
Optimisation and Generalisation:

Footprints in Instance Space

David Corne and Alan Reynolds

School of MACS, Heriot-Watt University, Edinburgh, UK
d.w.corne@hw.ac.uk, a.reynolds@hw.ac.uk

Abstract. The chief purpose of research in optimisation is to under-
stand how to design (or choose) the most suitable algorithm for a given
distribution of problem instances. Ideally, when an algorithm is devel-
oped for specific problems, the boundaries of its performance should be
clear, and we expect estimates of reasonably good performance within
and (at least modestly) outside its ‘seen’ instance distribution. How-
ever, we show that these ideals are highly over-optimistic, and suggest
that standard algorithm-choice scenarios will rarely lead to the best al-
gorithm for individual instances in the space of interest. We do this by
examining algorithm ‘footprints’, indicating how performance generalises
in instance space. We find much evidence that typical ways of choosing
the ‘best’ algorithm, via tests over a distribution of instances, are seri-
ously flawed. Also, understanding how footprints in instance spaces vary
between algorithms and across instance space dimensions, may lead to a
future platform for wiser algorithm-choice decisions.

1 Introduction

The chief purpose of research in optimisation is to understand how to find the
most suitable algorithm for a given space of problem instances. When researchers
concentrate on algorithm design without reference to specific problems, this view
implies that the outcomes of such research should provide salient results on the
applicability of the designed algorithms in terms of distributions of instances
in one or more problem domains. Similarly, when research is clearly tied to a
problem domain, the ideal outcomes would include a characterisation of the
space of instances in that domain for which the studied algorithms are favoured.

We note that all of these desired outcomes are rare. However, such outcomes
are extraordinarily important for two reasons: (a) it is easy to imagine practi-
tioners choosing an algorithm for their problem on the basis of a research paper,
and then applying it to real problems from a quite different instance distribution
to that examined in the paper (indeed, often the paper’s distribution is a small
set of specific instances); (b) despite c. 50 years of research in optimisation, there
is little re-usable knowledge that aids a priori choice/configuration of algorithms
based on knowledge of the target distribution of instances.

Here we contribute to and explore the issues in (a) and (b) by examining
algorithm ‘footprints’. Such a ‘footprint’ indicates how an algorithm’s compara-
tive performance generalises in instance space (with reference to a collection of

2 Optimisation and Generalisation: Footprints in Instance Space

algorithms under consideration). In particular, we find much evidence to support
the claim that the typical ways of choosing the ‘best’ algorithm, via tests over a
distribution of instances, are seriously flawed: this may rarely yield an algorithm
that is best on many well-defined subsets within that instance space, and sim-
ilarly outside that instance space. Also, algorithms have footprints in instance
space that define the regions of prowess of certain configurations. Understanding
these footprints, how they vary between algorithms and across instance space
dimensions, may lead to a future platform for wiser algorithm-choice decisions.

The remainder is set out as follows. After discussing related work and asso-
ciated issues in Section 2, Section 3 simulates the task of choosing an algorithm
for a given space of instances, for each of two problem domains. After establish-
ing the ‘best’ algorithm, by sampling from an instance space, we then partition
instance space into subspaces and do further experiments on samples from these
subspaces, in turn summarising the results by showing that individual algorithms
have performance ‘footprints’ over the instance subspaces. This reveals, for ex-
ample, the extent to which the presumed ’best’ algorithm is not best for most of
the instance subspaces. We discuss the implications of this in discussions within
section 3, and conclude in section 4.

2 Related Work and Associated Issues

There is a rich academic literature concerned with understanding how to dis-
cover the ideal algorithm for a given problem. This broad topic encompasses
many inter-related questions. High-level such questions include how we are to
define both ‘best algorithm’ and ‘given problem’. In different circumstances, the
best algorithm may be defined in terms of mean quality of solution, speed of
convergence, or some function of these and/or other factors. The given problem
may be a suite of test problems from one or more domains, or a stochastically
defined space of instances.

Given some appropriate context that disambiguates these high level ques-
tions, most research in algorithm design and configuration focuses on algorithms
for configuration search. In such work, it is common to use a ‘training set’ of in-
stances, and treat algorithm configuration as an optimisation problem in which
we seek to optimise a measure of performance over this set. In some cases, the
optimally configured algorithm’s performance is validated on a test set. How-
ever the latter is quite rare in many factions of the literature on optimisation
algorithms, in which the typical approach is to test algorithms on a suite of
instances commonly used in the literature, with little or no consideration given
to estimating performance on different instances.

