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Abstract— Cancer treatment by chemotherapy involves mul-
tiple applications of toxic drugs over a period of time. Op-
timising the schedule of these treatments can improve the
outcome for the patient. A schedule of treatment and its effect
on the tumour can be simulated by a mathematical growth
model. However, when used in conjunction with an Evolutionary
Algorithm (EA) to search for effective treatment schedules, the
frequent use of the model can become computationally onerous.
One approach to improve the efficiency of EAs is to use ‘fitness
inheritance’, in which, for a proportion of candidate solutions,
simple means are used to guess the fitness, rather than use the
computationally intensive model. We investigate two versions
of fitness inheritance for the chemotherapy schedule optimisa-
tion problem, and demonstrate the significant improvement in
efficiency that can be achieved. In particular, we find that the
Averaged Inheritance strategy is highly effective in this case,
and is strongly recommended for use in further investigations
of chemotherapy optimisation using population-based search.

I. I NTRODUCTION

Cancer is a major cause of death in modern society.
Chemo-therapy is the treatment of cancer using highly toxic
drugs which have been developed by pharmaceutical re-
search. These drugs attack and kill cancer cells, but also
damage healthy cells. To control damage to vital organs
and tissue the drug doses have to be limited. A dose of
drug(s) is given, then a period for the body to recover
is followed by another dose, and so on. Dose schedules
are developed from clinical trials and the experience of
oncologists in practice. They have become more complex
with the increase in the number of drugs available and
in the use of multi-drug treatments. Different drugs affect
different organs, so limiting the dosage to control side effects
also becomes more complicated. With a treatment schedule
of ten or more dose/rest periods and ten or more drugs
available in different doses, there are a huge number of
treatment combinations possible, far too many for clinical
trials to evaluate. Thus it is almost certain that the drugs
available are not being used to best advantage. EAs have
been investigated in this context, but since EAs typically
require tens or hundreds of thousands of fitness evaluations,
the computational cost can be prohibitive in practice. In this
paper we investigate whether fitness inheritance strategies
([14]) can yield a useful improvement in efficiency in this
case, without unduly adverse effects on solution quality. In
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the remainder, Section II introduces the problem, SectionsIII
and IV describe our experiments and results, and we provide
a concluding discussion in Section V.

II. T HE PROBLEM: BACKGROUND

A. Cancer and Chemotherapy

Cancer is not a single disease; the biology of cancers is
described in [3], [15]. Cancerous tumours are characterised
by rapidly dividing cells. Chemotherapy is the application
of drugs in an attempt to reduce or eliminate the tumour,
whilst managing damage to the immune system and avoiding
unacceptable side effects to the patient. The schedule of
drugs and doses to be given is thus a balance between killing
cancer cells and limiting damage. For some time the use of
computer simulations of chemotherapy has been developing
in this field as a method of finding alternative or novel
treatments.

Modelling Tumours and Chemotherapy

Modelling of chemotherapy includes:
• tumour growth;
• tumour cells killed by drug(s);
• constraint(s) on drug application, dose rates and

amounts etc.;
• meeting the objective(s) of treatment.
A well-known growth equation due to Gompertz is:

f(N) = λN − µNlnN (1)

whereN is the number of tumour cells andλ andµ are
growth parameters. This equation is the basis for much work
in this field[16].

A Basic Chemotherapy Response Model

To a growth equation, a ‘cell kill’ or ‘cell loss’ term is
added to model the effect of the drug on the tumour cell
population.

If κ is the effectiveness andc the concentration of a
cytotoxic drug, adding the ‘kill’ term−κcN to the Gompertz
growth model Martin and Teo [4] show that :

dN

dt
= N(t)λln

(

Θ

N(t)

)

− κc(t)N (2)

where N(t) is the number of tumour cells at timet, c(t)
is the drug concentration at timet and λ, Θ are tumour
parameters.

Equation (2) can be extended to cover multiple drugs by
summing the kill terms for each drug.



Constraints

Due to the toxicity of anti-cancer drugs, there are limits
on doses to protect healthy cells and control side effects.
Constraints may also be applied to meet treatment objec-
tives, such as keeping the tumour below a certain size or
maximising patient suvival time.

