
An Investigation of Topologies and Migration Schemes for Asynchronous
Distributed Evolutionary Algorithms

Muhannad Hijaze
School of MACS, Heriot-Watt University

Edinburgh, UK
 mh132@hw.ac.uk

David Corne
 School of MACS, Heriot-Watt University

Edinburgh, UK
dwcorne@macs.hw.ac.uk

Abstract—Distributed evolutionary algorithms are of
increasing interest and importance for three main reasons: (i)
a well designed dEA can outperform a ‘standard’ EA in terms
of reliability, solution quality, and speed; (ii) they can (of
course) be implemented on parallel hardware, and hence
combine efficient utilization of parallel resources with very fast
and reliable optimization; (iii) parallel hardware resources are
increasingly common. A dEA operates as separate evolving
populations with occasional interaction between them via
‘migration’. A specific dEA is characterized by the topology
and nature of these interactions. Although the field is sizeable,
there is still relatively little exploration of the performance of
alternative topologies and interaction mechanisms. In this
paper we compare some simple, novel dEA topologies with the
cube-based topology that forms the basis of Alba et al’s GD-
RCGA (a state of the art dEA). We find the best results (when
topologies are compared on a like for like basis in terms of
number of processors) emerge from a three-level tree-based
topology.

Keywords- function optimization, evolutionary algorithms,
parallel evolutionary algorithms.

I. INTRODUCTION

Distributed evolutionary algorithms (dEAs) operate by
having several independent populations of chromosomes,
with occasional interaction between them. In a typical dEA,
the separate populations will evolve independently for a
number of generations, and then “migration” will occur, in
which chromosomes from one or more of the populations (or
‘demes’) will be copied into one or more of the other
populations. The populations then continue to evolve
independently until the next migration event, and so on. Such
an EA design is well known to have several desirable
properties. Not least is the fact that several dEAs are well
known to perform more successfully than standard EAs that
are otherwise the same (e.g. in terms of operators and total
population size) – that is, when implemented on a single
processor, both solution quality and speed (in terms of total
fitness evaluations) can be very favourable. Secondly, dEAs

are of course highly parallelizable, and offer a highly natural
way to exploit a variety of different parallel architectures.
The latter advantage is becoming increasingly more
important as parallel hardware resources

There are two main kinds of dEA (note that these are
often simply called ‘parallel genetic algorithms). In the
simplest, a standard EA is distributed over several processors
but otherwise is little changed algorithmically. The
alterations to the EA itself are only those necessary, if any, to
enable exploitation of the parallel hardware. Examples
include [1,2].

The second (and main) line of research in distributed EAs
involves the establishment of (largely) independent
(sub)populations, each using its own processor. In such a
scheme, a ‘migration’ strategy is used to communicate
information between processors at intervals [3]. There are a
great variety of alternative migration schemes. The migration
strategy is typically to copy good chromosomes from some
populations to others. The broad dynamics of such a dEA
amount to healthy forms of exploration (promoted by
independent subpopulations, mostly non-interacting) and
exploitation (promoted by migration) that are not shared by
single-population EAs. As mentioned, this typically leads to
improved performance in terms of both solution quality and
speed.

Such dEAs are often termed either fine-grained or
coarse-grained, depending on the sizes of the sub-
populations. The ‘ultimate’ fine-grained models have a
single individual per processor (e.g. [4]). A more favoured
approach, which is more in tune with the majority of
hardware configurations, is the coarse grained model (e.g.
[5—9]. The Genitor algorithm [8] is a particularly well-
known example, in which the subpopulations were linked in
a ring topology – migration events involved chromsomes
being copied from a population to its immediate neighbours
in the ring. A more recent example is that of [7], in which the
populations are linked in a cube topology, in which
subpopulations are vertices of the cube, and each is linked to
three others along the edges of the cube. We explore such a
cube topology in this paper; the dGA model explored in [7]
has several other sophistications; we do not implement those
here, being interested for current purposes only in the
performance of alternative simple topologies.

The remainder of the paper is set out as follows. Section
II describes our basic parallel EA control strategy and
migration/interaction mechanism, and introduces the
topologies that we test in this paper. Section III then covers
some experimental design details, including the test
functions and the evaluation strategy. In section IV we
present our results and an associated discussion. We provide
a concluding discussion in Section IV.