Recently prominent in algorithm configuration research are Hoos and co-
workers [1,2,3], who have designed stochastic search algorithms such as paramILS
[4], which is very successful at finding ideal configurations for a given algorithm
and set of problem instances. ParamILS is one of several approaches that have
been independently investigated for this task (e.g. [5,6,7,8]), and is distinguished
from others by its attention to the problems of ‘over-confidence’ (performance

Lecture Notes in Computer Science: Authors’ Instructions 3

on the training instances becoming an over-optimistic estimate of performance
on unseen instances) and ‘over-tuning’ (the familiar machine learning scenario,
in which prolonged training will lead to worse performance on the test set).

Essentially, such work (and similar, e.g. [9,10,11]) finds an algorithm that
works best (given some definition) on a given instance distribution. Often this is
a point distribution - a specific set of instances that may or may not be divided
into training and test sets. It is worth noting that, though [4] deals with issues
of over-confidence and over-tuning, such work rarely considers generalisation
outside or within the instances considered. That is, the optimised configuration
is delivered with (in [4], for example) some justified confidence that it is close
to ideal for the training instances. However, it remains open how we might
estimate its performance on alternative instances, or indeed on strict subsets of
the training instance space.

To gain intuition for the significance of strict subsets of the instance space,
consider configuring an algorithm for a job shop based on a given distribution of
instances. By either using these instances directly, or constructing a generator
based on them (e.g. with a distribution of processing times inferred from the in-
stances), tuning will typically be biased towards some specific algorithm B, with
an ideal mean performance over this instance space. However, there is an arbi-
trarily large number of coherent subsets of this space (defined by, for example, a
given mean task length, or a given value for the range of processing times, and
so forth) on which B’s performance may well by trumped by an alternative con-
figuration. The extent to which B may under-perform on new instances could be
dramatic. When generalising outside the instance distribution, standard lessons
from machine learning lead us to expect that, the better the performance of B

on the test set, the worse its performance may be on unseen out-of-distribution
instances. Although Hutter et al [4] avoid over-fitting in appropriate versions
of ParamILS, this applies to the given instance distribution, and provides no
certificates about performance outside this distribution.

Another area of related work is ‘per-instance tuning’, in which models are
developed which enable an algorithm to be tuned based on features of the given
instance [12–16]. In such work, typically preliminary experiments are done to
capture the performance of several configurations of an algorithm on several in-
stances. A model (e.g. perhaps a neural network) is then inferred, which predicts
performance characteristics from combined instance features and algorithm pa-
rameters. Given a new instance, this model can then be used to predict the
performance of any given configuration, and indeed a simple search can be
wrapped around this, yielding predictions of ideal parameters for that instance.
Smith-Miles et al [17] explore a variant of such ideas, concerned with algorithm
choice based on instance features. In [17], 75,000 instances of a single-machine
earliness/tardiness problem are generated, and on each instance they compare
the earliest-due-date heuristic (EDD) and the shortest-processing time heuristic
(SPT). A selection of learning methods are then applied, to infer models that
relate instance features (e.g. mean due date, range of processing times, etc.) to
the choice of either EDD or SPT. Results were very promising; some rules in-

4 Optimisation and Generalisation: Footprints in Instance Space

ferred from a training set of instances could predict with c. 97% accuracy the
best choice between these two heuristics on a test set. In turn, this gives promises
for better-informed choice of algorithm than may be obtained, say, by resorting
to the single algorithm that was best over a wide distribution of instances that
included the instance in question.

Our arguments and contributions are complementary to such findings from
the work so far on the per-instance tuning approach. The latter studies typically
reveal that small differences between instances correspond to differences in the
ideal algorithm for those instances. By arguing (and confirming in test domains)
that an algorithm tuned over a space of instances may rarely be the ideal algo-
rithm for subsets of that space (let alone outside that space), we deliver similar
findings from an alternative perspective. However our emphasis is different, fo-
cusing on the particular subset of instances that is best addressed by a given
algorithm. We argue that the nature of this ‘footprint’ is particularly interesting
to study, and understanding how the footprints of individual algorithms vary
(e.g. simulated annealing versus population-based search) may lead to new ways
to choose the right algorithm for a given problem domain, especially where the
model development costs of accurate per-instance tuning (for example) are in-
feasible due to problem size and associated concerns regarding computational
expense.