Chemotherapy Optimisation and related work

When EAs are applied to the cancer chemotherapy
scheduling problem, each individual in the population rep-
resents one set of drug doses and rest periods. Fitness is
estimated via a mathematical model of tumour growth over
time and the effect of the drugs. This tumour model simulates
the interaction of the drugs throughout the treatment period.

McCall and Petrovski [5] present a decision support sys-
tem called the Oncology WorkbenCH (OWCH) for oncol-
ogists seeking novel treatment schedules. The main theme
is the constrained optimisation of multi-drug chemotherapy
using a model with the Gompertz equation. The treatment
schedule is encoded in the EA by a control vector (chro-
mosome) of binary values. This is simply the dose for each
drug for each time interval, coded as four bits representinga
dose of between 0 and 15 units. Constraints are set to limit
drug concentration, total exposure and tumour size during
treatment. The toxic side effects on other organs are also
constrained using a potency parameter for each drug. Two
EAs are used. An objective function minimising tumour size
determines if a cure is possible. If this is unsuccessful a
second EA determines a palliative schedule. Both EAs apply
penalties to their objective functions based on violationsof
constraints.

In [9] Petrovski and McCall further explore the problem
of optimisation posed by multi-drug chemotherapy with EAs
using exponential, von Bertalanffy, Verhulst and Gompertz
growth equations. Experiments are described which use all
four growth models and both treatment goals. These are
compared to a common chemotherapy schedule of three
drugs and show better performance. The authors conclude
the various growth models do not affect the EA’s ability to
derive treatment schedules.

A Particle Swarm Optimisation (PSO) algorithm is inves-
tigated by Petrovski et al. [11] in experiments simulating
and optimising chemotherapy schedules. They showed that
PSO was effective for this problem, with speed and quality
improvements over the EAs with which it was compared.
Finally, we note the work of Ochoa et al. [7], which in-
vestigated drug chemotherapy using one drug and a com-
putationally expensive tumour and immune system response
simulation, in an EA which takes several days for a single
run, thereby excluding comprehensive statistical analysis.

Accelerating Evolutionary Algorithms

Acceleration of optimisation in this context is clearly a
major issue, and there have been a number studies so far

that try to address it. E.g., Petrovski et al. [12] shows that
the mutation and crossover probabilities can be significantin
EA performance, and in [8] Petrovski et al. showd that online
tuning of mutation probability and step size was worthwhile
in achieveing faster and better performance. Meanwhile, use
of parallel hardware resources is obviously applicable, as
studied for chemotherapy optimmisation in Tan et al. [17].

However, considering the computational demands of com-
plex simulation models, as well as the likely resources
available in practice, more significant speedup of serial
implementations is needed. Along these lines, one area
of research is the general speedup that can be available
when EAs are combined with machine learning strategies
(e.g. [6]), or when techniques are used to wisely bias the
genetic operators towards good areas. Along these lines,
Petrovski et al. [10] compare the performance of an EA with
Population-based Incremental Learning (PBIL), finding that a
large reduction in fitness evaluations is possible. meanwhile,
Godley et al. [1] use parent fitness to bias the crossover
operator in a single drug chemotherapy problem. Fitness
function evaluations were found to be significantly less than
an EA using either single point or uniform crossover.

One highly promising technique that has not yet been
explored for chemotherapy schedule optimisation is Fitness
Inheritance, originally suggested by Smith et al.[14], and
[2]. Smith et al. proposed that computationally expensive
fitness calculations could be done only for a portion of the
population. In contrast with Grefenestette and Fitzpatrick’s
proposal to only partially evaluate fitness (for all th epop-
ulation), Smith et al. suggests full evaluation of only part
of the population, with some of the population having their
fitness values derived in a simple way from the fitnesses of
their parents. Two varieties are described:averaged inher-
itance – the arithmetical mean of the parents’ fitness; and
proportional inheritance– a weighted average based on the
contributions of genes from each parent. Tests conducted
on OneMaxshowed that efficient convergence is achieved
even with only 10% actual fitness function evaluations. On
a more realistic problem (aircraft routing), Smith et al found
that a proportional inheritance version of fitness inheritance
achieved excellent results even when less than 1% of the
population was subject to proper fitness evaluation. Mean-
while, Sastry et al.[13] investigated fitness inheritance from
a theoretical viewpoint, and verified the potential speedup
available through fitness inheritance in certain circumstances,
albeit on a simple (analysable) problem landscape.