II. ALGORITHMS, TOPOLOGIES AND INTERACTIONS

A. EA Pseudocode: Master and Client Threads

Our dEA implementations are all physically parallel and

asynchronous, utilizing a collection of standard workstations
via sockets technology. In each case, the implementation is
done via a master thread and several client threads.

The basic operation, in all models, is as follows.
Following initialization, in which connections are
established, a Master thread receives continual updates from
each client thread concerning their best chromosomes and
the associated fitness. When a chromosome is found that
improves the best fitness so far, the master sends this to the
client that currently has the worst “best fitness” according to
its latest information. Meanwhile, client threads operate the
population on a single processor, and incorporate new
chromosomes as and when they are sent by the master
thread. Whenever a new chromosome is received, if it is
fitter than the current best in that population, then it is
included in the population and the current worst is discarded.
At frequent intervals, each client sends its best chromosome
to the master thread.

The first model we discuss (model 1) operates in
precisely the way above, and uses a straightforward
architecture in which the master is directly connected to each
client. In models 2 and 3, however, the topology is altered,
and the master thread connects to a restricted number of
clients, depending on the topology. In each case, the master
connects to a group of clients, and the group of clients
communicate directly with each other. We now present
pseudocode clarifying the operation of the master and client
threads. In the case of model 1, the pseudocode describes
exactly what goes on. In the cases of models 2 and 3, there
are differences that will be clarified later. In essence,
however, the topology defines a set of (perhaps overlapping)
groups of clients, and each client operates as both a master
and a client within its group, while an overall master thread
operates over the groups.

The overall responsibilities of the master thread are as
follows:

1. Establish connections between the clients

2. Establish and initialize parameters

3. Start and Terminate the optimization

4. Receive and store up to date data from clients

5. Distribute appropriate data to clients

 The master pseudo code operates three threads, as

follows:

Thread1:

Connect Master with Clients;
For each Client:

Send all parameters;
Send “Start Process”;

End for
Run Thread2; // for receiving data
Run Thread3; // for sending data

Thread2:

Repeat

For each Client
 Listen to Connection Stream and store
 received data in DataString;
 Decode DataString and Convert it to
 real Chromosome and Fitness;
 If OptimChrom = Null // first one
 Set OptimChrom;
 Set OptimFitVal;
 Else if this Fitness is better
 than OptimFitVal
 Set OptimChromosome;
 Set OptimFitVal;
 End if;
 End for;
Until target Fitness Value reached, or max
time reached

Thread3:

Repeat
 If there is a new OptimChrom
 Send OptimChrom and its fitness
 back to worst client;
 Sleep(100);
Until Reach target Fitness Value;

The client threads operate as follows. Thread 1 is

responsible for connecting to and receiving data from the
master thread. It connects with the master, and waist for a
“Start Process” signal. When this is received, it starts threads
2 and 3. Thread 2 runs the evolutionary algorithm on that
client’s processor, and thread 3 takes care of sending updated
data on this client’s best chromosome to the master.

Thread 1:

wait for “Start Process” signal from master;
Run Thread 2;
Run Thread 3;
While connection is established

Store received data in DataString;
Decode and Convert DataString to
 NewChrom and its FitnessValue;
If new FitnessValue is better than
 Current OptimFitVal
 Set OptimChromosome;
 Set OptimFitVal;

Replace worst chromosome in
Population with NewChrom

 End if
End While

Thread 2:

Create and Initialise Population;
Set Count = 0;
Find best chromosome and call it OptimChrom;
Set OptFitVal;
Repeat
 Count++;
 Select chromosomes c1 and c2
 Crossover(c1,c2), producing children
 c 1’ and c2’
 Mutate(c1’), producing c 1’’
 Mutate(c2’), producing c2’’
 Calculate fitness of c1’’;
 Calculate fitness of c2’’;

If fitness(c1’’) better than OptFitVal
 SendNewData=True;
 Set OptFitVal = fitness(c1’’)
 Set OptChrom = c1’’

If fitness(c2’’) better than OptFitVal
 SendNewData=True;
 Set OptFitVal = fitness(c1’’)
 Set OptChrom = c1’’
Until OptFitVal <= TargetFitVal or
 Count=MaxCount

Thread 3:
While Thread2 is running

If SendNewData
 Send OptChrom and its fitness
 to Master;
 SendNewData=False;
 Sleep(100);
 End If;
End While;

B. Evolutionary Algorithm and Other Implementation
Details

In all models we use a generational evolutionary algorithm
that operates with a truncation selection strategy [10], in
which, in each generation, the best 33% of the population
are retained, and, selecting only from this best 33%,
crossover and mutation are employed to generate the
remaining 66% of the new population.

