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Abstract—Distributed evolutionary algorithms are of 
increasing interest and importance for three main reasons: (i) 
a well designed dEA can outperform a ‘standard’ EA in terms 
of reliability, solution quality, and speed; (ii) they can (of 
course) be implemented on parallel hardware, and hence 
combine efficient utilization of parallel resources with very fast 
and reliable optimization; (iii) parallel hardware resources are 
increasingly common. A dEA operates as separate evolving 
populations with occasional interaction between them via 
‘migration’. A specific dEA is characterized by the topology 
and nature of these interactions. Although the field is sizeable, 
there is still relatively little exploration of the performance of 
alternative topologies and interaction mechanisms.  In this 
paper we compare some simple, novel dEA topologies with the 
cube-based topology that forms the basis of Alba et al’s GD-
RCGA (a state of the art dEA). We find the best results (when 
topologies are compared on a like for like basis in terms of 
number of processors) emerge from a three-level tree-based 
topology.  

     

Keywords- function optimization, evolutionary algorithms, 
parallel evolutionary algorithms. 

 

 

I.  INTRODUCTION 

Distributed evolutionary algorithms (dEAs) operate by 
having several independent populations of chromosomes, 
with occasional interaction between them. In a typical dEA, 
the separate populations will evolve independently for a 
number of generations, and then “migration” will occur, in 
which chromosomes from one or more of the populations (or 
‘demes’) will be copied into one or more of the other 
populations. The populations then continue to evolve 
independently until the next migration event, and so on. Such 
an EA design is well known to have several desirable 
properties. Not least is the fact that several dEAs are well 
known to perform more successfully than standard EAs that 
are otherwise the same (e.g. in terms of operators and total 
population size) – that is, when implemented on a single 
processor, both solution quality and speed (in terms of total 
fitness evaluations) can be very favourable. Secondly,  dEAs 

are of course highly parallelizable, and offer a highly natural 
way to exploit a variety of different parallel architectures.  
The latter advantage is becoming increasingly more 
important as parallel hardware resources   

There are two main kinds of dEA (note that these are 
often simply called ‘parallel genetic algorithms). In the 
simplest, a standard EA is distributed over several processors 
but otherwise is little changed algorithmically. The 
alterations to the EA itself are only those necessary, if any, to 
enable exploitation of the parallel hardware. Examples 
include [1,2].     

The second (and main) line of research in distributed EAs 
involves the establishment of (largely) independent 
(sub)populations, each using its own processor. In such a 
scheme, a ‘migration’ strategy is used to communicate 
information between processors at intervals [3]. There are a 
great variety of alternative migration schemes. The migration 
strategy is typically to copy good chromosomes from some 
populations to others. The broad dynamics of such a dEA 
amount to healthy forms of exploration (promoted by 
independent subpopulations, mostly non-interacting) and 
exploitation (promoted by migration) that are not shared by 
single-population EAs. As mentioned, this typically leads to 
improved performance in terms of both solution quality and 
speed. 

Such dEAs are often termed either fine-grained or 
coarse-grained, depending on the sizes of the sub-
populations. The ‘ultimate’ fine-grained models have a 
single individual per processor (e.g. [4]). A more favoured 
approach, which is more in tune with the majority of 
hardware configurations, is the coarse grained model (e.g. 
[5—9]. The Genitor algorithm [8] is a particularly well-
known example, in which the subpopulations were linked in 
a ring topology – migration events involved chromsomes 
being copied from a population to its immediate neighbours 
in the ring. A more recent example is that of [7], in which the 
populations are linked in a cube topology, in which 
subpopulations are vertices of the cube, and each is linked to 
three others along the edges of the cube. We explore such a 
cube topology in this paper; the dGA model explored in [7] 
has several other sophistications; we do not implement those 
here, being interested for current purposes only in the 
performance of alternative simple topologies.  



The remainder of the paper is set out as follows. Section 
II describes our basic parallel EA control strategy and 
migration/interaction mechanism, and introduces the 
topologies that we test in this paper. Section III then covers 
some experimental design details, including the test 
functions and the evaluation strategy. In section IV we 
present our results and an associated discussion. We provide 
a concluding discussion in Section IV. 