Fitness Inheritance is clearly an attractive candidate for
investigating in the context of chemotherapy schedule opti-
misation, and has not yet been investigated for this purpose
to our knowledge. It is attractive partly for its simplicity,
but also with excellent results reported on other problems.
We therefore investigate fitness inheritance in this paper,and
examine what speedup is achievable and how this speedup
interacts with the quality of solutions.



III. E XPERIMENTS: EVALUATING FITNESS INHERITANCE

STRATEGIES

The Gompertz growth model is chosen because it is
commonly used in this field and the Java source code for an
implementation is available. Modelling of the tumour growth
and chemotherapy drug interaction is an implementation
of equations (1) and (2) and the constraints described in
Section II-A due to Petrovski et al. [10]. The encoding of
genes for this model is the integer-based drug dose array
described in [10]. For each of 10 drugs, during a 10 week
schedule, a chromosome simply comprises a list of 100
integers constrained in the range0 . . . 15. Each successive
group of 10 numbers relates to the dose concentrations for
each of 10 specified drugs over a specific week. When
the chromosome is interpreted, an integer value is scaled
appropriately between zero and a maximum dose, according
to the specific drug represented.

A. Control Experiment

As a control, we use a standard EA which uses the
Gompertz tumour growth model for fitness evaluation, and
which employs no fitness inheritance. This EA is otherwise
the same as that used in the fitness inheritance experiments,
and uses a steady-state, replace-worst reproduction strategy.
A population of randomly generated individuals is evolved
for up to 50,000 generations (equivalent in the steady state
model to 50,000 evaluations). Binary tournament selectionis
used, along with standard two point cross-over and Gaussian
mutation of a single randomly chosen gene.

Cross-over and mutation are used with probability of 1.0,
and if the same parent is selected twice this is effectively
mutation only. This schema is chosen for its simplicity and is
not tuned in any way. However, some preliminary work was
done to establish a suitable population size and the number
of runs required to produce results and find a reasonable
number of feasible solutions to the problem.

B. Termination Criteria

In the approach we undertake in this paper (following
[11], [5], [9]), the model returns fitness values that indicate
the size of the tumour following the end of the treatment
schedule, and indications of the damage caused to various
organs. These are combined into a single objective fitness
value, however a ‘good’ fitness value does not necessarily
mean the solution is feasible, since it may unduly tradeoff a
small tumour size for a high level of damage. The criteria
for a solution to be deemed feasible are:

• a positive value of fitness;
• no penalties applied for side effects on organs;
• no penalties for exceeding instantaneous or cumulative

drug dose limits;
• tumour does not exceed its original size during the

treatment period.

These criteria apply to all experiments described in this
paper. Clearly, multi-objective approaches need to be studied
for this problem, and this is the topic of future work. Here

we focus only on the potential benefits of fitness inheritance,
and maintain a single-objective approach for simplicity.

C. Measuring Performance

In the control and all subsequent experiments when a
chromosome is found which meets the termination criteria, it
is evaluated using the model and the total number of evalu-
ations required to achieve this is recorded and the algorithm
terminates. This is described as finding the first feasible
solution. The count of model evaluations does not include
those made at the initialisation of the starting population,
which is the same for all experiments.

D. Inherited Fitness Experiments

Fitness inheritance is an extremely simple concept: the
fitness of a child is derived from the fitness of its parents.
Smith et al. [14] define two kinds of inheritance: averaged
and proportional. Using averaged inheritance is to simply
assign the arithmetical average of the fitness of the two
parents to the child’s fitness. In proportional inheritance
a weighted average is calculated from the contribution of
genetic material by each parent – the larger the number of
a parent’s genes that are used in the crossover combination,
the more the average is weighted towards the fitness of that
parent. The implementation of this is straighforward, given
the two-point crossover has a probability of 1 in the EA.

