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Abstract- 
A memetic algorithm for tackling multiobjective op- 

timization problems is presented. The algorithm em- 
ploys the proven local search strategy used in the Pareto 
archived evolution strategy (PAES) and combines it with 
the use of a population and recombination. Verification 
of the new algorithm is carried out by testing it on a 
set of multiobjective 0/1 knapsack problems. On each 
problem instance, comparison is made between the new 
memetic algorithm, the (l+l)-PAES local searcher, and 
the strength Pareto evolutionary algorithm (SPEA) of Zit- 
zler and Thiele. 

1 Introduction 

In recent years, genetic algorithms (GAS) have been applied 
more and more to multiobjective problems. For a compre- 
hensive overview, see [2]. Undoubtedly, as an extremely gen- 
eral metaheuristic, GAS are well qualified to tackle problems 
of a great variety. This asset, coupled with the possession 
of a population, seems to make them particularly attractive 
for use in multiobjective problems, where a number of so- 
lutions approximating the Pareto front are required. Indeed, 
changing a generic GA into a multiobjective GA (MOGA) 
is a relatively simple task: A selection scheme that operates 
with solutions possessing a vector of objective scores is the 
only extra requirement, although some means of maintain- 
ing diversity in the population is also often desirable. The 
first, pioneering work in the field was Schaffer’s vector eval- 
uated GA (VEGA) [25], which alternately optimized each of 
the different objectives. Later, Goldberg [9], suggested an 
elegant method of ranking a population of solutions, based 
on their mutual dominance relations. This was implemented 
in an algorithm, NSGA, by Srinivaq and Deb [27] in 1994. 
Since then, Pareto methods like these have been very popular 
- due again to their very general applicability, and their lack 
of assumptions about the decision maker - and several other 
methods of assigning fitness based on some form of Pareto 
ranking have been devised, e.g. [4,10]. More recently, elitism 
has been shown to improve the performance of multiobjec- 
tive GAS (for example see [21]), and a very elegant method 
of exploiting co-evolution to perform fimess assignment in an 
elitist GA was put forward by Zitzler and Thiele [30, 31, 321. 
The latter has been compared to some of the most popular 
MOGAs, on a range of problems and test functions, with very 
positive results. Some theoretical justification for the use of 
evolutionary algorithms in multiobjective optimization, in the 
form of convergence proofs, has also been provided [23,24]. 

Almost in parallel to the development of MOGAs, there 

has been a growing research effort in the use of metaheuristics 
within the field of multiple criteria decision making (MCDM) 
- a branch of operations research. Algorithms based on 
both tabu search and simulated annealing have been put for- 
ward [3, 7, 8, 22, 26, 281. Most of these algorithms do not 
have a population but store the nondominated solutions dis- 
covered during a local search process. Rather than using 
Pareto ranking, weighted metrics are used to aggregate the 
objectives into a single score to be used in the acceptance 
function [29]. Some researchers argue that the use of such 
scalarizing vectors naturally allows the preferences of the de- 
cision maker to be used to guide the direction(s) of the search 
towards the region(s) of interest (see for example [3]). This 
may be true, but the use of purely random utility functions in 
the absence of such preference information, as used in many 
algorithms, seems unsatisfactory. 

Whether the algorithms devised and investigated in the 
MCDM field are more or less effective than MOGAs remains 
an open question: Very few studies that attempt to directly 
measure and compare the performance of MOGAs with al- 
gorithms based on tabu search [7, 8,221 or simulated anneal- 
ing [3, 26, 281, on problems of sufficient variety, have been 
carried out. But, despite the lack of communication between 
the two fields, there does seem to be some convergence of 
the approaches taken by them. For example, our own work 
on (1+1)-PAES [15, 16, 171 shows that an algorithm that 
employs only local search moves may be competitive with 
many of the most respected MOGAs, on a range of prob- 
lems. PAES goes some way to bridging the gap between local 
search and population based methods, and is unique amongst 
local search algorithms in its use of a form of Pareto rank- 
ing for selection. However, our results do indicate, perhaps 
predictably, that while local search seems very well suited 
to many problems it is outperformed by some population- 
based methods on functions which are highly multimodal or 
strongly deceptive [15]. 