 
 
 

II. ALGORITHMS, TOPOLOGIES AND INTERACTIONS 

A. EA Pseudocode: Master and Client Threads 

  
Our dEA implementations are all physically parallel and 

asynchronous, utilizing a collection of standard workstations 
via sockets technology. In each case, the implementation is 
done via a master thread and several client threads.  

The basic operation, in all models, is as follows. 
Following initialization, in which connections are 
established, a Master thread receives continual updates from 
each client thread concerning their best chromosomes and 
the associated fitness. When a chromosome is found that 
improves the best fitness so far, the master sends this to the 
client that currently has the worst “best fitness” according to 
its latest information. Meanwhile, client threads operate the 
population on a single processor, and incorporate new 
chromosomes as and when they are sent by the master 
thread. Whenever a new chromosome is received, if it is 
fitter than the current best in that population, then it is 
included in the population and the current worst is discarded. 
At frequent intervals, each client sends its best chromosome 
to the master thread. 

The first model we discuss (model 1) operates in 
precisely the way above, and uses a straightforward 
architecture in which the master is directly connected to each 
client. In models 2 and 3, however, the topology is altered, 
and the master thread connects to a restricted number of 
clients, depending on the topology. In each case, the master 
connects to a group of clients, and the group of clients 
communicate directly with each other. We now present 
pseudocode clarifying the operation of the master and client 
threads.  In the case of model 1, the pseudocode describes 
exactly what goes on. In the cases of models 2 and 3, there 
are differences that will be clarified later. In essence, 
however, the topology defines a set of (perhaps overlapping) 
groups of clients, and each client operates as both a master 
and a client within its group, while an overall master thread 
operates over the groups. 

The overall responsibilities of the master thread are as 
follows: 

  
1. Establish connections between the clients 

2. Establish and initialize parameters 

3. Start and Terminate the optimization 

4. Receive and store up to date data from clients 

5. Distribute appropriate data to clients 

  
 
 The master pseudo code operates three threads, as 

follows: 
 
 
 
Thread1: 
 
Connect Master with Clients; 
For each Client: 

Send all parameters;   
Send “Start Process”; 

End for 
Run Thread2; // for receiving data 
Run Thread3; // for sending data 
 
 
 
 
Thread2: 
 
Repeat 

For each Client 
  Listen to Connection Stream and store 
     received data in DataString; 
  Decode DataString and Convert it to 
     real Chromosome and Fitness; 
     If OptimChrom = Null // first one 
          Set OptimChrom; 
          Set OptimFitVal; 
  Else if this Fitness is better  
     than OptimFitVal 
          Set OptimChromosome; 
          Set OptimFitVal; 
  End if; 
  End for; 
Until target Fitness Value reached, or max     
time reached 

 
 
 

Thread3: 
 
Repeat 
 If there is a new OptimChrom     
      Send OptimChrom and its fitness  
        back to worst client; 
 Sleep(100); 
Until Reach target Fitness Value; 
 
 
 
The client threads operate as follows. Thread 1 is 

responsible for connecting to and receiving data from the 
master thread. It connects with the master, and waist for a 
“Start Process” signal. When this is received, it starts threads 
2 and 3.  Thread 2 runs the evolutionary algorithm on that 
client’s processor, and thread 3 takes care of sending updated 
data on this client’s best chromosome to the master. 



  
Thread 1:    
 
wait for “Start Process” signal from master; 
Run Thread 2;  
Run Thread 3;   
While connection is established  

Store received data in DataString; 
Decode and Convert DataString to  
    NewChrom and its FitnessValue; 
If new FitnessValue is better than 
 Current OptimFitVal 
 Set OptimChromosome; 
 Set OptimFitVal; 

Replace worst chromosome in 
Population with NewChrom  

       End if 
End While 
 
 
 
 
Thread 2: 
 
Create and Initialise Population; 
Set Count = 0; 
Find best chromosome and call it OptimChrom; 
Set OptFitVal; 
Repeat 
 Count++; 
 Select chromosomes c1 and c2  
 Crossover(c1,c2), producing children 
         c 1’ and c2’ 
 Mutate(c1’), producing c 1’’  
 Mutate(c2’), producing c2’’   
 Calculate fitness of c1’’; 
 Calculate fitness of c2’’; 

If fitness(c1’’) better than OptFitVal 
  SendNewData=True; 
  Set OptFitVal = fitness(c1’’)  
  Set OptChrom = c1’’ 

