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Abstract— Inspired originally by the Learnable Evolution
Model(LEM) [5], we investigate LEM(ID3), a hybrid of evo-
lutionary search with ID3 decision tree learning. LEM(ID3)
involves interleaved periods of learning and evolution, adopting
the decision tree construction algorithm ID3 as the learning
method, and a steady state EA as the evolution component. In
the learning periods, ID3 is used to infer rules that attempt
to identify ‘good’ regions for genes, based on the values of
one or more other genes. The rules are then used to guide
the generation of new individuals. Without any preliminary
parameter tuning, we evaluate LEM(ID3) on the test suite
of 25 functions designed the CEC 2005 special session on
Real-Parameter Optimization. We describe the results, andin
particular compare with the three most successful algorithms
from the CEC 2005 competition; Sinha et al’s K-PCX, and
two versions of Auger and Hansen’s CMA-ES. We find that
LEM(ID3)’s performance is competitive with these algorithms,
increasingly so as the problem dimensionality increases. In the
case of 50-Dimensions, LEM(ID3) clearly records better overall
performance on this function suite than the three comparative
algorithms. Research-strength LEM(ID3) code is freely avail-
able at http://www.macs.hw.ac.uk/ gls3/LEMID3/LEMID3.zip .

I. I NTRODUCTION

The Learnable Evolution Model (LEM, [5]) was intro-
duced in 2000, as a highly generalised hybrid approach to
optimisation, in which the overall idea is to run repeated
phases of evolution and learning in series. Each ‘evolution’
period is informed in some way by the previous ‘learning’
period. In the learning periods, the general idea is to use a
machine learning technique to infer relationships between
gene values and fitness. For example, we may start by
running an evolutionary algorithm for 10 generations; then
we halt the evolutionary algorithm and do some learning
(perhaps a neural network, or an AQ rule learner – as in
the original LEM – and so on). The result of the learning
phase is then used in the next period of evolution. The way
in which learning influences evolution is not restricted by
(our view of) the LEM framework. E.g. the learned model
could be used to predict the fitness (or fitness category) of
children before they are evaluated, and the evolution phase
discards, without evaluation, children that are predictedto
be particularly unfit. Or, the learned model may be used
to constrain genetic operators in a beneficial way. Or, the
learned model may be used to ‘repair’ children that are
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otherwise generated by standard operators. Evolution then
continues for another few generations, resulting in new data
for the learning method (chromosomes and their evaluated
fitnesses), and so it continues.

The learning method in most LEM work [5] is AQ15
[14], and the reported results tend to be very promising,
with improvements in solution quality and dramatic speedup
when compared to the ‘without learnig’ equivalent EA.
In application-oriented work, a multiobjective LEM-based
approach, using C4.5 [8] as the learning method, was found
to significantly speed up and improve solution quality for
large-scale problems in water distribution networks [3]. The
developers of the LEM framework are continually updating
the ”AQ15” version [15] and continue to report impressive
results, albeit on a limited suite of test functions.

Meanwhile, of course, Estimation of Distribution Algo-
rithms (EDAs) [4] can also be viewed as learning/evolution
hybrids, with the emphasis on building and maintaining
models of fit chromosomes. While EDAs focus on modelling
(i.e. search is guided closely by statistical models, with new
sample points generated directly from the model), in LEM
the evolutionary component is responsible for the search
(i.e. new points are sampled mainly in the usual way by
using genetic operators), with guidance from learning. Recent
results using LEM3 compare EDAs and LEM3 [16], and
report better quality results than a good EDA on two hard
functions, with between 15 and 230 fold speedup of LEM3
over the EDA. Also, of couse,hybrids of EDA and GAs (e.g.
[6], [13]) are also successful optimisers. LEM is similar in
style to a hybrid of EDA and EA.

The design and application of LEM is clearly worth
considerably more research. The speedup reported in several
papers that apply LEM – that is, the reduction in the number
of fitness evaluations needed to reach high quality results,
is of particular interest for many important applications in
which fitness evaluation is costly. In some applications, such
time savings can make the difference between the problem
being solvable at all or not. With an interest in clearer
understanding of the LEM framework and its performance,
we investigated in [9] the improvements obtainable by using
perhaps the simplest possible learning method within the
LEM frameork - namely k-nearest neighbour learning. In
LEM(KNN), the learning phase comprised only the pro-
cess of identifying the best and worst 30% of the current
population; subsequent evolution only allowed evaluationof
children for whom the majority of their 5 nearest neighbours
from these sets were in the higher-fitness group. Although
not able to produce results that rivalled those of Michalski’s



published LEM results, this simple intervention of learning
provided very significant speedup and solution quality im-
provements over the unchanged EA. In [10] we investigated
another simple learning scheme within LEM, which we
called entropy-based discretization. The learning process in
this case was to infer a good and a bad interval for each
parameter in the search based, by finding a partition of
that parameter’s range that had optimal entropy. Subsequent
mutations for any given parameter were then confined to be
within the most recenyly learned good intervals. We found
that LEM(ED) again provided significant advantages in both
solution speed and quality over the unchanged EA, and on
most problems (although only a small suite of 7 problems
was studied) it was also superior to CMA-ES when the
number of evaluations was limited, and was significantly
better than LEM(KNN).