Similarly, work by Czyiak and Jaszkiewicz [3] also takes 
inspiration from both multiobjective camps, with a novel 
population-based approach to multiobjective simulated an- 
nealing. Their algorithm uses utility functions to obtain a 
single score from the vector of objective values, but exploits 
population information to adjust the direction of the utility 
function to direct progress in a direction approximately per- 
pendicular to the current Pareto front. The technique inher- 
ently encourages an even spread of solutions, as well. Com- 
parison with a single point multiobjective simulated annealer 
demonstrated that the use of a population was beneficial on 
the multiobjective knapsack problems tackled. 
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In this study, we take a further step towards devising meth- 
ods that incorporate both local search and population-based 
search strategies in the multiobjective domain. With PAES, 
we have a local search engine that is fast and effective at 
approximating the Pareto front. However, its performance 
may be improved with the addition of a population, particu- 
larly with regard to problems that may exhibit multimodality 
and/or deception. Our approach is to maintain the fitness as- 
signment methods used in PAES, a Pareto-based method, and 
incorporate a population and crossover to form a memetic al- 
gorithm for multiobjective optimization. 

Memetic algorithms (also called genetic local search, hy- 
brid genetic algorithms, and cultural algorithms) derive from 
many sources. In recent years, the methods have become 
more homogeneous and some great successes have been had 
in the optimization of a variety of classical NP-hard op- 
timization problems, most notably the travelling salesper- 
son problem (TSP) [6, 201. An overview of the technique, 
outlining its origins and history is given in [19]. Much of 
the success of memetic algorithms relies on the property of 
global convexity in the search space [l]. Recently, a fur- 
ther improvement to memetic algorithms was suggested by 
Jaszkiewicz [13], in which the local search space topology is 
changed by restricting mutations to loci in the genotype not 
common to both parents. 

Proposals for multiobjective memetic algorithms have al- 
ready been put forward. The first of these, devised by 
Ishibuchi and Murata [l I], assigns fitness using a randomly 
selected linear utility function. Parents are then chosen us- 
ing roulette wheel selection, crossover and mutation are per- 
formed, and the resulting offspring is improved by a local 
search, using the same utility function by which the parents 
were selected. The local search procedure is terminated when 
k neighbours of the current solution have been examined with 
no improvement. An elitist strategy is also incorporated in 
the procedure. The algorithm was tested on some Flowshop 
Scheduling tasks but comparison was limited to fairly out- 
dated multiobjective algorithms including VEGA [25]. More 
recently, two proposals for novel algorithms were put forward 
in a paper by Jaszkiewicz [12]. The first was based on a hy- 
brid with simulated annealing, and the second is similar to 
Ishibuchi and Murata’s but introduces a form of mating re- 
striction, so that only the N best solutions measured using a 
random utility function are allowed to mate. The two pro- 
posed algorithms were tested and compared with Ishibuchi 
and Murata’s on a set of multiobjective travelling salesperson 
problems. On these problems, global convexity may be ex- 
ploited [l], and so restricting mating is advantageous. The 
results of the comparison reflect this fact. 

In this paper, a direct comparison is made between the per- 
formance of the new memetic algorithm proposed, and two 
existing approaches: The local search method, (1+1)-PAES; 
and the strength Pareto evolutionary algorithm (SPEA) [30, 
31, 321. To make the comparison, each algorithm is run 
30 times on a suite of 9 multiobjective 0/1 knapsack prob- 

lems [32]. The remainder of the paper is organised as fol- 
lows: In Section 2 the M-PAES algorithm is described. The 
experimental method used for verifying the algorithm, and 
comparing its performance are discussed in Section 3. The 
parameter choices made for each algorithm, including two 
versions of SPEA, and a benchmark single objective EA, are 
presented in this section. ResulLs are presented in Section 4. 
Finally, some concluding remarks are made in the last sec- 
tion. 