3 Empirical Examples

3.1 Overview of Experiments

In the sequel, empirical footprints in instance spaces are produced for a selec-
tion of algorithms and two domains. The domains are single-machine job shop
(SMT; optimising tardiness) and vehicle-routing (VRP; optimising a weighted
combination of distance, tardiness and overtime). These were chosen partly for
convenience (the SMT is simply implemented and evaluation of solutions is com-
putationally light) and partly for relevance: both are very common in industry,
and are such that individual sources of instances (e.g. factories, warehouses, dis-
tributors) can be expected to draw their real-world instances from individually
characteristic instance spaces. Further domains (e.g. the quadratic assignement
problem) are under study, but space restraints here limit us to two.

Our experiments had the following overall shape. A set A of algorithm vari-
ants is defined, and a distribution p(I) of instances is defined over a space of
instances I. Simulating a simple algorithm-choice scenario, each algorithm in A

is applied (with n independent trials) to a sample from p(I), and we record the
algorithm Abest that achieves the best overall performance. To measure perfor-
mance we consider both the fitness values reached after the maximum allowed
time (a given number of fitness evaluation), and the time (evaluation number)
in each trial when the best fitness of that trial was found. The details of defining
‘best’ are as follows: given the |A| × n results for each sample instance, we con-
sider all pairs of results from distinct algorithms in distinct trials on the same
instance; in each such pair, the algorithm with the better fitness gains a point,

Lecture Notes in Computer Science: Authors’ Instructions 5

with ties broken by speed of finding the solution. These points are accumulated
over several instances. The algorithm with most points over a set of instances is
considered best for that set, and the significance of its peak position (assessed
by randomisation testing [18]) is considered in context. We found this more reli-
ably inforative than simply resorting to mean fitness values per algorithm (which
were not sfficiently distinguishing of algorithms on several of the smaller SMT
instances).

We presume that Abest would be the algorithm delivered to the ‘client’, to be
used to solve future real-world instances. Each of these phases of experimentation
(to find Abest on a master instance space) typically involved from 4 to 400 billion
evaluations: applying c. 200 algorithms to c. 1000 instances, for (usually) 20 trials
of between 1,000 and 100,000 solution evaluations each.

Following this, we define several instance subspaces by partitioning p(I) (de-
tails later), and we find the Ai

best
for each subspace i; we then visualise the

footprints of chosen algorithms - in particular we view the footprint of Abest,
typically observing that it covers few of the instance subspaces. Further, when
we explore subspaces, we include several outside the master space; this allows
us to observe how Abest generalises beyond its deemed area of prowess.

The footprint graphics are obtained as follows. Each instance subspace is
represented by a specific square. A given algorithm variant is identified by cir-
cles of a given shade. E.g. Abest (on the master space in context) is always
black. If a square contains a shaded circle, then the corresponding algorithm
was best in the corresponding subspace. The size of the circle is a measure of
signifiance. Following the ‘instance subspace’ experiments, 1000 randomisation
tests are done, in each of which the (best-fitness, evaluation number) pairs for
each trial are randomly permuted within the results for the same instance. The
points-assignment system (given above) is repeated each time, and this enables
us to find (i) the signifiance of any given algorithm with at least the same num-
ber of points as the ‘best’ on that subspace, and (ii) the significance of the
difference in performance between the best and second-best algorithms. The
first signifiance value was always 1 (100%) in all of our experiments, confirm-
ing that the ‘all algorithms were equivalent’ hypothesis is easily rejected. The
second signifiance value varied widely, indicating a ‘distance’ in performance
between the best and second-best algorithms. The size of the circle relates to
this second signifiance measure. Broadly speaking, large indicates that the al-
gorithm was much better than the second-best, and that the difference is likely
to be significant. A small circle means there was not a very distinct difference
between the best and second best. Our code (for all experiments, for the ran-
domisations, as well as producing the footprint graphics) can be obtained from
http://macs.hw.ac.uk/~dwcorne/pubs.htm

3.2 Footprints in SMT Instance Space

First, experiments were performed to explore the performance of a collection of
algorithm parameterisations on a distribution of instances of the single-machine
tardiness (SMT) problem. In the SMT variant used here, T tasks, t1, ..., tT need

6 Optimisation and Generalisation: Footprints in Instance Space

to be scheduled on a single machine, each task ti having a processing time pi

and a due date di. A candidate solution is a permutation of the tasks, defining
an order of processing on the machine. Given that order of processing (and with
setup times assumed to be zero) each task has a finish time, and an individual
task’s tardiness is Li, which is the maximum of {0, Ti − di}. Fitness (to be
minimised) is simply the sum of the Li.