In this paper, we explore a new variant in which the
learning method used is the ID3 decision tree learner [7].
Based on chromosome data and evaluated fitnesses, ID3 is
used to repeatedly find rules that predict, on the basis of
subsets of the genes, whether a chromosome is good or
not. We would expect this new approach to be capable of
better results than LEM(ED), largely because the learned
rules are able to navigate interactions between any number
of parameters.

In the remainder we continue as follows. Section 2 pro-
vides more detail on the original LEM and on LEM(ID3).
Section 3 then details our experiments, and results, section
4 gives a concluding discussion.

II. LEM AND LEM(ID3)

A. LEM(AQ) and the LEM framework

In LEM(AQ), an initial population is divided into
high-performance (H-group) and low-performance (L-group)
groups according to fitness; these two groups are stored
as positive and negative training examples for AQ learning
algorithm. The outcome of learning is a set of rules which
predict a class label (i.e. H-group or L-group). LEM(AQ)
then proceeds with an otherwise normal EA, except that the
operators generate new individuals only with gene values
within the ranges sanctioned by the recently learned rules.
LEM(AQ) then continues for a specific amount of genera-
tions, and then pauses for more learning based on the current
population. This feeds into the next stage of evolution, and
so on. LEM(AQ) has many additional details that mediate
the transitions between learning and evolution, and we refer
readers to [5] for more details.

LEM(AQ) is one instantiation of the wider LEM frame-
work, which allows for creativity in the choices of learning
method, and the way in which learning and evolution interact.
In this paper, we continue to investigate the LEM framework,
and focus on an approach in which the learning mechanism
is ID3.

B. The LEM(ID3) algorithm

We assume readers are familiar with the ID3 decision
tree learning algorithm [7]. We note only that standard ID3

requires discrete, nominal data (rather than real values),and
within LEM(ID3) it is always treats a real-valued range as
a set of discrete equal-width intervals. As we will see, this
is initially set to 2 intervals for each gene, but adapts during
the search. In LEM(ID3), ID3 is employed to learn from a
population of evaluated chromosomes. Each chromosome is
labelled as either high-performance or low-performance (see
below), and ID3 learns a tree that predicts this label from
the gene values. Further details are given next.

LEM(ID3) contains two main components: evolution and
learning. In the evolution component, a standard evolutionary
algorithm is applied. In the learning component, ID3 is used,
in a way detailed below.

LEM(ID3) divides the current population into a high-
performance (H-group) and low-performance (L-group)
groups according to their fitness values and a given threshold
(say,30% - that is, the fittest30% form the H-group and the
worst30% form the L-group). ID3 then uses the H-group and
L-group as the training data to construct the decision tree,
which is then transformed into a set of rules. These sets of
rules are the hypotheses that differentiates between the two
groups. New individuals are generated by instantiating these
hypotheses, or by evolution, or are randomly generated. The
learning mode continues until there is no better individual
generated for a certain number of generations, or the diversity
of the population is too small. The evolution mode begins
when the learning mode is finished, offering the opportunity
to escape from local optima and also preserve diversity,
which is crucial for success in the subsequent learning phase.
Evolution continues for a certain number of generations,
before the learning phase begins again.

The overall pseudo-code of LEM(ID3) is set out here as
Algorithm 1, with some components elaborated further later
in the paper.

1) The Learning Mode: In the learning mode, there are
three main steps. First, select training examples. Second,
learn and generate hypotheses. Third, instantiate hypotheses
and generate new individuals.

• To select the training examples, we use ‘population-
based selection’ ([5]), in which we specify that a given
percentage of the population will be in the H-group
and a given pecentage will be in the L-group. We use
30% in both cases – i.e., after sorting the individuals
by fitness value, the top 30% are placed into the H-
group and the lowest 30% are put in the L-group.
An alternative discussed in [5], but which is more
problematic to implement, is based on speifying fitness
value thresholds.

• Learn and generate hypotheses: Given the training ex-
amples, in LEM(ID3) we use ID3 to construct a decision
tree. The construction procedure is straightforward, as
discussed above. The resulting tree can be transformed
into a set of rules, which can then be seen as hypotheses
discriminating H-group and L-group individuals. An
example decision tree produced during a LEM(ID3) run
is given in Figure 1.



Algorithm 1 pseudo code for LEM(ID3)
1: Generate initial population and evaluate each chromo-

some.
2: repeat
3: while Termination condition for learning is not satis-

fied do
4: Form the H-group and L-group from the current

population.
5: Using the H-group and L-group, learn a decision

tree and transform it into a set of rules.
6: Generate some new individuals for the next gener-

ation by instantiating new chromosomes guided by
the learned rules.

7: Generate some new individuals for the next gener-
ation by evolution (mutation and crossover ) or at
random.