2 M-PAES 

The memetic-PAES algorithm (M-PAES) is shown in pseu- 
docode in Figure 1. It is based on the local search multiobjec- 
tive algorithm, (l+l)-PAES [ 161, but uses a population of so- 
lutions and periodically employs crossover to recombine the 
distinct local optima found using the PAES procedure. The 
archiving of solutions in M-PAES is a little more complicated 
than in (1+1)-PAES. Recall that at the heart of PAES is a pro- 
cedure for maintaining a finite sized archive of nondominated 
solutions. The solutions in the archive are representative of 
the best nondominated solutions found by the algorithm as it 
searches the space. The solutions in the archive serve a dual 
purpose in (1+ l)-PAES: as a memory of the solutions found 
during the run for presentation at the end; and as a comparison 
set to aid in estimating the dominance rank of new candidate 
solutions. In order that these same jobs are performed in M- 
PAES, two archives are required. This is because each local 
search phase needs to be partially independent of the global 
search being performed by the algorithm as a whole. Thus 
we have a global archive G that maintains a finite set of non- 
dominated solutions found, and a local archive H that is used 
as the comparison set in each of the local search phases. At 
the beginning of a local search phase, H is cleared and filled 
with solutions from G which do not dominate the candidate 
solution c. The archive H is then used as in (1+1)-PAES to 
improve c, i.e. H is maintained and used as a comparison 
set, while G is continually updated but plays no part in the 
estimation of the quality of new solutions. 

The PAES local search procedure used by M-PAES to im- 
prove solutions in P is almost the same as the basic (l+l)-  
PAES algorithm. However, it differs in the way that termi- 
nation of the procedure is determined. Termination may be 
invoked when either of two conditions are fulfilled: (1) If the 
maximum number of local search moves I-opt is exceeded. 
(2) If the maximum number of local search fails 1-fails is ex- 
ceeded. To achieve (2), the variable #fails, initially zero, is 
incremented every time the mutant is dominated by the cur- 
rent solution. It is reset to zero every time a move occurs 
i.e. when the mutant is accepted as the new current solution. 
Hence, #fails effectively counts the number of potentially 
detrimental moves between improving moves. If this number 
exceeds the threshold LfaiIs, the local search is stopped. The 
local search procedure PAES(c, G, H )  is shown in Figure 2. 

In the recombination phase, parents are randomly selected 
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Generate initial population P of n random solutions and evaluate 
Place each nondominated member of P in a global archive G 
Do 

For (each candidate solution c E P) %% locul seurch phuse 
Set the current local archive H = @  
Fill H with any solutions from G that do not dominate c 
Copy the solution c from P into H 
Perform local search using procedure PAES(c, G, H )  
Replace improved solution c back into population P 

End For 
Set intermediate population empty: ni =0 ,  P ' = 0  
Do %% recombinution p h e  

Set # recombination trials r = O  
Do 

Randomly choose two parents from P U G  and recombine to form offspring c 
Compare c with the solutions in G 
Update G with c as necessary 
I++ 

While ( ( ( e  is dominated by G)V(c  is in more crowded grid location than both parents))A 

If (c  is dominated by G) 

Endi f 
Place offspring c into intermediate population P' ,  niff 

( r  < recomb-trials-max) 

Discard c and use binary tournament to select a new solution c from G 

While (ni < n )  
Update population: P4-P' 

While (stopping criterion is not satisfied) 
Return global archive G of unique nondominated solutions 

Figure 1: The M-PAES Algorithm. 

