
Evolutionary Optimization guided by

Entropy-based Discretization

Guleng Sheri and David W. Corne

Department of Computer Science, Heriot-Watt University, Ediburgh, UK
gls3@macs.hw.ac.uk, dwcorne@gmail.com

Abstract. The Learnable Evolution Model (LEM) involves alternating
periods of optimization and learning, performa extremely well on a range
of problems, a specialises in achieveing good results in relatively few func-
tion evaluations. LEM implementations tend to use sophisticated learn-
ing strategies. Here we continue an exploration of alternative and simpler
learning strategies, and try Entropy-based Discretization (ED), whereby,
for each parameter in the search space, we infer from recent evaluated
samples what seems to be a ‘good’ interval. We find that LEM(ED) pro-
vides significant advantages in both solution speed and quality over the
unadorned evolutionary algorithm, and is usually superior to CMA-ES
when the number of evaluations is limited. It is interesting to see such im-
provement gained from an easily-implemented approach. LEM(ED) can
be tentatively recommended for trial on problems where good results are
needed in relatively few fitness evaluations, while it is open to several
routes of extension and further sophistication. Finally, results reported
here are not based on a modern function optimization suite, but ongoing
work confirms that our findings remain valid for non-separable functions.

Key words: function optimization, hybridization, learning

1 Introduction

The Learnable Evolution Model (LEM) [13] is a general hybrid approach, in
which the overall idea is to combine evolutionary search and learning, where
‘evolution’ periods are informed by previous ‘learning’ periods, E.g., following
n generations of an evolutionary algorithm (EA), we might then apply learn-
ing (perhaps a neural network, or a decision tree learner) which will exploit the
information gained so far by trying to learn to predict fitness (or categories of
fitness, such as ‘good’ and ‘bad’) from vectors of gene values. The result of the
learning phase is then used somehow to inform the next period of evolution. The
way in which learning influences evolution is not restricted. For example, the
learned mapping from gene values to fitness could be used to predict the fitness
of children before they are evaluated, and the evolution phase then discards,
without evaluation, children that are predicted to be of poor fitness. Alterna-
tively the learned model may be used to constrain the genetic operators in such
a way that children are more likely to be fit. Or, the learned model may be used
to ‘repair’ children, and so on.

2 Guleng Sheri and David W. Corne

In [13], the learning method was AQ15 [11, 16], and the results of this, along
with the results emerging from continuing development of LEM from Michalski’s
group [17, 18], were highly promising. In particular LEM led to dramatic speedup
on a range of function otpimization problems as well as on a real-world problem.
In other work inspired by LEM, a multiobjective version (using C4.5 as the
learner), significantly accelerated and improved solution quality for large-scale
problems in water distribution networks [10].

Of course, the essential idea of combining learning and evolution is not re-
stricted to LEM. While LEM emerged from the machine learning community,
Estimation of Distribution Algorithms (EDAs) blossomed in the evolutionary
computation community [12]. Both LEM and EDA now have several published
variants (particularly EDA variants), and it is interesting to contrast the two.
While EDAs focus on modelling as the key force behind search (i.e. search is
guided closely by the modelling, with new sample points in the space generated
directly from the model), in LEM the evolutionary component is most respon-
sible for the search (i.e. new points are sampled mainly in the familiar way by
using genetic operators on a population of chromosomes), with guidance from
learning processes. Most interestingly, recent results compare EDAs and LEM3
directly [18], using a variety of EDA implementations [5]. Comparisons showed
LEM3 (with AQ) from 15–230 times faster than EMNA global , and always
achieveing a superior final solution. Also, recent years have seen the appearnace
of hybrids of EDAs and other search methods [19, 14, 20]. When contrasting LEM
with EDA, it is sensible to say that LEM is similar to a hybrid of an EDA and
an EA; this seems consonant with the success that has so far been reported for
EDA/EA hybrids.