8: end while
9: while Termination condition for evolution is not sat-

isfied do
10: operate a standard evolutionary algorithm.
11: end while
12: adjust discretization.
13: until Termination condition for LEM(ID3) is satisfied
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Fig. 1. a learned decision tree and it’s expression for H-group

The ruleset produced from the decision tree in Figure
1 is as follows.

attri7 == (−0.2 . . .0.3) ∧ attri12 == (3.0 . . . 5.2)∧

attri3 == (−7.0 . . . 0.0) =⇒ H

attri7 == (0.3 . . .1.4) ∧ attri4 == (−1.0 · · · − 2.2)∧

=⇒ H

attri7 == (1.4 . . .2.3) ∧ attri9 == (−5.0 · · · − 4.1)∧

attri26 == (7.0 . . .9.0) =⇒ H

where each rule expresses a path rooted fromattri7 to
leaf nodesH , the classification. For example, the path
attri7, attri12, and attri3 is a path in the decision
tree constructed by ID3, and any training examples
satisfying this path are classified into class H-group.
Some other issues that need to be mentioned are:
for each rule generated, there is some other useful
information not shown above. First, each rule covers a
different number of training examples. The number of
examples covered by each rule relative to other rules can
be regarded as a weight value, which we use to guide
the process which generates new individuals based on
the rules. In this way, rules with high coverage are used
more often in generating new individuals.

• Instantiate hypotheses and generate new individuals.
The last step in the learning phase is to instantiate
the learned hypotheses, in our LEM(ID3) algorithm,
this means we use the learned rules to generate new
individuals. To do this, we use the following algorithm:

Algorithm 2 pseudo code for instantiation from rules
1: declare rule coverage variablescr for each ruler;
2: declare number of training examplest;
3: for all rules in the rulesetdo
4: Calculate the coverage of the rulecr;
5: initialise ‘generation distribution’ variablespij to 0;
6: for eachAttributei that appears in the ruledo
7: for eachIntervalj of the Attributei do
8: pij += cr/t;
9: end for

10: end for
11: end for
12: while the new individuals are still neededdo
13: for eachAttributei in the individualdo
14: select intervalj for Attributei with probability

pij/T , whereT sums thepij values forAttributei,
and randomly creates a new value withinintervalj

15: end for
16: end while

Although learning and instantiation play a key role in the
learning phase, they are not the only operations. Part of the
population is generated by standard evolutionary operators,
and part by purely random generation. This helps maintain
diversity during the learning phase, which is essential in
order to generate an informative tree. In LEM(ID3)’s learning
phase, a new individual is either generated by the instantition
method above, or by evolution, or at random; we used the
following probabilities: 70% instantiation,20% evolution,
and10% random. Ideally, these percentages would adapt as
optimization progresses, however, for simplcity we use fixed
(and unoptimized) values in the current work.

2) Evolution mode: In LEM(ID3), when the learning
mode can not find any better individuals by learning and



instantiation. LEM(ID3) will switch to evolution mode com-
pletely. In evolution mode, the traditional evolutionary com-
putation operations are applied.

As mentioned before, as the optimization progresses, the
population will lose diversity. This is common in EAs, but
in the case of LEM(ID3) we note that it causes particu-
lar problems for the decision tree learning process, since
there is too little diversity to help generate a useful tree.
To counter this, LEM(ID3) employs the simplest possible
diversity preservation method: when diversity is too low, we
perturb the population with a very high mutation rate.

3) Discretization: Before any application of ID3, the
population needs to be (for learning use only) discretized.
Instead of regarding genes as real-valued variables, for ID3
learning purposes each gene must range over a small set
of intervals that partition each range. There are many dis-
cretization methods available, In LEM(ID3), we use a very
simple fixed interval discretization, but we adapt the number
of intervals when the fitness seems to have stagnated. This
is done simply by multiplying the number of intervals by
2. Figure 2 illustrates this by showing the difference in
the search space before and after such an adjustment in the
discretization.

−100 1000.0

−100 0.0−80 40−60 −40 1008060

Fig. 2. befor and after adjust descretization representation

III. E XPERIMENTS AND RESULTS

We use the suite of 25 test problems for the CEC 2005
special session [12]. LEM(ID3) is implemented with the
following settings. For learning phase, we set thethreshold
at 0.3, initial discretization divides each gene’s range into an
intervalnumber of 2 intervals. When we adjust discretiza-
tion, theintervalnumber is multipied by 2. The percentages
of new individuals generated via learning, evolution, and
at random are70%, 20%, and 10%, respectively. and the
populationsize is 100 for all problems.

In the evolution phase, we use a steady state strat-
egy with binary tounament selection, a normal distribu-
tion (0,σ) mutation operator with mutation probability 1.0
is applied, where the mutation step sizeσ is a value
always bigger than the current interval size in the dis-
cretized search space. We do not use a crossover opera-
tor in the current work. The newly generated individual
always replaces the worst individual in the current gener-
ation. Our LEM(ID3) source code can be found online at:
http://www.macs.hw.ac.uk/ gls3/LEMID3/LEMID3.zip

We tested LEM(ID3) on all of the 25 problems in the
CEC 200 competition, for each of 10-dimensional, 30-D, and
50-D cases (hence 75 problems altogether). Following the

TABLE I

COMPARISON OF THE MEAN VALUES FORGCMAES, LCMAES, KPCX,

AND LEM(ID3) ON THE 10D VERSONS OF THECEC 2005TEST SUITE,

AFTER 100,000FUNCTION EVALUATIONS.

