
Reducing Local Optima in Single-ObjectiveProblems by Multi-objectivizationJoshua D. Knowles1?, Richard A. Watson2, and David W. Corne11 School of Computer Science, Cybernetics and Electronic Engineering,University of Reading, Reading RG6 6AY, UKfj.d.knowles,d.w.corneg@reading.ac.uk2 Dynamic and Evolutionary Machine Organization,Volen Center for Complex Systems, MS018, Brandeis University,Waltham, MA 02454, USArichardw@cs.brandeis.eduAbstract. One common characterization of how simple hill-climbingoptimization methods can fail is that they become trapped in local op-tima - a state where no small modi�cation of the current best solutionwill produce a solution that is better. This measure of `better' depends onthe performance of the solution with respect to the single objective be-ing optimized. In contrast, multi-objective optimization (MOO) involvesthe simultaneous optimization of a number of objectives. Accordingly,the multi-objective notion of `better' permits consideration of solutionsthat may be superior in one objective but not in another. Intuitively,we may say that this gives a hill-climber in multi-objective space morefreedom to explore and less likelihood of becoming trapped. In this pa-per, we investigate this intuition by comparing the performance of sim-ple hill-climber-style algorithms on single-objective problems and multi-objective versions of those same problems. Using an abstract building-block problem we illustrate how `multi-objectivizing' a single-objectiveoptimization (SOO) problem can remove local optima. Then we investi-gate small instances of the travelling salesman problem where additionalobjectives are de�ned using arbitrary sub-tours. Results indicate thatmulti-objectivization can reduce local optima and facilitate improvedoptimization in some cases. These results enlighten our intuitions aboutthe nature of search in multi-objective optimization and sources of di�-culty in single-objective optimization.1 IntroductionOne of the most general heuristics used in optimization techniques is the ideathat the value of solutions is to some extent correlated with how similar thesolutions are; crudely, that a good solution is more likely to be found nearby toother good solutions than it is to be found nearby an arbitrary solution. Natu-rally, `nearby' or `similar' needs to be quali�ed. The simplest notion of similarityof solutions is their proximity as measured in the problem parameters given. Butalternatively, we may de�ne proximity in terms of the variation operators used? http://www.reading.ac.uk/~ssr97jdk/

2by the search algorithm [7]. In any case, the simplest way to use this heuristic isa hill-climbing algorithm: start with some random solution, try variations of thissolution until a better solution (or at least, non-worse solution) is found, moveto this new solution and try variations of this, and so on. But the actual successof a hill-climber requires a stronger assumption to be true: that from any pointin the solution space there is a path through neighbouring points to a globaloptimum that is monotonically increasing in value1. If this is true then a hill-climber can �nd a global optimum - and, although a hill-climber can do betterthan random guessing on almost all practical problems we encounter, it usuallydoes not �nd a global optimum. More likely, it gets stuck in a local optimum -a sub-optimal point or plateau that has no superior neighbouring points.There are several approaches that can be taken to overcome the limitationsof a simple hill-climber. Broadly, many approaches can be seen as one of thefollowing: changing the neighbourhood structure of the solution space so thatthe strong assumption is true; or relaxing the strong assumption and, one wayor another, utilizing solutions which are inferior to some extent. Changing theneighbourhood structure can be done by something as simple as increasing theneighbourhood `radius' by increasing mutation, or by a complete redesign of howsolutions are represented and new variants are created, or perhaps by adding re-dundancy so that a hill-climber can travel along `neutral networks' [5] to �ndsuperior points without having to go through inferior points. Relaxing the strongassumption can be done by, amongst other things, probabilistically accepting in-ferior solutions, as in simulated annealing, or by the use of multi-point searchers,or multi-restart searchers, where although one searcher may become stuck an-other, at a di�erent location, may continue.In this paper, we investigate a di�erent approach, similar to one previouslyproposed in [10]. Rather than changing the neighbourhood structure so thatwe can always �nd a superior point, or accepting search paths through inferiorpoints, we use a di�erent de�nition of superior and inferior. Speci�cally, we use amethod of comparing two solution that is common in multi-objective optimiza-tion (MOO) techniques where more than one measure of a solution is provided.Briey, under Pareto optimization, a solution x is superior (said to Pareto dom-inate) another solution x0 if and only if it is at least as good as x0 in all measuresand better in at least one measure. Put another way, if x0 is better than x in atleast one measure then it is not \inferior" to x. Our intuition is this: if we canadd other objectives to a problem to make it multi-objective, and use this re-laxed notion of inferiority, then we may open up monotonically increasing pathsto the global optimum that are not available under the original single-objectiveoptimization (SOO) problem. We call this approach \multi-objectivization".Naturally, the e�ect of this transformation will depend, in part, on exactlyhow we `objectivize' the problem, and the particulars of the algorithm thatuses the new multi-objective problem space. To begin with, we illustrate theprinciple on a test function that has an obvious decomposition. We explain whydecomposing this problem naturally leads to the removal of all local optima inthe search space, and demonstrate this fact empirically with results showing thata Pareto hillclimber (PAES) can solve the problem much more e�ciently than a1 `E�cient' success also requires that this path is not exponentially long [4].