from the union of the post-local search population, and the 
global archive. The resultant child is accepted only if it is 
nondominated with respect to the entire global archive, and 
it resides in a less crowded region (grid location [171) than at 
least one of its parents. If it dominates any member of G it 
is naturally accepted too. However, solutions that are domi- 
nated by member(s) of G, or that reside in crowded regions 
are rejected. In this case two new parents are selected again 
and recombination is applied once more. The procedure is 
repeated until either a child is accepted or a threshold num- 
ber of recombinations recomb-trials-max is exceeded. In 
the latter case, a solution is selected by binary tournament, 
from the global archive, to join the intermediate population 
P'. The recombination strategy is, as a whole, extremely eli- 
tist, following the general form of the (1+1)-PAES algorithm 
employed in the local search phase. In the development of 
M-PAES, early versions did not have the facility of repeat- 
edly rejecting children of recombination. However, we found 
that this weakened the effectiveness of the elitism inherent in 
(1+1)-PAES and so the recombination phase was made more 
stringent in later versions. 

3 Experimental Method 

The M-PAES algorithm is tested on a suite of multiobjec- 
tive 0/1 knapsack problems. The problems are taken from 
a recent paper [32] by Zitzler and Thiele (ZT), in which the 
general ability of their strength Pareto evolutionary algorithm 
(SPEA) was demonstrated. In 1321, the performance of SPEA 
on these problems is compared with eight other evolutionary 
algorithms (EAs). Four of the algorithms, each a well-known 

multiobjective EA, as well as two versions of SPEA, were 
run 30 times with different random seeds on each of the prob- 
lems, for 500 generations using the same population sizes'. 
The nondominated sets generated from each of the runs were 
used to make a statistical comparison of the algorithms tested. 

The findings of the ZT study show that SPEA is superior 
to each of the other MOEAs on all of the knapsack problems. 
However, also included in the set of eight algorithms tested 
in [32], are two single-objective EAs that use weighted-sum 
aggregation of the objectives. The relative performance of 
SPEA and these algorithms is not clear-cut. Hence, in this 
study we select as benchmarks, the data sets from the SPEA 
runs and those of the more powerful of the two single objec- 
tive algorithms, SO-5. The other algorithms are not consid- 
ered. 

As addition comparators, we generated our own data setS 
for the (1+1)-PAES algorithm, and an enhanced setup of 
SPEA, on the knapsack problems. The parameter settings for 
each of these five algorithms are described in Section 3.2. 

3.1 Multiobjective 0/1 Knapsack Problems 

The knapsack problems have been described fully in [32]. 
There are nine problems altogether, of differing combinations 
of size (number of items), and number of objectives (knap- 
sacks). At the time of writing, the problems are available 
from an Intemet web-site2. Provided at the same site are the 
raw results obtained in the ZT study, for all the algorithms 

'In the case of SPEA, an internal and an external population exist. The 
sizes of these were chosen to provide a fair comparison with the other 
MOEAs in the study. 

http:/www.tik.ee.ethz.ch/Nzitzler 
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W h i l e  ( (#fads < l-fails) A (#moves < I-opt) ) 
M u t a t e  c t o  p r o d u c e  m a n d  e v a l u a t e  m 
I f  (c d o m i n a t e s  m )  d i s c a r d  m, #fails++ 
E l s e  i f  ( m  d o m i n a t e s  c)  

R e p l a c e  c w i t h  m, a d d  m t o  H ,  #fails = 0 
E l s e  i f  ( m  i s  d o m i n a t e d  b y  a n y  member o f  H )  d i s c a r d  m 
E l s e  a p p l y  test(c,m, H )  t o  d e t e r m i n e  w h i c h  becomes t h e  new 

c u r r e n t  s o l u t i o n  a n d  w h e t h e r  t o  a d d  m t o  t h e  a r c h i v e  
A r c h i v e  m i n  G as  n e c e s s a r y  
#moves++ 

End w h i l e  

Figure 2: The PAES(c, G, H )  procedure. 