Problem GCMAES LCMAES KPCX LEMID3

1 5.20e-9 5.14e-9 8.71e-9 9.5497e-14

2 4.70e-9 5.31e-9 9.40e-9 1.18234e-13

3 5.60e-9 4.94e-9 3.02e+4 4.75951e+4

4 5.02e-9 1.79e+6 7.94e-7 1.53131e-8

5 6.58e-9 6.57e-9 4.85e+1 1.08404e+2

6 4.87e-9 5.41e-9 2.07e+1 5.32101e+1

7 3.31e-9 4.91e-9 6.40e-2 7.82496e-2

8 2.0e+1 2.00e+1 2.00e+1 2.015e+1

9 2.39e-1 4.49e+1 1.19e-1 3.52629e-7

10 7.96e-2 4.08e+1 2.39e-1 4.73601e+0

11 9.34e-1 3.65e+0 9.11e+0 2.97556e-3

12 2.93e+1 2.09e+2 2.44e+4 3.30583e+1

13 6.96e-1 4.94e-1 6.53e-1 3.00063e-1

14 3.01e+0 4.01e+0 2.35e+0 2.52033e+0

15 2.28e+2 2.11e+2 5.10e+2 4.10562e+2

16 9.13e+1 1.05e+2 9.59e+1 9.91853e+1

17 1.23e+2 5.49e+2 9.73e+1 9.93189e+1

18 3.32e+2 4.97e+2 7.52e+2 5.40254e+2

19 3.26e+2 5.16e+2 7.51e+2 5.20259e+2

20 3.00e+2 4.42e+2 8.13e+2 6.40241e+2

21 5.00e+2 4.04e+2 1.05e+3 4.84205e+2

22 7.29e+2 7.40e+2 6.59e+2 7.43115e+2

23 5.59e+2 7.91e+2 1.06e+3 7.30581e+2

24 2.00e+2 8.65e+2 4.06e+2 2.00064e+2

25 3.74e+2 4.42e+2 4.06e+2 3.91368e+2

CEC2005 rules [12], 25 trials were run for each problem, and
a variety of result indicators were recorded. The three best
algorithms in the CEC2005 competition, according to various
quality criteria, were G-CMA-ES (the dominant algorithm
on this problem set so far; a restart version of CMA-ES
with population resizing) [2], L-CMA-ES [1] (an alternative
version of CMA-ES), and K-PCX [11]. a carefully designed
evolutionary algorithm with a specialised crossover operator
(PCX). Given space limitations, we restrict our display of
results to a direct comparison with the three most successful
algorithms on the CEC2005 problems. Hence, Tables 1,
2 and 3 respectively show results for the 10D, 30D and
50D problems. In each case, we see the mean of 25 trials,
reported for each of G-CMA-ES, L-CMA-ES, K-PCX, and
LEM(ID3). For the comparative algorithms, we take the
mean results directly from the cited publications. Note that
in the case of K-PCX, results for 50D problems were not
reported.

Note that problems 1 to 6 are unimodal functions, and
problems 7 to 25 are mulimodal. Also, the set of thirteen
10D problems{8, 13, 14, 16–25} were never ‘solved’ by
any algorithm in the CEC 2005 competition, where ‘solved’
indicates reaching a certain level of accuracy specified in



TABLE II

COMPARISON OF THE MEAN VALUES FORGCMAES, LCMAES, KPCX,

AND LEM(ID3) ON THE 30D VERSONS OF THECEC 2005TEST SUITE,

AFTER 300,000FUNCTION EVALUATIONS.