Our EA uses crossover and mutation operators detailed
in [7]; specifically the fuzzy connective-based crossover
operators: F- Crossover, S- Crossover, L- Crossover, M-
Crossover, along with one-point, two-point, and uniform
crossover. Each time a crossover operator is applied, it is a
uniform random choice between these seven. Mutation
(Gaussian mutation of a single randomly chosen parameter)
is performed on a child of crossover with probability 0.25.

All our models use 15 individuals per subpopulation
and (where applicable) a migration is performed every 25
generations. The probability of update an individual by
mutation is 0.25, and the crossover probability is 0.6. There
is a predefined maximum number of generations (10000),
but a trial run will terminate if it has reached the target
fitness values.
 The physical hardware used is a cluster of eight
personal computers running Microsoft widows XP
Professional SP3, each one having an Intel Pentium IV 2.99
GHz processor and 2 GB of memory. The machines are
interconnected by a Fast-Ethernet (100 Mbps) network.

C. Topologies

In model 1 (T1), the master connects directly to each of

16 clients, and clients operate two per processor (i.e. are
distributed over 8 machines). Figure 1 illustrates model 1.

Figure 1. Model 1 topology for 16 clients.

Figure 2. Model 2 topology for 16 clients.

Model 2 (T2) differs in a simple way from model 1, but
in a way which leads to potentially quite different search
dynamics. In Model 2, which is illustrated in Fig. 2., each
master connects directly with each of eight groups, and each
group consists of precisely two intercommunicating clients.
Recall that, with the basic model (model 1), the master keeps
track of the current overall optimum, and will copy this to
the current worst client whenever a new optimum is
discovered. This is so for model 2 at the level of groups; in
model 2, a new best chromosome will first be transferred to
the sister client in its group, and will soon appear in both
clients of the previously worst group – hence there is, in
some sense, more exploitation of newly discovered good
chromosomes in model 2.

Figure 3. Model 3 topology for 16 clients.

In model 3 (T3), illustrated in Fig. 3., we base the topology
and interactions on the model of Alba et al [7], in which a
master controls two overall groups, but each group has a
number of overlapping subgroups based on a cube topology.

In this model, each client is connected directly to three other
clients – the ones with which it shares an edge along the
cube. When such a client finds a new best chromosome
(with respect to only its own population) it chooses a
random one of its neighbours, and sends the chromosome to
that neighbour. Each client does this every 25 generations.
At the master level, there are just two groups; every 25
generations, the best chromosome within the first group (i.e.
from all populations in the first cube) is sent to a randomly
chosen client from the second cube. The same then happens
vice versa. Finally, we tested both 8-population and 16-
population examples of each model. In the 8-population
cases, the details of T1 and T2 (using 4 groups of 2) are
straightforward. In the case of T3, this resulted in using just
one cube, and hence did not involve migration at a higher
level than the cube itself.

III. EXPERIMENTS

A. Test Functions

We compare the three models by using six well-known
test functions, and use two versions of each – the standard
version, and the ‘shifted’ version in which the global
optimum is subject to random translation, rendering the
function less decomposable. In Table I we indicate the
functions used, and also indicate the target fitness. In most
cases this is the global optimum. In all experiments, the
functions had a dimension of 30 (i.e. 30 parameters).

TABLE I. FUNCTIONS USED IN EXPERIMENTS: TARGET FITNESSES

Function Shifted Not Shifted

Sphere 0 0
Rosenbrock 3.5 0
Schwefel 5E10-7 0
Rastrigin 0 0

Griewangk 0 0
Ackley 0 0

 We tested each model (T1, T2 and T3) by running 20

independent trials on each of these 12 test functions, and
doing this for each of an 8-population and 16-population
case. We first indicate the raw results in terms of success
rates – i.e. the number of times that each set of 20 runs
resulted in finding a globally optimal chromosome. Note
that there is no particular prior expectation that this will be
large (or even above 0) in many cases, however the
dynamics of parallel search, in conjunction with the
operators chosen from [7], can be highly effective.