If fitness(c2’’) better than OptFitVal 
  SendNewData=True; 
  Set OptFitVal = fitness(c1’’)  
  Set OptChrom = c1’’ 
Until OptFitVal <= TargetFitVal or    
  Count=MaxCount 

 
 
 
 
 
Thread 3: 
While Thread2 is running 

If SendNewData 
  Send OptChrom and its fitness 
              to Master; 
  SendNewData=False;   
  Sleep(100); 
 End If; 
End While; 

 
 

B. Evolutionary Algorithm and Other Implementation 
Details 

 
In all models we use a generational evolutionary algorithm 
that operates with a truncation selection strategy [10], in 
which, in each generation, the best 33% of the population 
are retained, and, selecting only from this best 33%, 
crossover and mutation are employed to generate the 
remaining 66% of the new population.   

Our EA uses crossover and mutation operators detailed 
in [7]; specifically the fuzzy connective-based crossover 
operators: F- Crossover, S- Crossover, L- Crossover, M- 
Crossover, along with one-point, two-point, and uniform 
crossover. Each time a crossover operator is applied, it is a 
uniform random choice between these seven. Mutation 
(Gaussian mutation of a single randomly chosen parameter) 
is performed on a child of crossover with probability 0.25.  

All our models use 15 individuals per subpopulation 
and (where applicable) a migration is performed every 25 
generations. The probability of update an individual by 
mutation is 0.25, and the crossover probability is 0.6.  There 
is a predefined maximum number of generations (10000), 
but a trial run will terminate if it has reached the target 
fitness values.   
 The physical hardware used is a cluster of eight 
personal computers running Microsoft widows XP 
Professional SP3, each one having an Intel Pentium IV 2.99 
GHz processor and 2 GB of memory. The machines are 
interconnected by a Fast-Ethernet (100 Mbps) network.   
 

  

C. Topologies 

 
In model 1 (T1), the master connects directly to each of 

16 clients, and clients operate two per processor (i.e. are 
distributed over 8 machines).  Figure 1 illustrates model 1. 

  
  

 
 
 

Figure 1.  Model 1 topology for 16 clients. 



 

 

Figure 2.  Model 2 topology for 16 clients. 

Model 2 (T2) differs in a simple way from model 1, but 
in a way which leads to potentially quite different search 
dynamics. In Model 2, which is illustrated in Fig. 2., each 
master connects directly with each of eight groups, and each 
group consists of precisely two intercommunicating clients. 
Recall that, with the basic model (model 1), the master keeps 
track of the current overall optimum, and will copy this to 
the current worst client whenever a new optimum is 
discovered.  This is so for model 2 at the level of groups; in 
model 2,  a new best chromosome will first be transferred to 
the sister client in its group, and will soon appear in both 
clients of the previously worst group – hence there is, in 
some sense, more exploitation of newly discovered good 
chromosomes in model 2.  

 
 

 
 

Figure 3.     Model 3 topology for 16 clients. 

 
In model 3 (T3), illustrated in Fig. 3., we base the topology 
and interactions on the model of Alba et al [7], in which a 
master controls two overall groups, but each group has a 
number of overlapping subgroups based on a cube topology. 

In this model, each client is connected directly to three other 
clients – the ones with which it shares an edge along the 
cube. When such a client finds a new best chromosome 
(with respect to only its own population) it chooses a 
random one of its neighbours, and sends the chromosome to 
that neighbour.  Each client does this every 25 generations. 
At the master level, there are just two groups; every 25 
generations, the best chromosome within the first group (i.e. 
from all populations in the first cube) is sent to a randomly 
chosen client from the second cube. The same then happens 
vice versa.  Finally, we tested both 8-population and 16-
population examples of each model. In the 8-population 
cases, the details of T1 and T2 (using 4 groups of 2) are 
straightforward. In the case of T3, this resulted in using just 
one cube, and hence did not involve migration at a higher 
level than the cube itself. 

III.  EXPERIMENTS 

A. Test Functions 

We compare the three models by using six well-known 
test functions, and use two versions of each – the standard 
version, and the ‘shifted’ version in which the global 
optimum is subject to random translation, rendering the 
function less decomposable. In Table I we indicate the 
functions used, and also indicate the target fitness. In most 
cases this is the global optimum. In all experiments, the 
functions had a dimension of 30 (i.e. 30 parameters). 