Problem GCMAES LCMAES KPCX LEMID3

1 5.42e-9 5.28e-9 8.95e-9 3.47882e-13

2 6.22e-9 6.93e-9 1.44e-2 1.65321e-10

3 5.55e-9 5.18e-9 5.07e+5 2.72353e+5

4 1.11e+4 9.26e+7 1.11e+3 3.85297e+3

5 8.62e-9 8.30e-9 2.04e+3 3.13183e+3

6 5.90e-9 6.31e-9 9.89e+2 1.50812e+2

7 5.31e-9 6.48e-9 3.63e-2 2.95802e-2

8 2.01e+1 2.00e+1 2.00e+1 2.01516e+1

9 9.38e-1 2.91e+2 2.79e-1 7.8419e-7

10 1.65e+0 5.63e+2 5.17e-1 3.69056e+1

11 5.48e+0 1.52e+1 2.95e+1 8.40942e-3

12 4.43e+4 1.32e+4 1.04e+6 4.91148e+3

13 2.49e+0 2.32e+0 1.19e+1 1.0437e+0

14 1.29e+1 1.40e+1 1.38e+1 1.20617e+1

15 2.08e+2 2.16e+2 8.76e+2 3.6229e+2

16 3.50e+1 5.84e+1 7.15e+1 3.36537e+2

17 2.91e+2 1.07e+3 1.56e+2 3.10781e+2

18 9.04e+2 8.90e+2 8.30e+2 9.11234e+2

19 9.04e+2 9.03e+2 8.31e+2 9.10634e+2

20 9.04e+2 8.89e+2 8.31e+2 9.11151e+2

21 5.00e+2 4.85e+2 8.59e+2 5.00162e+2

22 8.03e+2 8.71e+2 1.56e+3 9.14701e+2

23 5.34e+2 5.35e+2 8.66e+2 5.41424e+2

24 9.10e+2 1.41e+3 2.13e+2 2.00283e+2

25 2.11e+2 6.91e+2 2.13e+2 2.00294e+2

[12], which in turn was a function of the problem and its
dimensionality. (on 30D problems, problem 15 is added to
the set).

If we observe the results summarised in Table I and
compare the means, we see that G-CMA-ES, L-CMA-ES, K-
PCX and LEM(ID3) respectively ‘win’ 13, 5, 4 and 6 of the
contests on 10-dimensional functions. This includes some,
but quite few, cases in which more than one of the algorithms
shares the best mean for that problem. Table II shows the
corresponding results for the 30D functions, and we now see
that the numbers of ‘wins’ are 6, 4, 6 and 9 respectively
for G-CMA-ES, L-CMA-ES, K-PCX and LEM(ID3). As
we scale from 10 to 30D, the relative performance of
LEM(ID3) clearly seems to improve. Finally, although results
for K-PCX on the 50D problems are not available, we note
that the numbers of wins for G-CMA-ES, L-CMA-ES and
LEM(ID3) on 50D problems are respectively 7, 7 and 11. A
basic statistical analysis of these findings can be done using
multinomial distributions. For example, if we assume that
each algorithm has an equal chance of achieving a ‘win’
in the 30D case, then we find that the chance of a single
algorithm achieving 9 or more wins has a probability of
0.15. In the case of 10D, simplifying the situation by ignoring

problems 8 and 24, we find, analagously, that achieving 11
or more wins by chance from 23 four-way contests is 0.015.
Finally, referring to the 50D case, the probability of achieving
11 or more wins in such a three way contest, assuming equal
algorithm performance, is 0.18. The superiority of G-CMA-
ES in the 10D cases therefore seems signifcant, although
LEM(ID3) achieves the plurality of wins on the 30D and 50D
cases, the degrees of significance are less marked. However,
the improvement in the relative performance of LEM(ID3) as
we scale up is significant, and it seems clear that LEM(ID3)
has promising properties with regard to scalability

Meanwhile, we show in Tables IV and V the full set
of result indicators (as specified in [12]) for LEM(ID3) on
the 50D versions of the problems, to support comparative
experiments of other researchers; space limitations prevent us
from showing the full 10D and 30D, but these are available
at http://www.macs.hw.ac.uk/to-be-arranged.

IV. CONCLUDING DISCUSSION

Continuing to explore the ‘LEM’ framework, we have
described and evaluated an algorithm that combines evolu-
tionary search with ID3 decision tree learning. In earlier work
[9], [10] we found that hybridisations of quite simple learning
strategies with evolutionary search were able to improve
considerably upon the unchanged EA; in particular, simi-
lar or better solution quality was achieved with significant
savings in fitness evaluations. In this paper, we examined a
less simple, but still quite straightforward variant in which
decision tree learning, with adaptive discretization, wasin-
terleaved with evolutionary search, and tested this approach
on the CEC 2005 real parameter optimisation function suite.
When compared with three of the best-performing function
optimization algorithms previously published, we find that
LEM(ID3) is clearly competetive in performance, and its
relative performance improves as problem dimensionality
increases, with tentative evidence to suggest that it may
be a recommended choice in general for high-D problems.
Research-strength LEM(ID3) code is freely available at
http://www.macs.hw.ac.uk/ gls3/LEMID3/LEMID3.zip.
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TABLE IV

ERRORVALUES ACHIEVED WHEN FES=1E3,FES=1E4,FES=1E5,FES=3E5 FES = 5E5 FOR PROBLEMS1-9(50D)

FE Prob 1 2 3 4 5 6 7 8 9

1e3

1
st(Best) 5.51142e+41.51879e+52.10005e+91.67442e+53.69882e+43.49642e+101.09999e+42.12583e+15.85913e+2

7
st 7.12981e+41.83003e+52.72427e+92.32920e+53.87181e+44.97113e+101.15068e+42.13225e+16.24486e+2

13
st(Median) 7.66952e+42.04321e+53.21028e+92.54673e+54.02342e+45.75621e+101.25735e+42.13514e+16.5709e+2

19
st 8.08763e+42.27296e+53.31233e+92.74659e+54.27958e+46.48353e+101.28912e+42.13788e+16.74407e+2