3hillclimber. We also compare the performance of PAES with that of simulatedannealing on this problem, and show that increasing the freedom of movementfor a hill climber, by decomposing a problem into multiple objectives, is moree�ective than relaxing the strong assumption for a hill-climber, as in simulatedannealing. This illustrates an idealized multi-objectivization.Following this, we take the well-known travelling salesperson problem (TSP)as an exemplar real-world problem with a single objective (to minimize thetour length) and show how it may be decomposed into sub-objectives. We thenperform a number of experiments to measure the e�ectiveness of decomposingthe problem, by comparing various single-point and multi-point hill-climbers onthe original landscape and on the multi-objective landscape. Some comparisonwith simulated annealing is also provided. Several instances of the problem areconsidered, and we attempt to establish the e�ect the choice of di�erent sub-objectives has on the e�cacy of the resultant decomposition.The remainder of the paper is structured as follows: Section 2 de�nes theconcepts of single and multi-objective optimization, and introduces the techniqueof multi-objectivization. Section 3 de�nes the algorithms that we use in ourexperiments, and Section 4 de�nes the test problems we use both in their SOOand MOO versions. Section 5 describes the results of the experiments. Section 6discusses implications and related research, and Section 7 concludes.2 Single-Objective and Multi-objective OptimizationThe general (unconstrained) single-objective combinatorial optimization prob-lem can be expressed as: maximize f(x)subject to x 2 X (1)where x is a discrete solution vector, and X is a �nite set of feasible solutions,and f(x) maps X into <.Similarly, the multi-objective combinatorial optimization (MOCO) problemcan be expressed as:\maximize" f(x) = (f1(x); : : : ; fK(x))subject to x 2 X (2)where the vector objective function f(x) maps X into <K , where K � 2 is thenumber of objectives. The term `maximize' appears in quotation marks because,in general, there does not exist a single solution that is maximal on all objectives.Instead, one may seek to �nd a set of solutionsX� � X , called the Pareto optimalset, with the property that:8x� 2 X� � 6 9x 2 X � x � x� (3)where x � x�() ((8i 2 1::K � (fi(x) � fi(x�))^ (9 i 2 1::K � fi(x) > fi(x�))).The expression x � x� is read as x dominates x�, and solutions in the Paretooptimal set are also known as e�cient or admissible solutions. In addition, for twosolutions x and x0, we say x � x0 if and only if 9 i 2 1::K � fi(x) > fi(x0) ^ 9 j 21::K � j 6= i � fj(x0) > fj(x). Such a pair of solutions are said to be incomparable,

4and each is nondominated with respect to the other. Since any member of a setof mutually nondominated solutions is not worse (dominated) than any other, ahillclimbing algorithm would be free to move from any one of them to any otherif the variation operator allows. This is the notion that is important to allow theincreased freedom of a Pareto hill-climber, and which may reduce the problemof local optima.2.1 Multi-objectivizationTo perform multi-objectivization we must either replace the original single objec-tive of a problem with a set of new objectives, or add new objectives in additionto the original function. In either case, we want to be sure that the global op-timum of the original problem is one of the points that is Pareto optimal inthe multi-objective version of the problem. Speci�cally, the problem must berestated so as to maximize K � 2 objective functions such that the followingrelation between solutions in the two formulations holds:8xopt 2 Xopt � 9x� 2 X� � x� = xopt (4)where xopt is an optimal solution to the SOO problem, and Xopt is the set of allsuch solutions, and x� and X� relate to the MOO formulation of the problem,and have the meanings attributed above.Part of the intuition that motivates multi-objectivization comes from notionsof problem decomposition - dividing a problem into a number of smaller sub-problems and solving each and all of them. Accordingly, it may be appropriateto de�ne an objective as a function similar to the original function but over asubset of the problem parameters. For example, in our TSP example we add ob-jectives corresponding to the length of parts of the tour. De�ning functions oversubsets of the problem parameters has clear connections with divide and con-quer techniques, especially dynamic programming [1]. An alternative approachto multi-objectivization is to de�ne di�erent functions over the same (entire) setof problem parameters. For example, to take a di�erent domain, if we desire alocomotion controller for a legged robot we might suppose that it needs to bothlift its body o� the oor, and swing it legs forward, both of which may dependon all of the parameters.The skill of the researcher in either approach (similar functions over subsets,or di�erent functions over the entire set) is to separate out the conicting aspectsof the problem - to �nd objectives that are as independent as possible. This isnot always easy or possible. However, we suppose that in some circumstancesthe multi-objectivization approach may have useful tolerance of `lazy' decom-positions, where sub-problems are not completely independent. Perhaps this isbecause a solution that is better in all objectives is preferred if available, but asolution that exploits one objective at the expense of another objective is stillvaluable in the case that a dominant solution cannot be found.In the two examples introduced later, the �rst uses di�erent functions over theentire parameter set, and the second, TSP, uses similar functions over subsetsof the solution. The examples serve to illustrate the di�erent approaches tomulti-objectivization, the issues involved, and show some cases where multi-objectivization can be successful.

