
'
&

$
%

Solving the Modular ExamScheduling Problem withGenetic AlgorithmsDave Corne, Hsiao-Lan Fangand Chris MellishDAI Research Paper No. 622



ABSTRACTScheduling exam timetables for large modular courses is a complex problem which oftenhas to be solved in university departments. This is usually done `by hand', takingseveral days or weeks of iterative repair after feedback from students complaining thatthe timetable is unfair to them in some way. We describe an e�ective solution to thisproblem involving the use of an appropriately con�gured genetic algorithm (GA). Usingreal student data from a large multi-departmental modular degree scheme, the methodwe describe never failed to �nd a signi�cantly better timetable than those that wereactually employed (produced by hand), always taking less than half an hour.INTRODUCTIONIn a general scheduling problem, events must be arranged around a set of timeslots,so as to satisfy a number of hard constraints and optimise a set of objectives. Types ofscheduling problem di�er in terms of the kinds of constraints and objectives involved.In this paper we examine what we call the mesp (Modular Exam Scheduling Problem).This typically arises in universities running large modular degree schemes, in which eachstudent takes an individual selection of exams from a wide inter-departmental pool ofmodules, many outwith their own department. The events are exams, the timeslots arepossible start-times for those exams, the hard constraints are that no student shouldtake more than one exam at a time, and the objectives are to generally minimise pressureon students, so that as few as possible have multiple exams in a day, consecutive exams,and so on.Typical mesps are NP-hard, and strewn with local minima which make it particu-larly di�cult to address by way of heuristic search or hill-climbing techniques. mespcomplexity is also illustrated by the size of the solution space. Eg: if there are t possiblestart times, and e exams, then there are te candidate schedules. In the particular mespwhich occurs within the EDAI1, this was 2844 in 1992, or c. 5 � 1063.When an mesp is tackled, typically in a university or college department, but verysimilar problems often occur in industry it is usually addressed by hand (eg: by a courseorganiser). This involves producing an initial draft timetable, followed by perhaps weeksof redrafting after student feedback complaining about the latest draft. The initial draftis often based on merging di�erent departments' teaching/course timetables; but in largemodular degree schemes, the fact that many students from one department typicallytake courses in others, and the fact that there are di�erent lecture timetables for di�erentterms, makes this a recipe for �nding local minima, which then typically need extensiverepair if better solutions are to be found (and hence better solutions are often not found).(GAs) provide a way of addressing hard search and optimisation problems. GAsare particularly good at �nding global optima in very hilly spaces; for these reasons,we investigated the use of GAs on the mesp. Following a very basic description of GAs1University of Edinburgh Department of Arti�cial Intelligence.



for the uninitiated (for an excellent introduction, see [1]), we outline our GA approachto the mesp. Finally, we outline experiments in which di�erent GA variants were usedon a typical, real mesp, describe the promising results that ensued, and discuss futurework and implications.GENETIC ALGORITHMSIf we want to maximise a function f(x1; x2; :::; xn), where each xi can take on any ofits own range of values from a set vi, then we can do this with a GA as follows. First,randomly generate a population of P candidate solutions. Eg: if each xi has range vi =f0,1g, then this simply corresponds to generating P random n-bit binary strings. Eachcandidate solution is called a chromosome (or genome). Call this initial populationthe current generation, then, until the number of generations g has reached a speci�ed�gure, or until all the chromosomes in the current generation have converged (have thesame �tness), do:1. Evaluate (ie: apply f to) each chromosome in the current generation. Let the sumof all the resulting �tness scores be S.2. Stochastically select P=2 pairs of chromosomes from the current generation toact as parents for the next generation, such that the probability of a particularchromosome c being selected is f(c)=S.3. For each parent pair, apply a recombination operator, with probability pR, whichyields two child chromosomes from the parents. Also, to each child, apply amutation operator with probability pM . In this way a new population of Pchromosomes will be produced. Call this the current generation, and return tostep 1.GAs vary considerably in the di�erent choices for steps 2 and 3. Eg, the selectionmethod (`roulette wheel' selection) we describe in step 2 above is common, but justone of a number of possible methods. In step 3, the general idea is that the childrenproduced by recombination will tend to have higher �tness scores than the parents.This can easily be seen to happen if two highly �t parents are �t for di�erent reasons,eg: parent pqr is �t mainly because of its third gene being an r, while parent xyz maybe highly �t because of its �rst gene being an x. A recombination operator may thenproduce xqr, which combines good aspects of the parents to produce an even �tter child.One typical recombination operator is one-point crossover. If we have two chromo-somes, x1; x2; :::; xn and y1; y2; :::; yn, then a random number i is chosen between 1 andn � 1; this serves as a crossover point. One child is then x1; x2; ::; xi; yi+1; yi+2; :::; yn,while the other is y1; y2; ::; yi; xi+1; xi+2; :::; xn. A more general crossover operation isuniform crossover, in which for i from 1 to n, the ith bit of child1 is randomly chosenfrom fxi,yig, and the ith bit of child2 is xi if yi was chosen for child1, or yi if xi waschosen for child1. In �xed-point uniform crossover (fpu), a �xed number m of bit-positions are chosen from a parent; one child then has xi in the ith position if i is oneof the chosen positions, and yi otherwise, and vice versa for the other child. In the