25
st(Worst) 9.14238e+42.69784e+53.97722e+93.38369e+54.51263e+47.42571e+101.35734e+42.14255e+17.23742e+2
Mean 7.58587e+42.05962e+53.02158e+92.56436e+54.05242e+45.69746e+101.22939e+42.13513e+16.49598e+2
Std 8.70748e+33.06062e+44.44698e+84.08042e+42.50896e+31.11868e+107.6882e+2 4.06245e-23.8782e+1

1e4

1
st(Best) 9.98461e+22.73658e+41.12281e+83.37432e+41.20098e+45.57072e+85.05316e+22.11475e+13.65384e+2

7
st 1.54895e+34.51881e+41.58228e+85.90627e+41.46458e+4 9.9109e+8 6.78866e+22.12413e+13.96714e+2

13
st(Median) 1.72223e+34.95447e+41.7982e+87.04506e+41.57016e+41.17615e+98.24632e+22.12665e+14.13965e+2

19
st 1.88534e+35.50288e+42.18898e+87.91098e+41.64814e+41.40983e+91.00922e+32.12941e+14.34711e+2

25
st(Worst) 2.66011e+37.18056e+42.44658e+81.13046e+51.78503e+41.76553e+91.44983e+32.13482e+14.57782e+2
Mean 1.7396e+3 4.99849e+41.83442e+86.90953e+41.5422e+4 1.18959e+98.69208e+22.12664e+14.13594e+2
Std 3.68971e+29.19741e+33.63204e+71.57892e+41.52509e+33.05817e+8 2.5899e+2 4.24611e-22.52316e+1

1e5

1
st(Best) 3.41061e-131.87307e+21.00166e+62.07346e+47.23403e+32.47339e+1 5.55714e-82.01349e+12.42035e-5

7
st 4.54747e-139.05602e+21.38678e+63.48667e+49.08045e+34.00485e+1 2.08563e-72.01938e+15.82229e-5

13
st(Median)5.11591e-131.35331e+31.92911e+63.91607e+49.69999e+34.76419e+1 9.85736e-32.02497e+17.45986e-5

19
st 6.25278e-131.78202e+32.40636e+64.49693e+41.09219e+42.48135e+2 2.94594e-22.02981e+19.15903e-5

25
st(Worst) 7.38964e-133.24683e+33.29172e+65.67418e+41.22664e+49.36661e+3 5.63526e-22.03497e+11.57744e-4
Mean 5.34328e-131.42029e+31.89689e+63.89832e+49.82417e+31.15715e+3 1.48301e-22.02492e+17.64826e-5
Std 9.91099e-147.23942e+25.98377e+58.6373e+31.26849e+32.67887e+3 1.68684e-26.05549e-22.76112e-5

3e5

1
st(Best) 3.41061e-137.23333e-102.09420e+51.34239e+47.23402e+34.80782e+08.36877e-102.00779e+12.01438e-6

7
st 4.54747e-131.15472e-92.62135e+52.0845e+49.07959e+3 1.7834e+1 3.21262e-92.01243e+13.18409e-6

13
st(Median)5.11591e-131.37845e-93.88935e+52.40103e+49.69999e+3 2.06e+1 9.85729e-3 2.017e+1 3.48123e-6

19
st 6.25278e-131.74771e-94.41208e+52.95921e+41.09219e+41.46261e+2 2.94591e-22.01979e+14.45399e-6

25
st(Worst) 7.38964e-132.53847e-86.40857e+54.35825e+41.22664e+4 1.0344e+3 5.63524e-22.02488e+18.04654e-6
Mean 5.34328e-132.38457e-93.79589e+52.56436e+49.82398e+31.30426e+2 1.48301e-22.01648e+13.79203e-6
Std 9.91099e-144.70832e-91.19670e+56.75653e+31.26849e+32.62602e+2 1.68684e-24.32217e-21.30416e-6

5e5

1
st(Best) 3.41061e-137.23219e-101.03835e+57.76829e+37.23402e+32.15868e-12.15636e-102.00631e+14.52469e-7

7
st 4.54747e-131.15028e-91.52246e+51.50123e+49.07959e+3 3.937e+0 1.01704e-92.01019e+11.07226e-6

13
st(Median)5.11591e-131.28637e-92.00057e+51.83313e+49.69999e+36.08975e+0 9.85728e-32.01386e+11.30084e-6

19
st 6.25278e-131.41921e-92.67678e+52.30653e+41.09219e+41.36537e+2 2.94591e-22.01598e+11.40499e-6

25
st(Worst) 7.38964e-132.03244e-93.38318e+53.63462e+41.22664e+49.65119e+2 5.63524e-22.02026e+12.00881e-6
Mean 5.34328e-131.31335e-92.11398e+51.91824e+49.82375e+31.12253e+2 1.48301e-22.01318e+11.2652e-6
Std 9.91099e-142.78563e-106.76307e+45.71984e+31.26857e+32.45579e+2 1.68684e-23.53769e-23.48828e-7
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TABLE V

ERRORVALUES ACHIEVED WHEN FES=1E3,FES=1E4,FES=1E5,FES=3E5 FES=5E5 FOR PROBLEMS10-17(50D)