The first ‘master’ instance distribution was defined by setting the number of
tasks to be fixed at 20, and setting uniform ranges of processing times and due
dates from the (integer) intervals [10, 40] and [10, 550] respectively. In the second
phase, 40 separate subsets of instance distributions were used. Each subset was
defined by a (processing time, due date) pair (p, d), and instances were produced
by generating 50% of the tasks with processing times uniformly generated from
a sub-range of the processing time distribution - the interval [p, p+10] - and with
due dates similarly generated from the interval [d, d + 60]. Further details are in
the caption of Figure 1. In this way, each instance generated within an instance
subset is ‘included’ in the master instance space, with a nontrivial chance of
being generated in the master instance distribution, however each such subspace
is also clearly a well defined subset. Moreover, such a clustered nature in the due
date and processing time distributions is consistent with what we may expect
for sets of orders that many machine shops need to handle. E.g. clients tend
to prefer deliveries at certain times, or certain products or processes may be
particularly popular in certain periods.

The set of algorithms tested comprised 204 variants of hillclimbing (HC)
and an evolutionary algorithm (EA). The 204 variants emerged from the rates
of four distinct operators: adjacent-swap mutation, any-swap mutation, shift-2
mutation, and shift-3 mutation. The first two need no explanation; shift-n mu-
tation means choosing a gene position i uniformly at random, and moving it to
i + n (treating the permutation as circular), while decrementing the positions of
genes previously in positions i + 1, ..., i + n. An algorithm configuration was a
vector of rates for the first three operators (the probability of the fourth being 1
minus their sum), ranging through all subsets of {0.1, 0.2, ..., 0.7}3 whose compo-
nents summed to 0.9 or below. The second set of algorithms were simple steady
state EAs using binary tournament selection, with population sizes in {10, 20,
30}, and operators defined and allowed to vary precisely as described for HC.

Two SMT master instance spaces are considered here, corresponding to 20-
task and 30-task problems. For each instance space, we consider footprints at
different evaluation limits (1,000, 10,000 and 100,000). The resulting footprints
are in Figure 1. The six footprint graphics each show footprints for a selection of
five algorithm variants (each with its own shade of grey). In every case, ‘black’
denotes the algorithm that earned Abest on the master instance space. The four
other algorithms are those deemed best most frequently over the subspaces.
Where no circle appears, this means that the best algorithm for that subspace
was best in few (if any) more subspaces It turns out that HC variants were always
better than EA variants in the SMT cases studied here; the best algorithm in
each subspace was an HC variant.

Lecture Notes in Computer Science: Authors’ Instructions 7

Fig. 1. Six groups of footprints for selected algorithms in SMT instance space. The
leftmost (rightmost) three relate to 20 (30)-task problems, and from left to right in
each group of three, the footprints relate to max evaluation limits of 1,000, 10,000,
and 100,000. Each square indicates an instance subspace, in which the foci for task
processing times are, from left to right, [10, 20], [20, 30], [30, 40] and [40, 50], and
the due date focus for 20-task problems varies from top to bottom from [10, 70], [70,
130], ..., [550, 610]. For 30-task problems the due dates start at [10,100] and end with
[820-910]. The rightmost columns and lowest rows always represent subspaces outwith
the master instance space. Black represents Abest. Four other footprints are shown in
each of the six groups, for the four algorithms that (neglecting the ‘black’ one) ‘won’
most frequently among the 40 instance subsets.

Figure 1 reveals a number of interesting points. The ‘black’ algorithm (al-
ways Abest for the master space in context) is rarely the best on the subspaces.
In practice this suggests that, when an algorithm is tuned on the basis of a
master instance space (or perhaps a set of specific instances), the delivered al-
gorithm may rarely be fit for purpose. Footprints are generally patchy, however
there are hints that algorithms have ‘regions’ of prowess. Considering the best
in each subspace (including the infrequently winning algorithms in empty cells -
whose display in further alternative shades of grey would confuse the visualisa-
tion), we explored the level of regionalisation by calculating the degree to which
neighbouring (Von Neumann neighbourhood) subspaces shared the same best
algorithm. In all cases in Figure 1 this was significant, as evaluated by randomi-
sation tests that permuted ‘bests’ randomly within the subspaces. Confidence
levels were (respectively for the six cases in Figure 1 in left to right order), 98.9%,
90.8%, 99.5%, 98.8%, 99.6 99.6%. The hints of regionalisation in the figures re-
main clear in the footprints not displayed - although such algorithms tended to
win infrequently, their regions of high performance tended to be in the same
neighbourhood. Results for subspaces in the rightmost columns and lowest rows
speak to generalisation of the ‘black’ algorithm slightly beyond master instance
space. Clearly, the performance of Abest beyond the master space is no better
than its surprisingly poor showing in subspaces of the master space.