experiments described later using fpu,m was chosen to be half the chromosome length.Many other choices of recombination operator are possible, with di�erent operatorsworking best for di�erent problems. Recombination, however, is the essential aspect ofa GA which seems to give it enormous power in searching the �tnes landscape. On theother hand, because of the nature of recombination, there may be parts of the searchspace which will be unavailable without the presence of a mutation operator. Mutationacts by randomly changing the values in bit positions, perhaps (re)introducing a possiblyuseful value. Recombination operators are normally applied to a pair of parents witha probability pR, where typically 0:5 < pR < 1, while mutation is applied with aprobability pM , where typically 0 < pM < 0:05.APPLYING GA TO THE MESPIn applying a GA to a problem, we must specify both a representation and anevaluation function for candidate solutions. Here we describe these aspects with regardto applying GAs to the mesp, while the next section outlines experiments involving theuse of GA variants on a real mesp.Representation: The representation that we have successfully used is simply a list ofnumbers of length e (the number of exams to be scheduled), each element of which isa number between 1 and t (the number of timeslots available). The interpretation ofsuch a chromosome is that if the nth number in the list is t, then exam n is scheduledto occur at time t. For example, the chromosome [2,4,7,3,7] represents a candidatesolution in which exam 1 takes place at time 2, exam 2 takes place at time 4, andso on. Other work, on applying GAs to timetabling problems in schools (see [2]) hasused an alternative representation where the position in a chromosome represents thetimeslot, while what appears at that position is a set of exams. This however leadsto the label replacement problem: crossover often may produce children which are notvalid solutions in that some exams may not be scheduled at all, or scheduled morethan once; this necessitates the use of a label replacement algorithm after crossover,to replace missing exams or remove duplicates. Our representation completely avoidsthis problem: crossover may certainly lead to missing or duplicated timeslots (so thatat certain times no exams, or multiple exams, are scheduled), but these are perfectlyvalid, and possibly good timetables.Evaluation: For a general mesp, the evaluation function must take a chromosome,along with the student data, and return a punishment value for that chromosome. Thestudent data is simply a collection of lists, where each list is the set of exams to betaken by a particular student. Chromosome �tness can then be taken as the inverseof punishment (or 1/(1+punishment) | to avoid division by zero). The evaluationfunction may comprise a weighted set of individual functions, each `punishing' thechromosome in terms of a particular punishable `o�ence'. In the mesp we experimentedwith, the components of the evaluation function are functions which respectively countthe number of instances of the following `o�ences':