A modified version of the EA allows a controlled percent-
age of the generated children to have their fitness estimated
by inheritance instead of evaluated by the tumour model.This
reduces the number of times the model is used. The fraction
of children whose fitness is estimated by inheritance varies
from zero i.e. the base EA, in steps of 5% up to 95%.

Both types of inheritance are used in separate experiments.
Actual model evaluations are counted until the termination
criteria given in Section III-A are met. The actual fitness of
that first solution is evaluated using the model, recorded and
the run ended. Model evaluations to initialise the population
are not included in the count for the first feasible solution.

IV. RESULTS

Experiments are presented in chronological order in this
section and the results are discussed.

A. Control Experiment

Notice that, given the criteria discussed in section III-B it
is expected that some runs will not find a feasible solution at
all. Meanwhile, in order to ensure that sample sizes of results
are sufficiently large for statistical testing without execution
times being excessively long, an experimental regime of
groups of 500 runs each with a population of 500 evolving
for up to 50,000 generations is chosen.

A single set of 2,000 runs was executed to produce a
larger sample to establish the mean and standard deviation of
key parameters for the experiments. Table I shows the results
of this effort. In this table, the number of model evaluations
is that required to find the first feasible solution in the run.



For each of the the two types of inheritance a secondary
baseline run is conducted, in which the parameters were set
to make it equivalent to the baseline EA (i.e. inheritation
proportion set at zero). These checks validated that the
fitness inheritance code variants were performing correctly.
The results of these runs are referred to later as baselines
for the associated experiments, and are also shown in the
lower part of Table I.

TABLE I

RESULTS OF BASELINEEA RUNS. FOR EACH OF THE THREEEA

VARIANTS , 2,000RUNS WERE DONE, EACH FOR A TOTAL OF50,000

EVALUATIONS , AND THE TABLE REPORTS THE MEAN AND STANDARD

DEVIATION OF THE NUMBER OF EVALUATIONS TAKEN TO FIND THE

FIRST FEASIBLE SOLUTION(OVER RUNS WHICH ACHIEVED AT LEAST

ONE FEASIBLE SOLUTION), AND SIMILAR STATISTICS FOR BEST FITNESS

OBTAINED. T-TESTS CONFIRM THAT THEEA VARIANTS WITH

INHERITANCE PROPORTION SET AT0 ARE NO DIFFERENT FROM THE

STANDARD EA.

Model Evals1 Fitness1 t-test
Reference Std. Std. p value

Experiment2 Mean Devn Mean Devn rel to EA
Base EA 10,603 2354 0.396 0.045 1.000

Prop. Inhrt. 10,460 2438 0.403 0.046 0.625
Aver. Inhrt. 10,529 2375 0.395 0.043 0.661

The Student’s t-test p-values in Table I show that these
secondary baseline figures for the number of evaluations
and fitness are representative of the EA and are not low
probability outlying samples which could skew results.

B. Fitness Inheritance: Model Savings

Experiments were performed with the amount of fitness
estimation by inheritance varying from 0% in 5% increments
for both proportional and averaged inheritance up to 95%.
For each inheritance method and inheritance proportion,
500 trial runs were performed and the figures provided are
averaged over the successful runs. Results are also obtained
at very high averaged inheritance rates. Table II shows the
results.

The Evals column shows the number of model evaluations
to find a feasible solution (as defined in section III-B) aver-
aged over the number of runs which found solutions. Fitness
values are also averaged over the runs which found feasible
solutions. The Success Rate is defined as the number of runs
which found a feasible solution expressed as a percentage
of the total number of runs (500). For example (clarifying
the meaning of the table) we note that when Proprtional
Inheritance is used and 65% of children receive an inherited
fitness (rather than a time consuming model evaluation),
the first feasible solution is found on average after 7,593
evaluations, and 40% of runs achieve a feasible solution;
when Averaged Inheritance is used, and 85% of children
receive an inherited fitness, the corresponding figures are
3,830 evaluations and 42%. It is clear from Table II that
substantial savings in model evaluations are achieved at