Clearly, more research is warranted towards understanding the design and
application of algorithms within the LEM framework. In previous work [4], the
authors explored how well a LEM algorithm performs when the learning tech-
nique is perhaps the simplest possible such mechanism: k-nearest neighbour.
In LEM(KNN), the learning phase comprised only the process of identifying the
best and worst 30% of the current population; subsequent evolution only allowed
evaluation of children for whom the majority of their 5 nearest neighbours from
these sets were in the higher-fitness group. Although not able to produce results
that rivalled those of LEM(AQ) [13], this simple intervention of learning provided
very significant speedup and solution quality improvements over the unchanged
EA. In this paper the investigation of alternative learning methods is continued
by the use of a quite different approach. We use the concept of entropy-based dis-

cretization (ED), whereby, for each parameter in the search space, we infer from
recent evaluated samples what seems to be a ‘good’ interval for that parameter.
Subsequent periods of evolutionary search are biassed towards exploring these
‘good’ intervals. Over a range of function optimization problems, we find that
the resulting LEM(ED) methods again provide significant advantages in both
solution speed and quality over the unadorned evolutionary algorithm, and on
most problems it is also superior to CMA-ES when the number of evaluations

Entropy-based Discretization 3

is limited. Though details are not included here, LEM(ED) is also significantly
better than LEM(KNN).

In the remainder we continue as follows. Section 2 provides more detail on
LEM and on our LEM(ED) variation(s). Section 3 covers experiments and results
on some test problems, and we conclude and discuss in section 4.

2 LEM and LEM(ED)

2.1 The LEM Framework

In LEM(AQ) [13], an initial population is divided into high-performance (H-
group) and low-performance (L-group) groups according to fitness, to be used
as positive and negative training examples for AQ learning. The outcome of
learning is a set of rules which predict a class label (i.e. H-group or L-group) for
a chromosome. LEM(AQ) then proceeds with an otherwise normal EA, except
that the operators generate new individuals only with gene values within the
ranges sanctioned by the recently learned rules. LEM(AQ) then continues for
a specified amount of generations, and then pauses for more learning based on
the current population. This feeds into the next stage of evolution, and so on.
LEM(AQ) has many additional details that mediate the transitions between
learning and evolution, and we refer readers to [13] for more details.

LEM(AQ), thus overviewed, is simply an instantiation of the wider LEM
framework, which allows for creativity in the choices of learning method, and the
way in which learning and evolution interact. Here, we continue an investigation
of simple instantiations of this framework. The key details in the instantiation
we use in this paper are as follows: the learning method is entropy-based dis-
cretization (described next); we tightly interleave learning and exploration in the
initial generations, and then we cease further learning entirely; finally, the way
in which learning affects evolution, similarly to the LEM(AQ) case described
above, is that we constrain the generation of new chromosomes according to the
learned model.

2.2 Entropy-based discretization(ED)

We use entropy-based supervised binary discretization [1], taken from the ma-
chine learning literature. As is well-known, for example, ID3[2] and C4.5[3] use
entropy measures to guide the development of a decision tree. In particular, in
data mining there is often a need to discretize the range of a continuous param-
eter (into, for example, two intervals labelled ‘low’ and ‘high’). This is done by
considering all possible cutpoints for the boundary between the intervals, and
calculating an entropy measure for those cutpoints. In the case of data mining,
entropy is based on the way in which the target class values are distributed over
the two intervals, and the cutpoint that provides the best entropy measure is
chosen. In our usage of ED, we basically do the same, but considering ‘good
fitness’ and ‘bad fitness’ to be the target class values. I.e. we choose a cutpoint
that seems to best separate ‘good’ from ‘bad’ in the current population.