TABLE II. SUCCESS RATES (OUT OF 20) FOR 8-POPULATION VERSIONS
(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WITH

EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED
FUNCTIONS

Function 1-client T1 T2 T3

Sphere 18 (20) 19 (18) 18 (20) 18 (20)

Rosenbrock 10 (14) 18 (20) 18 (20) 18 (18)

Rastrigin 20 (12) 20 (18) 20 (17) 20 (18)

Schwefel 14 (10) 11 (17) 18 (17) 11 (17)

Griewangk 20 (14) 18 (18) 20 (20) 18 (17)

Ackley 20 (16) 20 (19) 20 (20) 18 (18)

Table II shows the success rates for both non-shifted and
shifted versions of the functions for the 8-population
versions of each of the models tested in this paper. For
example, on the Rastrigin function, model T1 achieved the
target fitness on the non-shifted case in 11 runs out of 20,
and achieved target fitness in the shifted case in 17 runs out
of 20. All models perform well in comparison with a
standard single-population EA (which otherwise uses the
same operators and overall population size). This is not
surprising, although it is important to confirm. The
performance advantage over the serial model (the “1-client”
column) is more pronounced when we consider the shifted
versions of the functions. In terms of success rates, the
relative performances of T1, T2 and T3 are very close, but
perhaps T2 seems to have the advantage.

TABLE III. SUCCESS RATES (OUT OF 20) FOR 16-POPULATION
VERSIONS (1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WITH

EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED
FUNCTIONS

Function 1-client T1 T2 T3

Sphere 18 (20) 20 (20) 20 (20) 20 (20)

Rosenbrock 10 (14) 20 (20) 20 (20) 20 (20)

Rastrigin 20 (12) 20 (18) 20 (20) 20 (20)

Schwefel 14 (10) 16 (17) 17 (18) 15 (18)

Griewangk 20 (14) 20 (20) 20 (20) 20 (20)

Ackley 20 (16) 20 (20) 20 (20) 20 (20)

Table III shows us the results for the 16-population

versions of these models. Generally the performance of T1,
T2 and T3 are all a little improved, with T2 perhaps
maintaining a slight advantage, but with no statistical
significance based on these data alone. The “1-client”
column is repeated here for convenience, but reflects the
same benchmark comparison experiment reported in table II.

In table IV we can see the mean execution times of the
runs that were successful in reaching target fitness. Now we
can see a much clearer advantage for T2, which seems to
outperform T1 and T3 in each case.

TABLE IV. MEAN EXECUTION TIMES (MS) OF SUCCESSFUL RUNS
(AVERAGED OVER ALL SUCCESSFUL RUNS) FOR 8-POPULATION VERSIONS

(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WITH
EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED

FUNCTIONS

Function 1-client T1 T2 T3

Sphere
72515

(5.14e6)
2261

(138503)
1565

(112712)
1802

(137969)

Rosenbrock
375703
(1.01e7)

246484
(1.76e6)

193983
(1.40e6)

313005
(1.80e6)

Rastrigin
35197

(1.44e6)
2162

(153054)
1562

(114120)
2172

(132423)

Schwefel
1.96e6

(1.59e7)
34059

(528545)
25316

(426094)
49369

(713984)

Griewangk
77949

(1.35e6)
2233

(165531)
1542

(143793)
1856

(163831)

Ackley
75139

(1.30e6)
2031

(141634)
2000

(132812)
2359

(146466)

In tables V and VI, we can see the speedup fractions for

all cases. These simply divide the mean execution time of
successful runs in the serial case by the mean execution time
in the parallel model case. The tables provide these data for
each function, and the best speedup for each function is
given in bold. The final line provides an indicative “mean
speedup” over all functions.

TABLE V. SPEEDUPS OF THE PARALLEL ARCHITECTURES COMPARED
WITH SERIAL EA – 8-POPULATION MODELS

Not Shifted Shifted
Function

T1 T2 T3 T1 T2 T3

Sphere 32 46 40 37 46 37

Rosenbrock 2 2 1 6 7 6

Rastrigin 23 23 16 9 13 11

Schwefel 58 78 40 19 23 14

Griewangk 35 51 42 8 9 8

Ackley 37 38 32 9 10 9

Mean 30.65 46.76 32.55 14.72 17.99 14.13

TABLE VI. SPEEDUPS OF THE PARALLEL ARCHITECTURES COMPARED
WITH SERIAL EA – 16-POPULATION MODELS

Not Shifted Shifted
Function

T1 T2 T3 T1 T2 T3

Sphere 87.55 93.21 89.78 100.40 110.91 103.19

Rosenbrock 9.38 10.07 7.28 13.48 18.36 14.09

Rastrigin 48.23 51.20 42.18 25.63 32.72 25.89

Schwefel 11.61 22.93 15.99 15.59 16.40 11.30

Griewangk 90.70 111.04 103.09 33.01 45.30 23.06

Ackley 92.86 111.05 93.55 28.64 41.97 25.03

Mean 57.23 66.58 58.64 36.13 44.28 33.76

It is clear that model T2 is the most successful in terms of

speed of finding global optima in each case.
 .