I f  t h e  a r c h i v e  i s  n o t  full 
Add m t o  t h e  a r c h i v e  
I f  ( m  i s  i n  a less c rowded  r e g i o n  o f  t h e  a r c h i v e  t h a n  c)  

E l s e  m a i n t a i n  c a s  t h e  c u r r e n t  s o l u t i o n  

I f  ( m  i s  i n  a less c rowded  r e g i o n  o f  t h e  a r c h i v e  t h a n  x f o r  

A c c e p t  m a s  t h e  new c u r r e n t  s o l u t i o n  

E l s e  

some member x on t h e  a r c h i v e )  
A d d  m t o  t h e  a r c h i v e ,  a n d  remove a member o f  t h e  a r c h i v e  f r o m  

I f  (m i s  i n  a less c rowded  r e g i o n  o f  t h e  a r c h i v e  t h a n  c )  

E l s e  m a i n t a i n  c a s  t h e  c u r r e n t  s o l u t i o n  

I f  ( m  i s  i n  a l ess  c rowded  r e g i o n  o f  t h e  a r c h i v e  t h a n  c )  

E l s e  m a i n t a i n  c a s  t h e  c u r r e n t  s o l u t i o n  

t h e  mos t  c rowded  r e g i o n  

A c c e p t  m a s  t h e  new c u r r e n t  s o l u t i o n  

E l s e  

A c c e p t  m a s  t h e  new c u r r e n t  s o l u t i o n  

I Figure 3: Pseudocode for test(c, m, archive). 

tested. We make use of some of this data as baseline results 
for comparison purposes. In particular, the data sets from the 
two algorithms, SO-5 and SPEA are used here. 

We employ the same chromosome encoding and constraint 
handling techniques as described in [32], and no additional 
heuristics for use with the knapsack problems are employed. 
This allows for a direct comparison between our results and 
those published by Zitzler and Thiele. 

3.2 Parameter Choices 

Our philosophy in comparing the performance of M-PAES 
with the other algorithms considered, (1+1)-PAES and SPEA, 
is that each algorithm be run with settings, found through 
some experimentation, to provide near-best performance for 
that algorithm. The aim is to demonstrate the utility of the 
three algorithms on the knapsack problems considered, and 
we do not claim that the parameter choices can be rigorously 
justified, although some explanation is given. Indeed, the 
main objective is to show that the proposed memetic algo- 
rithm can produce competitive results on a well-known N P -  
hard problem [7]. 

Details of the parameter choices made for each of the al- 
gorithms tested are given below. The data from the setup of 
SPEA used in [32] is referred to as SPEA(2T). Our own setup 
of SPEA is labelled SPEA(KC). 

SO-5 
The SO-5 data comes from one of two single-objective EAs 
used in [32]. Unlike the other algorithms considered, these 
single-objective EAs were run 100 times per test problem, 
each run optimizing toward a different randomly chosen 
linear combination of the objectives. The resultant non- 
dominated solutions among all those generated in the runs 
form the tradeoff front achieved by the algorithm. The two al- 
gorithms both employed equal population sizes to their mul- 
tiobjective rivals, and differed only in that one (SO-l) was 
run for 100 generations, and the other (SO-5) was run for 500 
generations in every single of the 100 runs used to form the 
non-dominated front. Thus, in the case of SO-5, one hundred 
times as many function evaluations a.. in the other MOEAs 
in the ZT study were performed in order to generate the (sin- 
gle) set of nondominated solutions. Zitzler and Thiele did not 
perform the whole process thirty times to give thirty differ- 
ent data sets, but instead just used the same set repeatedly in 
the statistical analysis carried out. We follow this approach, 
using ZT’s data sets. Hence, where statistical information is 
given in relation to the SO-5 algorithm, it should be noted 
that, in fact only one data set for this algorithm is being used, 
in contrast to all the other algorithms in this study for which 
30 runs were performed. 

As with the other algorithms in the ZT study, one-point 
crossover was used. The mutation probability and crossover 
rate were fixed at 0.01 and 0.8 respectively, as for SPEA(2T). 
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SPE A( ZT) 
The setup of SPEA is described fully in [32]. The study 
was designed to show that SPEA could clearly outperform 
the other MOEAs tested, even with very conservative choices 
of parameters. Thus the authors kept the extemal population 
quite small - 1/5 of the population size of the other MOEAs 
in the study. 