4 Guleng Sheri and David W. Corne

2.3 The LEM(ED) algorithm

As with LEM(AQ), LEM(ED) divides the current population into high-performance
(H-group) and low-performance (L-group) groups according to their fitness val-
ues and a given threshold (say, 30% – that is, the fittest 30% form the H-group
and the worst 30% form the L-group). This is then saved as the learning popula-

tion. Individuals of the H-group and L-group in the learning population form the
training examples used by ED. ED is applied to each parameter i independently;
the output of ED for parameter i is the pair of intervals [mini, cut pointi] and
[cut pointi,maxi] where cut pointi is the splitting point with minimum entropy,
and mini and maxi are the lower and upper limits specified for parameter i.

The two intervals in each such pair are then labelled good and bad (the good
interval is the one with the highest proportion of points from the H-group). Fig-
ure 1 illustrates this. On the left, we show the cutpoint (and hence division into
good and bad intervals) that might be learned from a population of fitnesses for
a given parameter. In the case on the left, the good interval happens to contain
the value of that parameter that appears in the global optimum; in the case on
the right, the optimum is missed by the good interval. The idea of LEM(ED)
is to guide evolution by biassing further search within the ‘good’ intervals, and
this is, of course, appropriate if the case on the left occurs more often than the
case on the right, or if not, we should allow enough exploration and adaption to
‘recover’ from mislabelled intervals. We have done various investigations around
this issue and expect good adaptive schemes to emerge in future, but in the
present work we consider only two basic variants of LEM(ED). In each one,
learning of intervals ceases after a generation that has seen no improvement in
the best solution. In LEM(ED)1, further generations continue with the underly-
ing EA (unconstrainted), and in LEM(ED)2, further generations continue with
the underlying EA, but biassed by the last learned intervals.

maxmin cut_point

bad intervalgood interval

max

good intervalbad interval

min cut_point

: positive training component

: negative training component

: optimum component

Fig. 1. Illustrating entropy-based discretization, showing correctly (left) and incor-
rectly (right) labelled interval pairs.

When the intervals for all parameters are labelled, LEM(ED) begins the in-
stantiation procedure. New individuals for the next generation are now generated
according the good intervals. In the current work, we achieve this by generating

Entropy-based Discretization 5

new individuals uniformly at random from one of the intervals, using a high
probability to choose the good interval.

When the new population is created, ED is applied again to the current pop-
ulation, and the process of ED and generation of new individuals until the latest
instantiation step leads to no improvement in best fitness. When the learning
mode is finished, we continue with an ordinary EA. In the case of LEM(ED)1,
the EA benefits only from a good (hopefully) initial population emerging from
the learning phase just described. In LEM(ED)2, the EA additionally uses the
final set of learned intervals, biassing the generation of new individuals.

‘Overview’ pseudo-code for LEM(ED) is as follows:

1. Set values for population size, mutation probability, crossover probability,
learning threshold and set elite-preserve operator option.

2. Generate initial population: Choose a method to create the initial population
with population size and evaluate this population.

3. Begin learning mode :

(a) Derive extrema: Copy the current population as the learning population,
from which create the high fitness group (H-group) and low fitness group
(L-group) according to fitness values and threshold. These two groups are
stored as positive and negative training data for learning algorithm.

(b) Apply ED: For each parameter, consider each value as the potential cut-
point and calculate the information gain for each such point, choosing
the best as the cut point for this parameter. The output of this step on
each dimension is two intervals having the form < min, cut point >, and
< cut point, max >.

(c) Label the learned intervals: For the output intervals on each parameter,
label them as good and bad intervals by observing the relative propor-
tions of gene values from the H-group and L-group.

(d) Instantiate new individuals: After the discretization and labelling pro-
cedures, the new individuals for next generation are generated from the
good intervals in each dimension.

(e) evaluate each of the new individuals; if there has been no improvement
in best fitness, terminate learning and switch to EA mode.

(f) Update H-group and L-group: When the new population is generated,
the H-group and L-group are recalculated. Return to step (b).

4. Begin evolution mode: The EA can of course be freely designed, and may or
may not use the intervals generated at the end of the learning phase.