8 Optimisation and Generalisation: Footprints in Instance Space

3.3 Footprints in VRP Instance Space

We considered a space of vehicle routing problems (VRP) in which up to three
vehicle handle a total of 30 orders, each with a given 60 unit time window. We
invented 50 customer locations (and one depot location) uniformly at random
from {0, 1, 2, ..., 100}2, and a random selection of 10 customers were stamped
as ‘regulars’. Distances were asymmetric (reflecting some amount of one-way
systems and related factors), and generated by adding a uniform perturbation
from [−p, p], where p was 20% of the Manhattan distance.

An instance comprised 30 orders, each defined by a customer and a time
window. Orders were generated first with a 50% chance of drawing the customer
uniformly from regulars, otherwise drawn uniformly from all customers. Then,
one of five possible time windows (the first five indicated in the caption of Figure
2) was chosen uniformly at random. A candidate solution was a permutation of
32 numbers, alleles 0–29 indexing the orders, while 30 and 31 were ‘dividers’,
separating vehicles. Reading left to right, from one to three (depending on the
divider positions) vehicle routes are calculated in the natural way. Fitness com-
bined distance, lateness and idle time. Full and clear details may be found in the
available code.

Instance subspaces were defined by a pair of time windows in which orders
would be focussed (e.g. reflecting plausible business practice for many clients).
Each subspace corresponded to a pair of the 7 windows listed in Figure 2’s
caption, as follows: when a customer was (not) regular, there was a 40% chance
of the time window being the first (second) of the pair; otherwise time windows
were drawn uniformly from all windows.

Figure 2 shows footprints for the cases of maximum evaluations of 10,000
(left) and 20,000 (right). We note first that, in contrast to the SMT cases, the
winning algorithms in all subspaces for the VRP were EA variants. Otherwise,
much the same can be said as was said for the SMT, although the ‘black’ algo-
rithm is more prominent in this case. However one clear difference is that fewer
distinct algorithms are represented as winners of the subspaces - the mean num-
ber of subspaces per winning algorithm was generally c. 3 in the SMT footprints,
but c. 4 for the VRP. Also, the appearance of these footprints suggests regional-
isation, but in fact the level of neighbour similarity is insignificant in both cases
(again deterined by randomisation tests). I.e. there is no more regionalisation
than would be expected for a random permutation of the same distribution of
winning algorithms within the subspaces. Another difference is that the circles
are generally larger. This suggests that choosing an algorithm based on subspace
performance in this case may generally be a confident choice, but one which may
often generalise poorly, given the general lack of regional similarity.

The nature of the footprints we have observed is clearly a function of the
chosen algorithm collection, the problem domains, the instance spaces, and the
way we have partitioned instances into subspaces. Further research is needed
to understand these dependencies. If, for example there tend to be high levels
of regionality for certain algorithms in certain domains, this would allow some
confidence for generalisation of performance outside the master space; in other

Lecture Notes in Computer Science: Authors’ Instructions 9

Fig. 2. Two groups of footprints for selected algorithms in a vehicle-routing instance
space. Each group relates to a given max number of evaluations: 10,000 (left), 20,000
(right). Instance subspaces are defined by foci on regular and non-regular customer
time windows (see text), from left to right (and top to bottom), [60, 120], [120, 180],
[180, 240], [300, 360] and [360, 420],[420, 480]. The rightmost columns and lowest rows
are outside the ‘master’ space. Black again represents Abest on the ’master’ space.
Four other footprints are shown, for the (other) algorithms that ‘won’ most frequently
among the 36 subspaces.

cases, it may be that ideal algorithm choice is highly sensitive to the co-ordinates
of instance subspace - such a situation demands extra care in delivering the right
algorithm, perhaps indicating a per-instance tuning approach. In particular, it
could be that distinct tyes of algorithm have distinct footprint characteristics
that tend to appear across domains. Especially when prior tuning approaches
are costly, such characteristics may be used to inform algorithm choice.