It is important to note that the data sets for SPEA(ZT) 
record the off-line performance of the algorithm. That is, 
all of the nondominated solutions returned in a run were 
recorded. With the exception of SO-5 the other algorithms 
in this study are judged using the on-line performance. That 
is, only solutions stored in the extemal population (or archive) 
at the end of the run are recorded. 

SPEA(KC) 
In [32], the authors chose to run the algorithms for a fixed 
number of generations and increase population size with the 
size and number of objectives of the knapsack problem being 
tackled. To make direct comparison possible, we choose to 
use the same number of function evaluations as ZT, but do 
not deem it necessary to employ equal population sizes. In 
fact, the total number of evaluations max-ewab used by each 
of the algorithms in this study is the same for a given knap- 
sack problem. Figure 6 lists the value of max-ewals for each 
knapsack problem. 

SPEA requires two population sizes, N and N' to be set. 
ZT selected to use N = 4/5 and N' = 1/4 of the size of 
population used by the other GAS in their study. Experiments 
performed by us show that the performance of SPEA on these 
knapsack problems is improved significantly when popula- 
tion sizes of N = 1/5 and N' = 4/5 are used, for the same 
total number of function evaluations. 

Our experiments also indicate that changing the crossover 
type from one-point to uniform improves the performance of 
SPEA on the knapsack problems. Thus, SPEA(KC) employs 
uniform crossover. A fixed per-bit mutation rate p ,  = 0.01 
is used, as in [321. No experiments in which p ,  was varied 
were undertaken by us. Since no other parameters need to be 
set for SPEA, we believe that SPEA(KC) is close to the best 
setup of SPEA possible for the problems tackled. 

(1+1)-PAES 
With (1+1)-PAES, very few parameters must be set. The 
archive size was set equal to the external population size N' 
of SPEA, so that the same number of solutions is returned by 
each algorithm. Similarly, the number of evaluations is set in 
accordance with the total number performed by SPEA. 

The mutation rate p ,  was set to 4/L (where L is the num- 
ber of bits in the chromosome) for all problems. This setting 
follows our principle of using the best setting for the particu- 
lar algorithm. 
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Knapsack 
problem 

Figure 5: The results of testing M-PAES against the algorithms shown, using our statistical techniques [17]. The knapsack 
problems have 2 ,3  or 4 objectives and 250,500 or 750 items, as indicated. 

Algorithm 
(1+1)-PAES I SPEA(ZT) I SPEA(KC) I S0-5 

The number of bisections of the objective space 1 used in 
the adaptive grid algorithm for maintaining diversity [ 171 was 
set according to the number of objectives of the problem. The 
values 1 = 5, 1 = 4, 1 = 3 were used for the 2, 3, and 4 
objective multiple knapsack problems, respectively. 

M-PAES 
The total number of evaluations, number of bisections of ob- 
jective space, 1, and per-bit mutation rate used in M-PAES are 
as for (1+1)-PAES. The population size N ,  was set equal to 
the internal population of SPEA(KC). The two archives were 
sized equally, to match the external population of our setup 
of SPEA. Thus, the same number of solutions are returned by 
SPEA(KC), M-PAES and (1+1)-PAES. 

In M-PAES, three more parameters must be set. These 
are the number of crossover trials, the maximum number of 
local moves 1-opt, and the maximum number of consecutive 
failing local moves 1-fails. Choices that give good general 
performance were found to be 1-opt = 50, 1-fails = 20, and 
cr-trials = 25. However, it was found that increasing the 
number of crossover trials for the 3 and 4-objective problems 
increased performance further. A list of the best parameter 
selections found is given in Table 6. The results presented in 
Figure 4 and Table 5 are for these settings. 