LEM(ED) will terminate if the optimum (if known) is reached, or the max-
imum allowed number of generations is reached. In LEM(ED)1, the evolution
phase runs a straightforward EA, described next, whose initial population is the
output of the learning phase. In LEM(ED)2, the EA is the same, except that mu-
tation uses the final set of intervals learned in the learning phase; mutations to
parameter i will have a high chance of choosing a value from the ‘good’ interval
for i.

6 Guleng Sheri and David W. Corne

3 Experiments and Results

We tested LEM(ED)1 and LEM(ED)2 by running them on a set of functions
that were used in the original LEM paper [13], augmented to provide a more
thorough test. We compared with the underlying EA (i.e. LEM(ED) without the
learning phase), and, to achieve an understanding in relation to state of the art
performance, we chose to compare also with CMA-ES[7, 8].

In all cases the encoding was a vector of real-valued genes within the specified
interval. The EA used binary tournament selection [9], elitism, uniform crossover
[15] with probability 0.5, and uniform mutation with probability 1/(length of

chromosome).
In LEM(ED) the learning threshold is 0.3, the instantiation method is imple-

mented according to a probability; 80% new individuals are generated from the
good interval, 20% are from the bad interval. In LEM(ED)2’s evolution mode,
the mutation is implemented with a normal distribution whose mean is centred
over the good interval for the parameter in question, and with variance 1.

The main parameters for CMAES(µ,λ) are µ, number of parent individuals,
λ, the number of offspring, and the initial standard deviations σ Here, we im-
plement CMAES(50, 100) and sigma is set to one third of the range of each
variable. Finally, EA and LEM(ED) population size was 100.

For completeness, details of the test functions used are:

a) Rastrigin’s function:

f(x1, . . . , xn) = 3.0n +

n
∑

i=1

(x2
i
− 3.0 cos(2πxi)) (1)

where n = 30 and −5.12 ≤ xi ≤ 5.12.
b) Griewangk’s function:

f(x1, . . . , xn) = 1 +

n
∑

i=1

x2
i

4000
−

n
∏

i=1

cos

(

xi√
i

)

(2)

where n = 30 and −600 ≤ xi ≤ 600.
c) Rosenbrock’s function:

f(x1, . . . , xn) =
n−1
∑

i=1

(100(xi+1 − x2
i
)2 + (xi − 1)2) (3)

where n = 30 and −2.048 ≤ xi ≤ 2.048.
d) Ackley’s function:

f(x1, . . . , xn) = 20+ e− 20exp

−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i

− exp

(

1

n

n
∑

i=1

cos(2πxi)

)

(4)
where n = 30 and −30 ≤ xi ≤ 30.

Entropy-based Discretization 7

e) de Jong’s function 3:

f(x1, . . . , xn) =

n
∑

i=1

integer(xi) (5)

where n = 30 and −5.12 ≤ xi ≤ 5.12.
f) de Jong’s function 4:

f(x1, . . . , xn) =

n
∑

i=1

ix4
i

+ Gauss(0, 1) (6)

where n = 30 and −1.28 ≤ xi ≤ 1.28.
g) Schwefel’s function:

f(x1, . . . , xn) = 418.9829n +

n
∑

i=1

xi sin
(

√

|xi|
)

(7)

where n = 30 and −500 ≤ xi ≤ 500.

Table 1 summarises the results of 100 runs of each algorithm on each function,
with means and standard deviations recorded at 10, 20, 50 and 100 generations
(multiply by 100 for number of fitness evaluations). Table 1 also provides infor-
mation about the mean generation number at which learning was automatically
terminated in the LEM(ED) variants. In interpreting the results, note that de
Jong function 3 is a maximisation problem, and all others are minimization.