FE Prob 10 11 12 13 14 15 16 17

1e3

1
st(Best) 9.55087e+27.42498e+14.41679e+64.40894e+22.31195e+19.77567e+26.57047e+28.19088e+2

7
st 1.04246e+37.57477e+15.64745e+68.16527e+22.38016e+11.04476e+37.46701e+29.07803e+2

13
st(Median)1.09997e+37.75215e+16.55796e+61.05628e+32.40312e+11.10186e+37.86151e+29.24502e+2

19
st 1.12314e+37.85936e+16.79599e+61.09935e+32.41171e+11.13654e+38.31648e+29.80848e+2

25
st(Worst) 1.18023e+38.35322e+17.36667e+61.53577e+32.42551e+11.16253e+39.21854e+21.11515e+3
Mean 1.08081e+37.7621e+16.26256e+69.83086e+22.39534e+11.09006e+37.93349e+29.33038e+2
Std 5.67469e+12.35302e+07.59139e+52.53989e+22.5106e-15.25278e+16.38147e+17.23728e+1

1e4

1
st(Best) 4.52249e+21.06331e+16.94560e+44.16305e+12.2704e+15.00881e+23.06611e+23.6226e+2

7
st 4.77605e+21.23251e+19.91115e+54.45412e+12.29962e+16.09731e+23.21565e+23.78356e+2

13
st(Median)4.84931e+21.37686e+11.07617e+64.59726e+12.30894e+16.45887e+23.40662e+23.86797e+2

19
st 5.06135e+21.59975e+11.13921e+64.85981e+1 2.326e+1 6.6742e+23.49884e+23.99851e+2

25
st(Worst) 5.4627e+22.05923e+11.33412e+65.09829e+12.34369e+17.06334e+23.74912e+24.31716e+2
Mean 4.91592e+21.4347e+11.05603e+64.61968e+12.30998e+16.24054e+23.38922e+23.89905e+2
Std 2.5674e+12.48334e+01.48582e+52.64645e+02.01406e-16.05553e+11.86864e+11.72941e+1

1e5

1
st(Best) 8.75562e+13.81584e-21.44276e+41.6658e+02.05739e+13.46052e+27.74716e+19.57355e+1

7
st 1.07455e+24.27134e-23.12412e+41.98964e+02.11749e+13.91017e+29.39309e+11.16354e+2

13
st(Median)1.15415e+24.50361e-24.34969e+42.38846e+02.16154e+1 4.023e+2 9.78339e+11.2483e+2

19
st 1.30339e+24.71833e-26.12136e+42.70468e+02.18551e+14.23389e+21.0489e+21.32262e+2

25
st(Worst) 1.68148e+25.29221e-21.29204e+53.16681e+02.24938e+15.05451e+21.19914e+21.58008e+2
Mean 1.17804e+24.47662e-25.40739e+42.35217e+02.15798e+14.10944e+29.92568e+11.2542e+2
Std 1.99834e+13.51986e-33.31723e+44.05752e-14.65305e-13.6672e+11.11199e+11.51036e+1

3e5

1
st(Best) 8.75562e+11.69114e-21.34048e+41.27279e+02.05719e+13.42822e+27.64194e+19.43639e+1

7
st 1.07455e+21.8854e-2 2.8812e+41.75218e+02.11712e+13.81269e+29.33667e+11.15444e+2

13
st(Median)1.15415e+21.99417e-24.30683e+42.01806e+02.16104e+14.01718e+29.78339e+11.23132e+2

19
st 1.30339e+22.1826e-26.12136e+42.20224e+02.18543e+14.21828e+21.0408e+21.30267e+2

25
st(Worst) 1.68148e+22.35981e-21.20129e+52.53098e+02.2493e+15.03771e+21.19914e+21.5679e+2
Mean 1.17804e+22.01512e-25.11606e+41.96793e+02.15774e+14.06304e+29.87115e+11.23639e+2
Std 1.99834e+11.91237e-33.16112e+43.53218e-14.65591e-13.86759e+11.12072e+11.47723e+1

5e5

1
st(Best) 8.75562e+11.12915e-21.2641e+41.18787e+02.05718e+13.4065e+27.62284e+19.36489e+1

7
st 1.07455e+21.31512e-22.6452e+41.72212e+02.11707e+13.81153e+29.32198e+11.15403e+2

13
st(Median)1.15415e+21.46848e-24.13691e+41.93704e+02.16094e+14.01405e+29.78048e+11.23132e+2

19
st 1.30339e+21.50056e-26.12136e+42.16827e+02.18542e+14.20961e+21.0408e+2 1.2919e+2

25
st(Worst) 1.68148e+21.8692e-21.14555e+52.51907e+02.24929e+15.03659e+21.19836e+21.55669e+2
Mean 1.17804e+21.4332e-24.85485e+41.92194e+02.1577e+14.04874e+29.8556e+11.23137e+2
Std 1.99834e+11.55761e-32.93073e+43.48701e-14.65643e-13.8859e+11.12841e+11.47763e+1



TABLE VI

ERRORVALUES ACHIEVED WHEN FES=1E3,FES=1E4,FES=1E5,FES=3E5 FES=5E5 FOR PROBLEMS18-25(50D)