� A student taking more than one exam at once (weight = 30).� ... more than two exams in one day (weight = 10).� ... two exams in consecutive timeslots on the same day (weight = 3).� ... an exam just before and another just after lunch on the same day (weight = 1).In other mesps, di�erent sets of component functions and weightings (the abovewere chosen intuitively) may be more appropriate, Eg: components which treat veryearly exams, or perhaps occurences of four exams in two days, as separate o�ences. Ingeneral, the �tness function for an mesp, where c is a chromosome, d is the studentdata, fm1,...,mng is a set of functions which each record the number of instances ofa particular `o�ence', and fw1, ...,wng are the weights attached to these o�ences, is:f(c; d) = 1=1 + sumn1wimc;di .Evaluation is generally the computational bottleneck of a GA. With the mesp,and `o�ence-counting' modules of the type we have described, it is easy to see thatthe time to evaluate a chromosome increases linearly with the number of students, andcan involve many computations depending on the kinds of punishment being lookedfor. It so happens (which is partly the message of this paper), that the GA techniqueis so powerful that a typical mesp can be quickly and e�ectively solved despite thisbottleneck.EXPERIMENTS AND RESULTSOur experiments used real data from the mesps of the EDAI postgraduate AI/CSexams for 1991 and 1992, involving 60 and 93 students respectively (from two de-partments), and 38 and 44 module exams respectively (including modules from fourdepartments) to be scheduled , each student generally taking a selection of 8 examsfrom this pool. The di�erent GA variants below were applied to both problems:� GA1: basic GA with pR at 0.7, pM at 0.003.� GA2: Inverse Square Pressure; as GA1, except that instead of using the inverse ofpunishment as the �tness function, we use the inverse square.� GA3: GA2 + Elitism: here, one instance of the best chromosome in a generationwas always copied into the next generation (note: because of the stochastic nature ofselection in a GA without elitism, there is no guarantee that the best chromosome inone generation will appear in the next).� GA4: GA3 + Operator Rate Interpolation (ORI); ORI involves gradually decreasingpR and increasing pM with each new generation.We report on four experiments, each using one of the above GA variants on boththe 1991 and 1992 timetabling problems. In the GA1 and GA4 experiments, we also



experimented with di�erent crossover operators.SUMMARY OF RESULTSThe results we describe represent averages over 10 trial runs of 300 generations, witha population size of 50 in each generation. GA1 always managed to produce timetablescomparable in �tness to the actual timetables used within 300 generations when fpu2was used, and GAs 2, 3 and 4 performed at least as well as the actual timetable whatevercrossover was used, but fpu crossover was always best. In terms of the �tness score ofthe best chromosome after 300 generations, GA2 was 25% better than GA1, GA3 wasabout 250% better than GA1, and GA4 was about 400% better.Using GA4 with fpu on the 1991 problem reliably resulted in a timetable better thanthe actual one, and the best (of ten trial runs) was a timetable with zero punishment {ie: no instances of consecutive exams, or more than two exams in a day (and certainly noclashes!) for any student. The actual timetable used for these exams had a punishmentof 37, involving 11 consecutive exams o�ences, and 4 `before-&-after-lunch' o�ences.In the 1992 case, again ten out of ten trials of GA4 with fpu crossover producedbetter timetables than that produced by the course organisers. The best from tentrials was a timetable with a punishment of 3 (only one occurence of a student havingconsecutive exams). The actual timetable used for these exams had a punishment of101, involving 33 consecutive exams o�ences, 16 before-&-after-lunch o�ences, and 2three-exams-in-a-day o�ences.CONCLUSIONSWe have described the mesp, a common and very hard problem which occursfrequently in schools and universities. We have found that a simple, traditional GAusing one-point crossover can quickly produce results comparable to human schedulerson a typical mesp. Further, combining elitism, operator rate interpolation, inversesquare pressure, and fpu crossover leads to reliable production of optimal or near-optimal timetables, faring much better than an unaided human team. Our approach isstraightforward to implement, and hence should be easy to adopt in any department orinstitution which continually needs to solve mesps. The work already done is describedfully in [3].There is, however, a great deal more work to be done. So far, we have shown thatGAs show great promise on timetabling problems of the kind and size reported in thispaper. Also, at the time of writing the system has just been used for the 1992/93version of this problem, involving yet more exams and more students, resulting in theproduction of a successful timetable. We have no comparative results for this particularlatest application; this is to be expected however, because the course organisers whonow use the system certainly do not want to go to the trouble of producing an exam2The �xed number of positions swapped each time being half the chromosome length (ie: half thenumber of exams involved).