Knapsack 
problem 

4 Results 

Parameter 
1-fails I 1-opt I cr-trials I max-ewals 

4.1 Performance Metria 

As in previous research, we measure the performance of the 
algorithms tested using a statistical comparative assessment 
technique adapted from [5]. We refer the reader to [14, 161 
for a complete description of our implementation of the tech- 
nique and a discussion of its advantages and disadvantages. 

Here, the reader need only understand that the technique 
allows us to present results in two ways. First, as a pair of 
numbers [a, b] indicating respectively the percentage of the 
space where algorithm A outperforms algorithm B, and the 
percentage of the space where algorithm B outperforms algo- 
rithm A. The percentages returned are the product of a Mann- 
Whitney U test [18] at a given confidence level (we choose 

95%). Second, for two-objective problems we can plot sur- 
faces representing the median, best, or worst surface that the 
algorithm returns. Here, we plot just the median surface of the 
five algorithms tested, for the two-objective problems only. 

4.2 Analysis 

The median surfaces plotted for the two-objective problems 
are shown in Figure 4. A number of observations can be made 
from these plots. First, our setup of (1+1)-PAES gives very 
similar levels of performance to the setup of SPEA used by 
Zitzler and Thiele on the three problems. This observation 
is in keeping with previous research where (1+1)-PAES was 
compared with SPEA [15]. Second, in all cases SPEA(KC) 
outperforms SPEA(ZT). Third, M-PAES is very competitive 
with SPEA(KC) and clearly outperforms both (1+1)-PAES 
and SPEA(ZT). In the largest of the three problems, M-PAES 
generates a median surface that is not dominated in any part 
by the median surface of any of the other algorithms. On the 
smaller problems, M-PAES fails to generate solutions as far 
towards the extremes of the objective space as either SO-5 
or SPEA(KC), but has generated a median surface that domi- 
nates these algorithms in the region where the two objectives 
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trade off most rapidly with each other. 
The statistical results for all the problems are summarised 

in Table 5. Comparisons between M-PAES and each of the al- 
gorithms are presented only. Thus, the statistic [ 100,Ol in the 
upper left entry in the table means that M-PAES gives a bet- 
ter distribution of surfaces over 100% of the combined non- 
dominated front than (1+1)-PAES on the 250 item, 2 knap- 
sack problem. Again, several observations from these results 
can be made. First, the first three rows of the table verify 
that M-PAES performs well on the two-objective problems, 
as suggested by the plots in Figure 4. Its relative performance 
increases as the number of items increases. This is true, not 
only on the 2-objective problem but on all the problems pre- 
sented. However, as the number of objectives increases, the 
performance of SPEA(KC) and SO-5 increase relative to M- 
PAES, so that M-PAES is outperformed by SO-5 on the two 
smaller four-objective knapsack problems. SPEA(KC) only 
outperforms M-PAES on one problem, the smallest of the 4- 
objective knapsack problems, and only by a small margin, 
according to our statistical analysis. 

5 Conclusion 

A memetic algorithm for multiobjective optimization, M- 
PAES, was described. It uses the local search method of 
(1+1)-PAES, and combines it with the use of a population 
and crossover. The utility of M-PAES was verified on a set of 
nine multiobjective 0/1 knapsack problems. On these prob- 
lems, the performance of M-PAES and a selection of other 
algorithms was compared. The results indicate that M-PAES 
performs better than (1+1)-PAES on all problems. Compared 
with the strength Pareto evolutionary algorithm (SPEA), the 
performance of M-PAES is similar for a setup of each algo- 
rithm empirically derived to give near-best performance. In- 
deed, M-PAES appears to be superior on some problem in- 
stances, although comparison between these very different 
algorithms is difficult. Nonetheless, the findings indicate that 
further investigation into the use of memetic algorithms in 
this problem domain is warranted. 

In future work, comparison between M-PAES, local- 
search methods from the MCDM field, and other recently 
proposed memetic algorithms should be performed. We 
would also like to investigate how mating restrictions and the 
changing of the local search topology, as suggested in [ 121 
and [13] respectively, could be used to improve the perfor- 
mance of M-PAES still further. 
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