In the below, statements of significance are based on randomisation tests
([6]), and made only when confidence was above 99%. Inspection of standard
deviations also clearly supports the statements made. With only one exception
(LEM(ED)2 on Schwefel at 50 and 100 generations) the LEM(ED) variants are
always significantly superior to the underlying EA. To some extent, the underly-
ing EA can be seen as a ‘straw man’, and it is used here only as a baseline, with
improvement to be expected. However, since LEM(ED)2 biasses itself strongly
to learned intervals, it is quite possible that some functions can lead to it be-
ing deceived and misled. It is interesting and promising that this usually does
not seem to happen, however LEM(ED)2’s early fast progress on the Schwefel
function clearly leads it in the wrong direction. This situation is the same for
CMAE-ES, which is always beaten by both the EA and LEM(ED)1 on Schwefel,
and beaten also be LEM(ED)2 until the 100-generations point.

Notwithstanding the case of the Schwefel function, the CMA-ES comparisons
provide a much more exacting test for LEM(ED).With the exception of de Jong’s
function 3, one of the LEM(ED) variants is always superior to CMA-ES (and the
GA) at the 1,000 and 2,000 evaluation points. At the 5,000 evaluations point,
a LEM(ED) variant outperforms CMA-ES on de Jong’s function 4, Rastrigin,
Griewangk and Schwefel, and at 10,000 evaluations this reduces to Rastrigin and
Schwefel, with ties for the de Jong functions. In general, CMA-ES, which is itself
a sophisticated hybrid of learning and evolution, overtakes LEM(ED) (and the
vast majority of other algorithms) as we consume more function evaluations.

8 Guleng Sheri and David W. Corne

Table 1. Summarising 100 indpendent runs of each algorithm on each problem: means
and standard deviations after 10, 20, 50 and 100 generations (1,000, 2,000, 5,000 and
10,000 evaluations); in the first column of the final (100 generations) section, the num-
ber in brackets after the function name indicates the mean generation number at which
learning terminated in the two LEM(ED) variants.

Functions EA LEM(ED)1 LEM(ED)2 CMAES

10 generations

Dejong3 84.1(0.89) 135.4(0.62) 136.1(0.01) 150(0)

Dejong4 26.7(1.3) 1.68 (0.18) 1.96 (0.05) 50.22 (8.2)

Rastrigin 148.52(1.1) 92.91(1.8) 91.98 (0.16) 196.1(0.92)

Griewangk 243.5(0.25) 64.21 (0.89) 64.79 (1.4) 256.8 (2.9)

Rosenbrock 2105.4 (28) 397.6(5.4) 398.3 (11) 3663.7 (150)

Ackley 18.46 (0.043) 13.67(0.081) 13.67(0.082) 20.14(0.021)

Schwefel 6733.6 (36) 5542.73 (82) 5196.01 (24) 8400.76 (510)

20 generations

Dejong3 111.08 (1.2) 139.76(0.73) 142.72 (0.3) 150 (0)

Dejong4 8.732 (0.26) -0.910 (0.052)) -0.820 (0.030) 3.657(0.061)

Rastrigin 98.77(1) 58.31(0.21) 56.77 (1.9) 107.45 (2.6)

Griewangk 116.19(1.5) 7.61 (0.058) 7.93(0.25) 187.45(6.5)

Rosenbrock 942.47 (12) 112.13(5.1) 110.096(1.8) 664.91 (32)

Ackley 16.068(0.04) 6.94 (0.17) 6.90 (0.062) 16.48 (0.049)

Schwefel 4607.46 (87) 3686.41 (9.3) 3693.12 (8.0) 8016.14 (450)

50 generations

Dejong3 134.76(0.13) 146.5 (0.087) 149.93 (0.012) 150(0)

Dejong4 0.298(0.19) -2.176 (0.041) -2.192(0.068) 0.0012(0.00016)

Rastrigin 50.9(1.1) 18.13(0.53) 14.53 (0.63) 62.01 (0.5)