 
 
 

TABLE I.  FUNCTIONS USED IN EXPERIMENTS:  TARGET FITNESSES 

 

Function Shifted Not Shifted 

Sphere 0 0 
Rosenbrock 3.5 0 
Schwefel 5E10-7 0 
Rastrigin 0 0 

Griewangk 0 0 
Ackley 0 0 
 
 
 
 
 We tested each model (T1, T2 and T3) by running 20 

independent trials on each of these 12 test functions, and 
doing this for each of an 8-population and 16-population 
case.  We first indicate the raw results in terms of success 
rates – i.e. the number of times that each set of 20 runs 
resulted in finding a globally optimal chromosome.  Note 
that there is no particular prior expectation that this will be 
large (or even above 0) in many cases, however the 
dynamics of parallel search, in conjunction with the 
operators chosen from [7], can be highly effective.  

 



TABLE II.  SUCCESS RATES (OUT OF 20) FOR 8-POPULATION VERSIONS 
(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WITH 

EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED 
FUNCTIONS 

 
Function 1-client T1 T2 T3 

Sphere 18 (20) 19 (18) 18 (20) 18 (20) 

Rosenbrock 10 (14) 18 (20) 18 (20) 18 (18) 

Rastrigin 20 (12) 20 (18) 20 (17) 20 (18) 

Schwefel 14 (10) 11 (17) 18 (17) 11 (17) 

Griewangk 20 (14) 18 (18) 20 (20) 18 (17) 

Ackley 20 (16) 20 (19) 20 (20) 18 (18) 
 
 
Table II shows the success rates for both non-shifted and 
shifted versions of the functions for the 8-population 
versions of each of the models tested in this paper. For 
example, on the Rastrigin function, model T1 achieved the 
target fitness on the non-shifted case in 11 runs out of 20, 
and achieved target fitness in the shifted case in 17 runs out 
of 20. All models perform well in comparison with a 
standard single-population EA (which otherwise uses the 
same operators and overall population size). This is not 
surprising, although it is important to confirm. The 
performance advantage over the serial model (the “1-client” 
column) is more pronounced when we consider the shifted 
versions of the functions. In terms of success rates, the 
relative performances of T1, T2 and T3 are very close, but 
perhaps T2 seems to have the advantage. 
 
 
 
 

TABLE III.  SUCCESS RATES (OUT OF 20) FOR 16-POPULATION 
VERSIONS (1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WITH 

EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED 
FUNCTIONS 

 
Function 1-client T1 T2 T3 

Sphere 18 (20) 20 (20) 20 (20) 20 (20) 

Rosenbrock 10 (14) 20 (20) 20 (20) 20 (20) 

Rastrigin 20 (12) 20 (18) 20 (20) 20 (20) 

Schwefel 14 (10) 16 (17) 17 (18) 15 (18) 

Griewangk 20 (14) 20 (20) 20 (20) 20 (20) 

Ackley 20 (16) 20 (20) 20 (20) 20 (20) 
 

 
Table III shows us the results for the 16-population 

versions of these models. Generally the performance of T1, 
T2 and T3 are all a little improved, with T2 perhaps 
maintaining a slight advantage, but with no statistical 
significance based on these data alone. The “1-client” 
column is repeated here for convenience, but reflects the 
same benchmark comparison experiment reported in table II. 

 

In table IV we can see the mean execution times of the 
runs that were successful in reaching target fitness. Now we 
can see a much clearer advantage for T2, which seems to 
outperform T1 and T3 in each case. 

 
 

TABLE IV.  MEAN EXECUTION TIMES (MS) OF SUCCESSFUL RUNS 
(AVERAGED OVER ALL SUCCESSFUL RUNS) FOR 8-POPULATION VERSIONS 

(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WITH 
EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED 

FUNCTIONS 

 
Function 1-client T1 T2 T3 

Sphere 
72515 

(5.14e6) 
2261 

(138503) 
1565 

(112712) 
1802 

(137969) 

Rosenbrock 
375703 
(1.01e7) 

246484 
(1.76e6) 

193983 
(1.40e6) 

313005 
(1.80e6) 

Rastrigin 
35197 

(1.44e6) 
2162 

(153054) 
1562 

(114120) 
2172 

(132423) 