TABLE II

MEAN EVALUATIONS UNTIL FIRST FASIBLE SOLUTION, AND SUCCESS

RATES, FOR BOTH PROPORTIONAL INHERITANCE AND AVERAGED

INHERITANCE, FOR INHERITANCE PROPORTIONS RANGING FROM0 TO

95%

% Proportional Inheritance Averaged Inheritance
Est. Evals Fitness Succ Evals Fitness Succ

0 10,460 0.403 49 10,529 0.395 50
5 10,178 0.395 47 9,947 0.394 49
10 9,550 0.396 46 10,061 0.400 51
15 9,695 0.395 51 9,354 0.397 49
20 9,186 0.402 48 9.079 0.401 50
25 9,262 0.402 48 8,804 0.400 51
30 8,451 0.396 47 8,470 0.397 50
35 7,750 0.396 47 8,235 0.399 48
40 8,132 0.396 49 7,825 0.401 49
45 7,910 0.395 46 7,517 0.400 54
50 7,574 0.394 40 6,996 0.401 43
55 7,544 0.395 41 6,611 0.400 49
60 7,663 0.401 40 5,977 0.400 48
65 7,593 0.396 40 5,757 0.398 50
70 7,909 0.395 38 5,255 0.395 46
75 7,559 0.398 30 4,896 0.401 43
80 6,901 0.389 25 4,409 0.396 42
85 5,559 0.394 14 3,830 0.393 42
90 4,219 0.383 4 3,029 0.396 35
95 0 0 0 1,945 0.384 20
96 1,662 0.391 11
97 1,230 0.379 4
98 949 0.418 1
99 337 0.345 0

high rates of inheritance, with very little effect on fitness
values. The value of Proportional Inheritance drops sharply
beyond the region of 80% inheritance – although there
remain significant savings in model evaluations, the success
rate becomes very low. In contrast, Average Inheritance does
not suffer a sharp drop in success rate until around 90%
inheritance.

Fig. 1. Visualising the savings in model evaluations achieved using different
levels of inheritance, for both Averaged and Proportional inheritance.

Figure 1 illustrates the data from Table II. Averaged
inheritance can produce large savings: 80% saving of model
evaluations at 95% inheritance. This is a significant reduction
in computational burden. When the success rate is examined,
however, there is another aspect to consider.



Fig. 2. The success rates (percentage of runs that achieve a feasible
solution) as a function of the level of inheritance, shown for both Averaged
and Proportional inheritance

It can be seen from Figures 1 and 2 that inheritance rates
up to about 60% can achieve significant savings and still
find almost as many solutions as the control EA. However
the large savings achieved by values of averaged inheritance
greater than 80% are associated with a rapidly declining
success rate. There is clearly a trade-off between model
saving and success rate.

V. D ISCUSSION ANDINTERPRETATION

A. A Measure of Success

A lower success rate means fewer solutions in a given
number of runs. The definition of success rate given in
Section IV-B makes no distinction between a solution which
uses only a few evaluations and one which requires a large
number of model evaluations to arrive at a feasible solution.

It is useful to introduce a normalising measure which
combines success rate and model evaluations. Ifnfs is the
number of feasible solutions found inNruns and ε is the
average number of evaluations to find a feasible solution and

δ =
nfs ∗ 106

ε ∗ Nruns

then δ (delta) represents the number of solutions per
million run evaluations. The scale factor of106 renders the
values forδ as userfriendly numbers in the order of 10 to
100 feasible solutions per million run-evaluations.

B. Significance of Results

Detailed results are subjected to significance testing and
shown in Table III. Student’s t-test p-values are relative to
the control EA i.e. the top (zero inheritance) row of the table.

C. Proportional Inheritance

The t-test figures shown in Table III show that the reduc-
tion in the number of evaluations is statistically significant,
as the p-values are generally less than10−6. Significance
testing of fitness values (not shown) is inconclusive.

D. Averaged Inheritance

Table III p-values show that the reduction in evaluations is
statistically significant for averaged inheritance. Significance
testing of fitness (not shown) finds that fitness values are as
good as the control EA.

Fig. 3. Delta Values (normalised success rates) for Averaged and Pro-
prtional Inheritance, as a function of the level of inheritance.