Griewangk 36.70(3.1) 2.31(0.15) 2.58 (0.14) 3.399 (0.16)

4 Rosenbrock 331.65 (8.6) 81.79 (3.9) 79.97 (0.95) 40.1(0.71)

Ackley 11.63(0.13) 3.57(0.11) 3.49(0.14) 3.054 (0.033)

Schwefel 2205.78 (74) 1795.15 (83) 3258.36 (3.7) 6637.8 (820)

100 generations

Dejong3 (5) 145.41 (0.42) 149.46(0.08) 150 (0) 150 (0)

Dejong4 (11) -1.19 (0.054) -2.64(0.1) -2.71(0.054) 1.9e-5(2e-6)

Rastrigin (40) 25.29 (0.84) 9.13 (0.07) 4.76 (0.09) 36.09 (0.22)

Griewangk (58) 11.94(0.3) 1.39 (0.005) 1.98(0.11) 0.38 (0.079)

Rosenbrock (47) 178.3 (6.4) 55.39 (1.9) 47.7 (0.25) 28.01 (0.014)

Ackley (50) 8.061 (0.05) 2.43 (0.16) 0.701(0.069) 0.1694 (0.00074)

Schwefel (2) 1008.87 (42) 827.694 (12) 2871.39 (3.2) 2621.92 (1200)

Entropy-based Discretization 9

Regarding the LEM(ED) design tested here, this is not surprising since our
LEM(ED) variants use a single learning phase followed by an EA, while CMA-ES
is continually learning and adapting. LEM(ED)’s performance in the 1,000–5,000
evaluations regime is neverthess encouraging, and there may be considerable
value in more sophisticated adaptive versions.

4 Concluding Discussion

Our choice of function suite follows those used in the original LEM publications.
However, such suites are now uperseded by those described in the CEC 2005
Challenge [21], which emphasises non-separability and other measures that are
likely to make functions difficult. Since most of the functions tested herein are,
however, separable, the criticism can be made that the findings may well not
generalise to nonseparable functions. However, following preliminary and ongo-
ing work we can confirm that the LEM(ED) variants here show entirely similar
relative (to basic GA and to CMA-ES) performance properties as found here,
and this will be the topic of further dissemination.

So, on the functions studied herein, we find that LEM(ED), a method which
incorporates a simple entropy-based discretization method in the initial part of
a EA run, clearly outperforms its EA component alone, and also generally out-
performs CMA-ES during the initial several-thousand fitness evaluations. Also,
though we omit details here, LEM(ED) outperforms LEM(KNN) [?]. This adds
to evidence that even straightforward learning mechanisms provide considerable
benefit to an EA, especially for accelerating the search.

Lines of further work that seem warranted include testing on a more accepted
set of optimization challenge functions, and investigating repeated phases of ED-
based learning (rather than a single phase at the beginning). Our investigations
so far have focussed on tightly coupling ED and instantiation, which (as we find
in preliminary experiments) is best limited, rather than continued throughout
the run, otherwise the learned intervals can be deceived and results suffer. How-
ever we are yet to investigate (which would be highly suited to the LEM frame-
work) the interleaving of further ED/instantiation phases with phases of several
generations of evolution. Meanwhile, the information inherent in the learned in-
terals could be used more creatively in later phases, in various ways. Also, a
more sophisticated termination criterion for the ED phase would be beneficial,
since we note that the ‘better’ sets of intervals are often those learned a handful
of generations before the cessation of fitness improvement.

More generally, more study seems warranted in the area of learning/evolution
combinations (both in terms of LEM-framework instantiations, and also in terms
of organising the knowledge in this important area that is currently spread widely
in the literature).

References

1. Hussain, F., Liu, H., Tan,C.L., Dash, M.: Discretization: An Enabling Technique.
Data Mining and Knowledge Discovery, v.6 n.4, p.393-423, October (2002).