timetable by hand, now that they don't need to.Nevertheless, we intend to pursue systematic studies from which we can learn howour approach scales up to larger problems, how the approach compares with conventionaltimetabling methods, and how performance varies with parametric, representational andalgorithmic variations in the GA con�guration.Conventional computer-based timetabling methods concern themselves more withsimply �nding the shortest timetable that satis�es all the constraints, usually usinga graph-coluring algorithm (�nding sets of exams that can be scheduled at the sametime corresponds to �nding sets of vertices in a graph which are not adjacent), and lesswith optimising over a collection of soft constraints. As this is an NP-hard problem,conventional methods use approximate graph-colouring algorithms which usually �nda reasonable, if not optimal, solution, though may perform arbitrarily badly. No suchsystem that we know of, however, attempts to optimise over constraints of varyingimportance such as exam-consecutivity, etc ... ; this is because it is hard to �t prioritybased optimisiation into the conventional method. The GA approach, on the other hand,can deal with hard and soft constraints in a uniform way; further, adding or changingthe importance of a constraint simply corresponds to adding/altering a componentof the �tness function, rather than extensively revising the algorithm itself. At themoment, then, our approach is incommensurable with the conventional approach inthat it attempts to solve a harder, more constrained problem. It still remains to beseen, however, how well our approach scales up to larger problems, both on its own andin comparison with conventional methods.Another important avenue to explore is the more general problem, usually handledby conventional methods, in which exams (or lectures) may occur in a set of roomswith di�erent capacities. Investigating this requires us to modify the chromosomerepresentation and evaluation function, and will very shortly be tried via a projectat the EDAI; the method used in [2] handles this more general problem, but su�ersfrom a fairly poor choice of representation.Examining performance sensitivity will come by testing a large number of GAvariants on a standard corpus of problems, coupled with some theoretical work. The �rstfew techniques of a long list that we intend to examine in this respect are: performancevs variation in population size; performance vs altered interpretation of representation(ie: we can rewrite the evaluation function to interpret a chromsome as an implicitrepresentation of a timetable which satis�es all the hard constraints; this slows downevaluation, but may potentially improve overall speed and solution quality); performacevs di�erent penalty settings for constraint violations, and so on.Finally, we hope to have described how it is possible to greatly ease the burden oncourse organisers, and also ease the pressure on students at exam time, by applying a GAto the modular exam scheduling problem. We are unsure about the precise limitationsof the technique at present, but feel con�dent about its general wider applicability.Work continuing at the EDAI will hopefully soon produce more conclusive performancedata. We also feel con�dent that the general GA approach to timetabling will applywell to some other important problems of a similar form. An appropriate example is



the problem of timetabling paper presentations at conferences with parallel sessions; ifeach delegate was given the opportunity to provide the organisers with their individualpreferences regarding the papers to be presented, a GA based timetabling system verysimilar to the one we describe could arrange for parallel sessions to be organised suchthat delegates are collectively satis�ed as far as possible, in terms of minimising thedegree to which two presentations a delegate wishes to see are scheduled to occur at thesame time. We plan to do this, with the help of the organisers, for the next EuropeanConference on Arti�cial Intelligence.REFERENCES1. Goldberg, D.E., Genetic Algorithms in Search, Optimisation & Machine Learning,Addison Wesley, Reading, 1989.2. Abramson & Abela \A Parallel Genetic Algorithm for Solving the School TimetablingProblem", Technical Report, Division of I.T., C.S.I.R.O, April 1991.3. Fang, H-L., \Investigating Genetic Algorithms for Scheduling", MSc Dissertation,Department of Arti�cial Intelligence, University of Edinburgh, Edinburgh, UK, 1992.