Meanwhlle, the footprints we have examined here clearly challenge certain
prior expectations of the robustness of a standard algorithm tuning approach.
Our experiments arise from essentially arbitrary but representative and relevant
choices of algorithms, domains and instance distributions, and we see similar
findings in other domains (work in progress), so we do not expect these to be
pathologic cases. Finally, however, we do not claim that the footprints captured
herein have clear statistical signifiance in context, but we appeal to their being
indicative of the general nature of algorithm footprints in optimisation.

4 Summary and Conclusion

We examined algorithm ’footprints’ in the domains SMT and VRP. The footprint
of an algorithm indicates how its performance generalises across different dimen-
sions of instance space. In particular, we have found much evidence in support
of the claim that the typical way of choosing the ‘best’ algorithm, via tests over
a distribution of instances, is seriously flawed. The algorithm best overall on a
broadly defined collection of instances may rarely be best on many well-defined

10 Optimisation and Generalisation: Footprints in Instance Space

subsets within that instance space, and similarly outside that instance space.
The results also hint at potentially systematic differences between footprints,
depending on algorithm family and domain. Such differences, given further un-
derstanding in future, may be usefully informative as regards algorithm-choice
decisions in many scenarios. In particular, if the natures of footprints tend to
generalise well across domains, footprint-oriented algorithm choice may be in-
formative without the need for time-consuming development work that may
otherwise be needed.

Acknowledgments. We are grateful for insightful anonymous reviews.

References

1. Hoos, H.H., Stutzle, T. : Stochastic Local Search Foundations & Applications.
Morgan Kaufmann (2005)

2. Hutter, F., Hamadi, Y., Leyton-Brown, K., Hoos, H.H. : Performance prediction
and automated tuning [...]. CP-06, 213-228. (2006)

3. Hutter, F., Hoos, H.H., Stutzle, T. : Automatic algorithm configuration based on
local search, Proc. National Conf. on AI, vol 2, pp. 1152-1157, MIT Press (2007)

4. Hutter, F., Hoos,H.H., Leyton-Brown, K., Stutzle, T. : ParamILS: An Automatic
Algorithm Configuration Framework, JAIR, 36, pp. 267-306. (2009)

5. Gratch, J., Chien, S.A. : Adaptive problem-solving for large-scale scheduling prob-
lems: A case study. JAIR, 4, 365-396 (1996)

6. Minton, S. : Automatically configuring constraint satisfaction programs: A case
study. Constraints 1(1):1-40 (1996)

7. Johnson, D.S. : A theoreticians guide to the experimental analysis of algorithms.
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DI-
MACS Implementation Challenges, (pp. 215-250). AMS,(2002)

8. Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine Learn-
ing Perspective. PhD thesis, ULB, Belgium. (2004)

9. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M. : Sequential parameter optimization,
IEEE CEC 2005, pp. 773-780 (2005)

10. Nannen, V., Eiben, A.E. : A Method for Parameter Calibration and Relevance Es-
timation in Evolutionary Algorithms. GECCO, pp. 183190, New York. ACM.(2006)

11. Nannen, V., Eiben, A.E.: Relevance Estimation and Value Calibration of Evolu-
tionary Algorithm Parameters, IJCAI-97, pp. 975-980(2007)

12. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H., Selman, B., Chickering, D.M. : A
Bayesian approach [...] . UAI-01, (pp. 235-244). Morgan Kaufmann, (2001)

13. Patterson, D.J., Kautz, H. :(. Auto-WalkSAT: a self-tuning implementation of
WalkSAT, Electronic Notes in Discrete Mathematics (ENDM), 9 (2001)

14. Carchrae, T., Beck, J.C. :. Applying machine learning to low-knowledge control of
optimization algorithms. Computational Intelligence, 21(4), 372387 (2005)

15. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K. : SATzilla: portfolio-based algo-
rithm selection for SAT. JAIR, 32, pp. 565-60 (2008)

16. Preuss, M. : Adaptability of ALgorithms for Real-Valued Parameter Optimization,
in Evoworkshops 2009: 665-674, LNCS (2009)

17. Smith-Miles, K., James, R.J., Giffin, J., Tu, Y. : Understanding the Relationship
between [Structure and Performance], in Proc. LION (2009).

18. Edgington, E.S. : Randomization Tests, Marcel Dekker AG, USA, 147pp (1995).