53 AlgorithmsIn order to test the hypothesis that multi-objectivizing a problem can reduce thenumber of local optima in a way that is useful for performing local search, weemploy a number of simple neighbourhood search algorithms described below.The �rst pair of algorithms, consisting of a simple hillclimber (SHC), and amulti-objective hillclimber similar in operation to the Pareto archived evolutionstrategy (PAES) [8, 9], are both single-point hill-climbers. PAES represents themulti-objective analogue of SHC: both algorithms accept a neighbour of thecurrent solution if it is not worse than any solution found so far. In the contextof PAES, however, `worse' means dominated.The second pair of algorithms, which are a mutation-only genetic algorithmwith deterministic crowding [11] (DCGA), and the Pareto envelope-based se-lection algorithm (PESA) [2], are both multi-point hill-climbers (neither usesrecombination here). Once again, they are supposed to be analogues of eachother, subject to the di�erences forced upon them by the di�erent requirementsof single and multiple objective optimization. The analogy between them is notas clear as between SHC and PAES because the selection and crowding methodsused by them is more complicated, but they have su�ciently similar operationto warrant comparison for our purposes here.The performance of the two pairs of algorithms above are also compared witha simulated annealing (SA) algorithm. This comparison is intended to place thee�ect of reducing the number of local optima achieved by multi-objectivizationinto a context which is familiar to the reader. SA incrementally adjusts the strict-ness with which it rejects moves to worse solutions, and does so very e�ectively;it thus serves as a useful comparison to the e�ect of multi-objectivization.3.1 Single-point hill-climbersInitialization: B ;x 2 X Init(x)B B [xMain Loop: x0 2 X Mutate(x)if (Inferior(x0; B) 6= TRUE) fx x0B Reduce(x0 [B) gTermination: return Best(B)Fig. 1. Generic pseudocode for hill-climbing algorithmsPseudocode for a generic version of a hill-climbing algorithm that may be sin-gle or multi-objective is given in Figure 1. The current solution vector is denotedby x, and B is the minimal representation of the best solutions encountered sofar. The function Mutate(x) returns a new solution x0 made by variation of x.For the simple, single-objective hillclimber, the functions Inferior(), Reduce() andBest() are very simple. The function Inferior(x0;B) returns true i� there is any

6element of the set B whose evaluation is greater than x0, Reduce(B) returnsthe set of equally maximum value elements of the set B, and Best(B) returnsany member of B, because they are equally good. For the PAES-based multi-objective hill-climber, these functions have Pareto versions that follow the samesemantics: Inferior(x0; B) returns true i� there is any element of the set B thatdominates x0, Reduce(B) returns the set of elements from B that are not dom-inated by any other member of B, and Best(B) returns the element of B thatis maximal in the original single objective. In our experiments here, both SHCand PAES are terminated when the number of function evaluations reaches apredetermined number, num evals.3.2 Multi-point hill-climbersInitialization: P ;Init pop(P)Main Loop: x1 Rand mem(P); x2 Rand mem(P)x01 Mutate(x1); x02 Mutate(x2)if (H(x1;x01) + H(x2;x02) > H(x1;x02) + H(x2;x01))Swap(x01;x02)if (f(x01) > f(x1))P P [x01 n x1if (f(x02) > f(x2))P P [x02 n x2Termination: return Best(P)Fig. 2. A simple form of a genetic algorithm using deterministic crowding (DCGA) asused in our experimentsPseudocode for the mutation-only, deterministic crowding genetic algorithm(DCGA) is given in Figure 2. The set P is the population of candidate so-lutions initialized randomly using Init pop(P). The function H(x;x0) measuresthe genotypic Hamming distance between two solution vectors. At each itera-tion, two parents are selected from the population at random and two o�springare generated by mutation, one from each parent. Parents and o�spring are thenpaired up so as to minimize the sum of the genotypic Hamming distance betweenthem. Each o�spring then replaces the parent it is paired with if it non-worsethan that parent.The PESA algorithm used here has been described in detail in [2], and pseu-docode for it is given in Figure 3. It has an internal population IP of size PI , andan external population of nondominated solutions EP . Here it is used withoutcrossover so that each generation consists of selecting PI parents from EP andmutating them to produce PI new o�spring. Then, the nondominated membersof IP are incorporated into EP . The selection operator, select() is based oncrowding in objective space.The PESA and DCGA algorithms are quite di�erent in some ways, but dorepresent analogues of each other at a high level: both algorithms have a popula-