Whilst success rates in Figure 2 are generally lower than in
the control experiment EA, the delta values in Figure 3 rise
noticeably above the control: quite dramatically up to 90%
averaged inheritance. Additional runs to 99% inheritance are
conducted and a rapid decline in delta is observed.

In [14] Smith reports“Surprisingly, the best results were
obtained with only one individual actually evaluated per
generation.”Our best result of 337 model evaluations to find
a solution also occurs at the highest rate of inheritance in the
experiments.

E. Comparison

From Figure 2 it is clear that for each type of inheritance
the success rate curves are of similar shapes, with averaged
inheritance performing better above 40%. The delta curves
in Figure 3 show a different picture. Although similar at
low inheritance rates, proportional values decline above 40%
in contrast to averaged inheritance, whose delta increases
dramatically.

For inheritance rates up to 50%, proportional inheritance
is as successful as the control EA and achieves delta values
above the EA, so could possibly be a useful tool in the
chemotherapy scheduling problem. However at rates above
60%, averaged inheritance is much better than proportional
and achieves large model savings and yields high numbers
of solutions per million run-evaluations at inheritance rates
up to 95%. Exploiting these properties to reduce the compu-
tational load in EAs looks to be a promising prospect.

VI. CONCLUSIONS

A summary of good results from the experiments is shown
in Table IV. Ranking results by the number of model evalua-
tions shows that averaged inheritance is productive in finding
feasible solutions, and gives the best savings by a large
margin. As well as being a very simple method to implement,



TABLE III

RESULTS NORMALISED IN TERMS OF NUMBER OF FEASIBLE SOLUTIONS FOUOND PER FULL MODEL EVALUATION, AND ASSOCIATED STATISTICS.

Proportional Inheritance Averaged Inheritance
% age Model No. of t-test Delta Model No. of t-test Delta % age
Inherit- Evals Solns. p val. Solns/106 Evals Solns. p val. Solns per106 Inherit-

ance Found1 Evals run-evals Found1 Evals run-evals ance
0 10,460 243 1.000000 46 10,529 248 1.000000 47 0
5 10,178 237 0.183803 47 9,947 246 0.004426 49 5
10 9,550 220 0.000017 46 10,061 256 0.018719 51 10
15 9,695 256 0.000267 53 9,354 243 < 10−6 52 15
20 9,186 242 < 10−6 53 9,079 249 < 10−6 55 20
25 9,262 239 < 10−6 52 8,804 254 < 10−6 58 25
30 8,630 236 < 10−6 55 8,470 251 < 10−6 59 30
35 8,451 235 < 10−6 56 8,235 242 < 10−6 59 35
40 8,132 246 < 10−6 61 7,825 244 < 10−6 62 40
45 7,910 230 < 10−6 58 7,517 271 < 10−6 72 45
50 7,574 202 < 10−6 53 6,996 215 < 10−6 61 50
55 7,544 207 < 10−6 55 6,611 245 < 10−6 74 55
60 7,663 202 < 10−6 53 5,977 241 < 10−6 81 60
65 7,593 200 < 10−6 53 5,757 248 < 10−6 86 65
70 7,909 191 < 10−6 48 5,255 230 < 10−6 88 70
75 7,559 149 < 10−6 39 4,896 214 < 10−6 87 75
80 6,901 124 < 10−6 36 4,409 209 < 10−6 95 80
85 5,559 72 < 10−6 26 3,830 212 < 10−6 111 85
90 4,219 20 < 10−6 9 3,029 174 < 10−6 115 90
95 0 0 1,945 102 < 10−6 105 95
96 1,662 54 < 10−6 65 96
97 1,230 18 < 10−6 29 97
98 949 3 < 10−6 6 98
99 337 1 < 10−6 6 99

TABLE IV

SUMMARY OF THE BEST RESULTS ACHIEVED FROM EACH OFAVERAGED

AND PROPRTIONAL INHERITANCE, COMPARED WITH THE CONTROLEA

% age Model Delta Success
Algorithm Est. Evals δ %
Averaged Inheritance 90 3,029 115 35
Proport’l Inheritance 90 4,219 9 4
Control EA 0 10,529 47 50

the averaged inheritance technique itself has an extremely
low computational burden and therefore is potentially a very
useful technique in chemotherapy scheduling.