10 Guleng Sheri and David W. Corne

2. Quinlan, J.R. Induction of decision trees. Machine Learning, 1:81 -106, (1986)
3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Ma-

teo, California (1993)
4. Sheri, G and Corne, D. : The Simplest Evolution/Learning Hybrid: LEM with

KNN. In Proc. IEEE CEC 2008, pp. 3244-3251,(2008)
5. Bengoextea, E., Miquelez, M., Larranga, P., Lozano, J.A.: Experimental results in

function optimization with EDAs in Continuous Domain, in [12] (2002)
6. Edgington, E.S : Randomization tests, 3rd ed. New York: Marcel-Dekker (1995)
7. Auger, A., Hansen, N.: A Restart CMA Evolution Strategy With Increasing Pop-

ulation Size. In Proc. IEEE CEC 2005, pp.1769-1776 (2005)
8. Hansen, N.: The CMA Evolution Strategy: A Comparing Review. In Lozano, J.A.

et al. (eds.): Towards a new evolutionary computation. Advances in estimation of
distribution algorithms. pp. 75-102, Springer (2006)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley (1989)

10. Jourdan,L., Corne, D., Savic, D., Walters, G.: Hybridising rule induction and mul-
tiobjective evolutionary search for optimizing water distribution systems, in Proc
of the 4th Hybrid Intelligent Systems conference, published in 2005 by IEEE Com-
puter Society Press. pp. 434-439, ISBN 0-7695-1916-4 (2005)

11. Kaufmann,K., Michalski, R.S. :Learning from inconsistent and noisy data, the
AQ18 approach, 11th Int’l Symp. on Foundations of Intelligent Systems (1999)

12. Larranaga, P., Lozano, J.A. (eds) : Stimulation of Distribution Algorithms: A New
Tool for Evolutionary Computation, Kluwer Academic Publishers (2002)

13. Michalski, R.S.: LEARNABLE EVOLUTION MODEL Evolutionary Processes
Guided by Machine Learning, Machine Learning, Vol. 38, pp. 9–40, (2000)

14. Pena, J.M., Robles, V., Larranaga, P., Herves, V., Rosales, F., Perez, M.S. : GA-
EDA: Hybrid Evolutionary Algorithm using Genetic and Estimation of Distribu-
tion Algorithms, in Orchard, Yang, Ali (eds.) Innovations in Applied Intelligence:
17th Intel Conf. on AI and Expert Systems, Springer LNAI 3029 (2004)

15. Syswerda, G. : Uniform Crossover in Genetic Algorithms, Proc. of 3rd International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc (1989)

16. Wnek, J., Kaufmann, K., Bloedorn, E., Michalski R.S.:Inductive Learning Sys-
tem AQ15c: the method and user’s guide. Reports of the Machine Learning and
Inference Laboratory, MLI95-4, George Mason University,Fairfax, VA, USA (1995)

17. Wojtusiak, J. Michalski, R.S. : The LEM3 System for Non-Darwinian Evolutionary
Computation and Its Application to Complex Function Optimization, Reports of
the Machine Learning and Inference Laboratory, MLI 05-2, George Mason Univer-
sity, Fairfax, VA, USA (2005)

18. Wojtusiak, J., Michalski, R. S. : The LEM3 implementation of learnable evolution
model and its testing on complex function optimization problems, in Proc. GECCO
2006 (2006)

19. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Hybrid estimation of distribution algorithm
for global optimisation, Engineering Computations 21(1): 91–107 (2003)

20. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Estimation of distribution algorithm with
2-opt Local Search for the Quadratic Assignment Problem, in Lozana, Larranaga,
Inza and Bengoetxea (eds) Towards a new evolutionary computation: advances in
estimation of distribution algorithms (2006)

21. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari,
A.: Problem definitions and evaluation criteria for the CEC 2005 Special Session on
Real Parameter Optimization. Technical Report 2005005, Nanyang Technological
University, Singapore. (2005)