Schwefel 
1.96e6 

(1.59e7) 
34059 

(528545) 
25316 

(426094) 
49369 

(713984) 

Griewangk 
77949 

(1.35e6) 
2233 

(165531) 
1542 

(143793) 
1856 

(163831) 

Ackley 
75139 

(1.30e6) 
2031 

(141634) 
2000 

(132812) 
2359 

(146466) 
 

 
 
 
In tables V and VI, we can see the speedup fractions for 

all cases. These simply divide the mean execution time of 
successful runs in the serial case by the mean execution time 
in the parallel model case. The tables provide these data for 
each function, and the best speedup for each function is 
given in bold. The final line provides an indicative “mean 
speedup” over all functions. 

 
 
 
 
 

TABLE V.  SPEEDUPS OF THE PARALLEL ARCHITECTURES COMPARED 
WITH SERIAL EA – 8-POPULATION MODELS 

Not Shifted Shifted 
Function 

T1 T2 T3 T1 T2 T3 

Sphere 32 46 40 37 46 37 

Rosenbrock 2 2 1 6 7 6 

Rastrigin 23 23 16 9 13 11 

Schwefel 58 78 40 19 23 14 

Griewangk 35 51 42 8 9 8 

Ackley 37 38 32 9 10 9 

Mean 30.65 46.76 32.55 14.72 17.99 14.13 

 
  



TABLE VI.  SPEEDUPS OF THE PARALLEL ARCHITECTURES COMPARED 
WITH SERIAL EA – 16-POPULATION MODELS 

Not Shifted Shifted 
Function 

T1 T2 T3 T1 T2 T3 

Sphere 87.55 93.21 89.78 100.40 110.91 103.19 

Rosenbrock 9.38 10.07 7.28 13.48 18.36 14.09 

Rastrigin 48.23 51.20 42.18 25.63 32.72 25.89 

Schwefel 11.61 22.93 15.99 15.59 16.40 11.30 

Griewangk 90.70 111.04 103.09 33.01 45.30 23.06 

Ackley 92.86 111.05 93.55 28.64 41.97 25.03 

Mean 57.23 66.58 58.64 36.13 44.28 33.76 

 
 
It is clear that model T2 is the most successful in terms of 

speed of finding global optima in each case.  
 . 
 

IV.  CONCLUDING DISCUSSION 

  
 We have argued that distributed evolutionary algorithms 

(dEAs) are of ever-increasing interest and importance for a 
variety of reasons. It is well known that parallelized 
optimization can provide more advantages than simply speed 
of execution; meanwhile the design of a distributed, 
asynchronous architecture leads to opportunities for 
managing exploration and exploitation in ways that simply 
cannot be done in serial, and these can lead to better results 
for the same overall number of function evaluations.  Given 
that parallel hardware resources are becoming more common 
and everyday,  it is therefore clear that we need to understand 
how to design dEAs to optimal effect.  

So far, however, there has been relatively little in terms 
of exploration of the vast number of potential architectures 
and migration strategies (for example) in the broad space of 
possible dEAs. In this paper we have compared some simple 
dEA topologies and interaction schemes. One was a 
straightforward case of dividing the population into N 
subpopulations, where a master process distributed new best 
chromosomes to the current worst subpopulation whenever  
a new best was found. The second was a slight variation on 
the first, in which the individual populations were each 
groups of two subpopulations, which communicated their 
best chromosomes regularly to each other, with the “best to 
worst” strategy operating at the level above these pairs of 
populations.  The third model was based on Albe et al’s cube 
topology [7] and also used the a similar migration scheme.  

Interestingly, we found that the simple variation between 
model 1 and model 2 led to a significant difference in 

performance, which was clearly seen in the average 
speedups, in both the 8-population and 16-population cases. 
Model 2 appeared more successful than Model-3, inspired by 
Alba et al’s GD-RGCA, on the functions tested. 

 One possible conclusion is that GD-RCGA (and perhaps 
other current models, might be enhanced by adopting aspects 
of the interaction strategy and topology used in model 2. 
This is one idea that we expect to examine in future work. 
Also in future work we will more systematically explore the 
design and parameter settings of model 2, to determine what 
seems to lead to its outperformance of model 1. We expect it 
will be interesting to explore this, for example, by tracking 
the generation and behaviour of niches in the fitness 
landscape as they emerge and are shared between processors.  
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