It is worth emphasising that theδ speedup values are
useful for estimating the effective speedup that can be ob-
tained when we execute the optimisation on serial resources.
However, with proper use of multicore hardware (or other
parallel resources) the effective speedups, in terms of wall-
clock time to achieve first feasible solution, become closerto
those suggested in the Model Evals column in table III. E.g. if
we use 97% inheritance in the Averaged Inheritance method,
and execute (say) 50 runs in parallel, speedup of eight to
nine-fold is achievable in finding first feasible solution, when
compared to the (similarly implemented in parallel) control
EA.

It is interesting to speculate on the relative performance of
Averaged and Proprtional Inheritance. Averaged Inheritance
was clearly more successful in maintaining valid progress
in the search process, while we might view the relatively
poorer performance of Proprtional Inheritance as a sign that
the inherited fitnesses in this case were more likely to be
misleading. Consider a combination of a quite fit and a quite
poor parent; in the case of Averaged Inheritance, the fitness
assigned to the child will always be the modest average of
the two parents; such a solution will not unduly influence
the search, since we can expect a fair proportion of the
population to be fitter, and hence more likely to be selected.
However, in Proprtional Inheritance, it is possible that such a
child may be quite poor in real’ fitness, but – if it happens to
inherit mostly the genes of the fitter parent – be given a fairly
influential fitness value, which will then mislead the search.
The key point is that proportional inheritance is likely to be
very sensitive to the ruggedness of the landscape in question;
where it is possible for near-neighbours to have significant
differences in fitness (which is quite so in this case), the
use of Proportional Inheritance is prone to the possibilityof
yielding unduly influential poor chromosomes. With Average
Inheritance, the potential damage from such chromosomes is
more limited by a stricter bound on the fitness value they



can inherit.
Ongoing research (some of which we mention earlier in

this paper) is investigating a range of alternative optimisation
algorithms for the cheotherapy scheduling problem, as well
as the use of a range of alternative tumour growth models;
active and promising areas in this field include further
investigation of particle swarm optimisation approaches,as
well as further investigation of multi-objective approaches
(and of course approaches that may combine the two). An
obvious avenue for further study will be to investigate fitness
inheritance in the context of these approaches.

Meanwhile, this study has concentrated on trying to ef-
ficiently find the first feasible solution on each run. This
was a convenient measure to form the basis of comparison,
although the first feasible solution is itself rarely fit enough to
ensure a treatment effective enough for use. Further studies
are needed to test whether the continued use of fitness
inheritance, beyond the point of first feasible solution, isable
to maintain the speed advantage without compromising the
ultimate fitness values achieved.

Finally, it is interesting to speculate on the relative perfor-
mance of Averaged and Proprtional Inheritance. Averaged
Inheritance was clearly more successful in maintaining valid
progress in the search process, while we might view the
relatively poorer performance of Proportional Inheritance as
a sign that the inherited fitnesses in this case were more likely
to be misleading. Consider a combination of a quite fit and
a quite poor parent; in the case of Averaged Inheritance,
the fitness assigned to the child will always be the modest
average of the two parents; such a solution will not unduly
influence the search, since we can expect a fair proportion
of the population to be fitter, and hence more likely to be
selected. However, in Proprtional Inheritance, it is possible
that such a child may be quite poor in real’ fitness, but
– if it happens to inherit mostly the genes of the fitter
parent – be given a fairly influential fitness value, which will
then mislead the search. The key point is that proportional
inheritance is likely to be very sensitive to the ruggedness
of the landscape in question; where it is possible for near-
neighbours to have significant differences in fitness (which
is quite so in this case), the use of Proportional Inheritance
is prone to the possibility of yielding unduly influential
poor chromosomes. With Average Inheritance, the potential
damage from such chromosomes is more limited by a stricter
bound on the fitness value they can inherit. One corollary to
this argument, suggesting a particular line of future study, is
that a stricter limit on inherited fitness may be even more
beneficial. For example, fitness could be the lower of the
Proportional and Average values, or the child may simply
inherit the fitness of its weakest parent.
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