FE Prob 18 19 20 21 22 23 24 25

1e3

1
st(Best) 1.32012e+31.28895e+31.27409e+31.35554e+31.41029e+31.39336e+31.48128e+31.81075e+3

7
st 1.34924e+31.32921e+31.32205e+31.41301e+31.47406e+31.4202e+31.50679e+31.90004e+3

13
st(Median) 1.3719e+31.34251e+31.35202e+31.43062e+31.53781e+31.45175e+3 1.545e+3 1.91905e+3

19
st 1.37878e+31.35255e+31.38102e+31.44662e+31.53781e+31.45673e+31.56103e+31.9374e+3

25
st(Worst) 1.41859e+31.42743e+31.40995e+31.45713e+31.62434e+31.48599e+31.57763e+31.96508e+3
Mean 1.36427e+31.34641e+31.3522e+31.42729e+31.52263e+31.44181e+31.53718e+31.91294e+3
Std 2.43472e+13.02611e+13.7055e+12.35834e+15.63886e+12.31314e+12.87624e+13.52847e+1

1e4

1
st(Best) 9.97832e+29.89552e+29.7263e+29.87067e+21.02721e+39.93378e+21.03987e+34.61938e+2

7
st 1.0087e+31.00917e+31.01018e+31.03841e+31.0634e+31.04926e+31.10792e+35.49586e+2

13
st(Median)1.01283e+31.01412e+31.01506e+31.05378e+31.07579e+31.07128e+31.15488e+36.78404e+2

19
st 1.01973e+31.02425e+31.02636e+31.10462e+31.08577e+31.10827e+31.1638e+38.15937e+2

25
st(Worst) 1.04242e+31.04429e+31.05164e+31.14175e+31.10565e+31.13687e+31.23733e+31.22294e+3
Mean 1.01567e+31.01688e+31.01607e+31.06888e+31.07398e+31.07397e+31.14328e+37.34723e+2
Std 9.9784e+01.23553e+11.60617e+14.51729e+11.80038e+13.93552e+14.91449e+12.12427e+2

1e5

1
st(Best) 9.28534e+29.33703e+29.29386e+25.00296e+29.68637e+25.49105e+22.00486e+22.20288e+2

7
st 9.33376e+29.36249e+29.34088e+25.00353e+29.96375e+25.65554e+22.00661e+22.22291e+2

13
st(Median)9.36262e+29.39147e+29.38245e+25.00367e+21.00482e+35.80241e+22.00705e+22.23946e+2

19
st 9.40687e+29.42993e+29.44787e+25.00414e+21.0204e+35.85571e+22.00749e+22.31217e+2

25
st(Worst) 9.64881e+29.65428e+29.68877e+21.04828e+31.04072e+31.06117e+32.00837e+22.63998e+2
Mean 9.39207e+29.40836e+29.40921e+26.08119e+21.00673e+35.9556e+22.00707e+22.29575e+2
Std 9.51087e+06.63746e+09.82973e+02.15538e+21.73734e+19.60541e+17.71071e-21.17577e+2

3e5

1
st(Best) 9.2779e+29.33436e+2 9.283e+2 5.00274e+29.66662e+25.49103e+22.00409e+22.16496e+2

7
st 9.32988e+2 9.358e+2 9.33721e+25.00296e+29.93031e+25.65553e+22.00547e+22.18164e+2

13
st(Median)9.36227e+29.38894e+29.38036e+25.00309e+21.00007e+35.80239e+22.00602e+22.18902e+2

19
st 9.40216e+29.42198e+29.43444e+25.00325e+21.01668e+35.85571e+22.00618e+22.19667e+2

25
st(Worst) 9.63709e+29.64643e+29.68343e+21.04755e+31.04072e+31.06116e+32.00654e+22.25634e+2
Mean 9.38732e+29.40333e+29.40451e+26.07948e+21.00278e+35.95501e+22.00576e+22.19157e+2
Std 9.34306e+06.55205e+09.84473e+02.15314e+21.7955e+19.60678e+16.23622e-21.9333e+0

5e5

1
st(Best) 9.27555e+29.33436e+2 9.283e+2 5.00231e+29.66662e+25.49103e+22.00409e+22.16285e+2

7
st 9.32923e+2 9.358e+2 9.33485e+25.00276e+29.89824e+25.65553e+22.00507e+22.17589e+2

13
st(Median)9.36003e+29.38848e+29.37865e+25.00297e+29.98235e+25.80239e+22.00558e+2 2.184e+2

19
st 9.39908e+29.42198e+29.43444e+25.0031e+2 1.0162e+35.85568e+22.00595e+22.18941e+2

25
st(Worst) 9.63641e+29.64643e+29.67628e+21.04649e+31.04072e+31.06115e+32.00628e+22.21402e+2
Mean 9.38592e+29.40204e+29.40267e+26.07759e+21.00155e+3 5.955e+2 2.00544e+22.18497e+2
Std 9.27171e+06.57274e+09.78984e+02.14974e+21.88383e+19.6066e+16.13193e-21.30321e+0