IV. CONCLUDING DISCUSSION

 We have argued that distributed evolutionary algorithms

(dEAs) are of ever-increasing interest and importance for a
variety of reasons. It is well known that parallelized
optimization can provide more advantages than simply speed
of execution; meanwhile the design of a distributed,
asynchronous architecture leads to opportunities for
managing exploration and exploitation in ways that simply
cannot be done in serial, and these can lead to better results
for the same overall number of function evaluations. Given
that parallel hardware resources are becoming more common
and everyday, it is therefore clear that we need to understand
how to design dEAs to optimal effect.

So far, however, there has been relatively little in terms
of exploration of the vast number of potential architectures
and migration strategies (for example) in the broad space of
possible dEAs. In this paper we have compared some simple
dEA topologies and interaction schemes. One was a
straightforward case of dividing the population into N
subpopulations, where a master process distributed new best
chromosomes to the current worst subpopulation whenever
a new best was found. The second was a slight variation on
the first, in which the individual populations were each
groups of two subpopulations, which communicated their
best chromosomes regularly to each other, with the “best to
worst” strategy operating at the level above these pairs of
populations. The third model was based on Albe et al’s cube
topology [7] and also used the a similar migration scheme.

Interestingly, we found that the simple variation between
model 1 and model 2 led to a significant difference in

performance, which was clearly seen in the average
speedups, in both the 8-population and 16-population cases.
Model 2 appeared more successful than Model-3, inspired by
Alba et al’s GD-RGCA, on the functions tested.

 One possible conclusion is that GD-RCGA (and perhaps
other current models, might be enhanced by adopting aspects
of the interaction strategy and topology used in model 2.
This is one idea that we expect to examine in future work.
Also in future work we will more systematically explore the
design and parameter settings of model 2, to determine what
seems to lead to its outperformance of model 1. We expect it
will be interesting to explore this, for example, by tracking
the generation and behaviour of niches in the fitness
landscape as they emerge and are shared between processors.

REFERENCES

[1] T. Maruyama and T. Hirose and A. Konagaya, A Fine-Grained

Parallel Genetic Algorithm for Distributed Parallel Systems. In
proceedings of the 5th International Conference on Genetic
Algorithms, pp. 184-190, 1993.

[2] S. Baluja, Structure and Performance of Fine-Grain Parallelism in
Genetic Search. In proceedings of the 5th International Conference on
Genetic Algorithms, pp. 155-162, 1993.

[3] H. M¨uhlenbein, Parallel genetic algorithms, population genetics and
combinatorial optimization. In proceedings of the 3th International
Conference on Genetic Algorithms, pp. 416-421, 1989.

[4] B. Manderick and P. Spiessens, Fine-grained parallel genetic
algorithms. In proceedings of the 3th International Conference on
Genetic Algorithms, pp. 428-433, 1989.

[5] T. Starkweather and L. Darrell Whitley and Keith E. Mathias,
Optimization Using Distributed Genetic Algorithms. In proceedings
of the 1st Workshop on Parallel Problem Solving from Nature, pp.
176-185, 1991.

[6] V. S. Gordon and L. D. Whitley, Serial and Parallel Genetic
Algorithms as Function Optimizers. In proceedings of the 5th
International Conference on Genetic Algorithms, pp. 177-183, 1993.

[7] E. Alba, F. Luna, A.J. Nebro, A.J., J.M. Troya Parallel
heterogeneous genetic algorithms for continuous optimization.
Parallel Computing. Vol 30, Nº 5-6, pp. 699-719. May/June 2004

[8] L. D. Whitley, “The GENITOR algorithm and selection pressure:
Why rank-based allocation of reproductive trials is best,” in Proc. 3rd
Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1989, pp. 116–121.

[9] Uwe Aickelin, Larry Bull: Partnering Strategies For Fitness
Evaluation In A Pyramidal Evolutionary Algorithm. GECCO 2002:
263-270.

[10] Muhlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive
models for the breeder genetic algorithm i. continuous parameter
optimization. Evolutionary Computation, 1(1):25{49.

