprtional Inheritance, it is polssi
that such a child may be quite poor in real’ fitness, but
— if it happens to inherit mostly the genes of the fitter,,
parent — be given a fairly influential fithess value, whichl wil
then mislead the search. The key point is that proportional
inheritance is likely to be very sensitive to the ruggedness
of the landscape in question; where it is possible for near-
neighbours to have significant differences in fitness (which4l
is quite so in this case), the use of Proportional Inhergganc
is prone to the possibility of yielding unduly influential
poor chromosomes. With Average Inheritance, the potenti&]
damage from such chromosomes is more limited by a strictﬁ%]
bound on the fitness value they can inherit. One corollary to
this argument, suggesting a particular line of future stigly [17]
that a stricter limit on inherited fitness may be even more
beneficial. For example, fithess could be the lower of the
Proportional and Average values, or the child may simply

inherit the fitness of its weakest parent.

Acknowledgements

We are grateful to Andreas Petrovski for the use of his
codebase in implementing the tumour model, and we are
grateful to Manjula Dissanayake and to Sebastian Collins
for discussions on this topic while they were undertaking

related projects.

REFERENCES

P. M. Godley, D. E. Cairns, J. Cowie, and J. McCall. Fismedrected
intervention crossover approaches applied to bio-scivegiproblems.
IEEE, 2005.

J. J. Grefenstette and J. M. Fitzpatrick. Genetic seamith ap-
proximate function evaluations. IRroceeding of an International
Conference on Genetic Algorithms and Their Applicatipages 112—
120, 1985.

F. MacDonald and C. H. J. Ford.Molecular biology of Cancer
chapter 1. BIOS Scientific Publishers, 1997.

R. B. Martin and K. L. Teo.Optimal Control of drug administration
in cancer chemotherapyWorld Scientific, 1994.

J. McCall and A. Petrovski. A decision support system ¢ancer
chemotherapy using genetic algorithms. In M. Mouhammadian
editor, Proceeding of the International Conference on Computation
Intelligence for Modelling, Control and Automatipwolume 1, pages
65-70, Vienna, Austria, 1999. IOS Press : ISBN 90-5199-8.74-

R. S. Michalski. Learnable evolution model: Evolutiopgrocesses
guided by machine learningachine Learning38(1-2):9-40, January
2000.

G. Ochoa, M. Villasana, and E. K. Burke. An evolutionappeoach to
cancer chemotherapy scheduligenetic Programming and Evolvable
Machines 8(4):301-308, December 2007.

A. Petrovski, A. Brownlee, and J. McCall. Statistical tiopisation
and tuning of ga factors. IProceedings of the IEEE Congress
on Evolutionary Computatignvolume 1, pages 758-764, Edinburgh,
Scotland, 2005. IEEE Press.

A. Petrovski and J. McCallSoft Computing Techniques and Applica-
tions, chapter Computational Optimisation of Cancer Chemotiiesa
Using Genetic Algorithms, pages 117-122. Physica Verl@§02

A. Petrovski, S. Shakya, and J. McCall. Optimising emnchemother-
apy using an estimation of distribution algorithm and genetgo-
rithms. In GECCO '06: Proceedings of the 8th annual conference
on Genetic and evolutionary computatjorolume 1, pages 413-418,
Seattle, Washington, USA., July 8-12 2006. ACM Press.

A. Petrovski, B. Sudha, and J. McCall. Optimising cancieemother-
apy using particle swarm optimisation and genetic algorg¢h In
X. Yao, editor, Parallel Problem Solving from Nature VIII, 8th Inter-
national Conference Proceedings, Lecture Notes in Comi&dience
volume 3242, pages 633-641. Springer—\Verlag ISBN: 3-8182-0
ISSN: 0302-9743, 2004.

A. Petrovski, A. Wilson, and J. McCall. Statistical m#ication and
optimisation of significant ga factors. Proceedings of the Fifth Joint
Conference on Information Sciences, JCIS 208@0ume 1, pages 1027
— 1030, Atlantic City, USA, 2000.

] K. Sastry, D. E. Goldberg, and M. Pelikan. Don't eva@jainherit.

In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. \pigt
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. &urk
editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001pages 551-558, San Francisco, Califor-
nia, USA, 7-11 2001. Morgan Kaufmann.

R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness iitaace in
genetic algorithms. IProceedings of the 1995 ACM symposium on
Applied computing ISBN:0-89791-658-fpages 340-345, Nashville,
Tennessee, United States, 1995. ACM.

R. Souhami and J. TobiasCancer and its Managementhapter 3.
Blackwell Science, 1998.

G. W. Swan. Role of optimal control theory in cancer clogimerapy.
Mathematical Bioscienced01:237-284, 1990.

T. C. Tan, T. H. Lee, J. Cai, and Y. H. Chew. Automating the
drug scheduling of cancer chemotherapy via evolutionargprgation.

In Proceedings of the 2002 Congress on Evolutionary Computing
volume 1, pages 908-913, May 2002.