7Initialization: IP ;; EP ;Init pop(IP)foreach (x 2 IP)EP Reduce(EP [x)Main Loop: IP ;while (jIPj < PI) fx Select(EP)x0 Mutate(x)IP IP [x gforeach (x 2 IP)EP Reduce(EP [x)Termination: return Best(EP)Fig. 3. The Pareto envelope-based selection algorithm (PESA)tion from which parents are selected and used to produce o�spring via mutation,and both have a mechanism for maintaining diversity in the population. However,in PESA, the diversity is maintained in the objective space, while with DCGAit is in the genotype space. With PESA, the initial size of the pool of randomsolutions is PI , and PI solutions are generated at each step. The prevailing sizeof EP is the size of the pool from which solutions can be selected. In DCGA,the population size P determines the initial pool and the size of the pool fromwhich solutions are selected, and 2 solutions are generated at each step. Thesedi�erences in detail, however, should not a�ect the substance of the judgmentswe make about the performance of these algorithms in our experiments.3.3 Simulated annealingThe simulated annealing (SA) algorithm used is identical to the SHC, exceptfor changes to the acceptance function to allow it to accept moves to worsesolutions. The acceptance function we employ for accepting degrading moves isthe standard exponential function:p (accept x0) = exp (f(x)� f(x0))T (5)where f(x) is the evaluation of the current solution x, f(x0) is the evaluationof the neighbouring solution, x0, and p (accept x0) denotes the probability ofaccepting x0.We choose to use a simple form of simulated annealing, employing an inho-mogeneous, geometric cooling schedule where T is updated after every iterationusing: T �T (6)Following general procedures outlined in [14], we attempt to set the startingtemperature T0 so that between 40% and 60% of moves are accepted. The �naltemperature is set so that between 0.1% and 2% of moves are accepted. We canthen calculate � using: � = exp� ln(Tf=T0)num evals� (7)given that we know the total number of function evaluations num evals required.

84 Problems4.1 H-IFF/MH-IFF: An abstract illustrationThe Hierarchical-if-and-only-if function, H-IFF, is a genetic algorithm test prob-lem designed to model a problem with a building-block structure where thesub-problem that each block represents has strong interdependencies with otherblocks. That is, unlike many existing building-block problems, the optimal solu-tion to any block in H-IFF is strongly dependent on how other building-blockshave been solved [16, 17].The �tness of a string using H-IFF can be de�ned using the recursive functiongiven below. This function interprets a string as a binary tree and recursivelydecomposes the string into left and right halves. Each resultant sub-string con-stitutes a building-block and confers a �tness contribution equal to its size if allthe bits in the block have the same allele value - either all ones or all zeros. The�tness of the whole string is the sum of these �tness contributions for all blocksat all levels.f(B) =8<:1; if jBj = 1; elsejBj+ f(BL) + f(BR); if (8ifbi = 0g or 8ifbi = 1g);f(BL) + f(BR); otherwise; (8)where B is a block of bits, fb1; b2; : : : ; bng, jBj is the size of the block = n, biis the ith element of B, and BL and BR are the left and right halves of B (i.e.BL = fb1; b2; : : : ; bn=2g and BR = fbn=2+1; : : : ; bng). The length of the stringevaluated, n, must equal 2p where p is an integer (the number of hierarchicallevels).Each of the two competing solutions to each block (all-ones and all-zeros) giveequal �tness contributions on average. But only when neighbouring blocks matchdo they confer a bonus �tness contribution by forming a correct block at the nextlevel in the hierarchy. These competing solutions and their interdependenciescreate strong epistatic linkage in H-IFF and many local optima (see Figure 4 left).These local optima prevent any kind of mutation based hill climber from reliablyreaching one of the two global optima in H-IFF (all-ones or all-zeros) in timeless than exponential in N, the number of bits in the problem [17].Figure 4 (left) shows a particular section through the H-IFF landscape. Thisis the section through a 64-bit landscape starting from all zeros on the left andending with all ones. Speci�cally, it shows the �tness of the strings \000 : : :0",\100 : : :0", \110 : : :0", : : : , \111 : : :1". This indicates the local optima in H-IFFand the two global optima at opposite corners of the space.fk(B) =8><>:0; if jBj = 1 and b1 6= k; else1; if jBj = 1 and b1 = k; elsejBj+ fk(BL) + fk(BR); if (8ifbi = kg);fk(BL) + fk(BR); otherwise: (9)where f0(x) is the �rst objective and f1(x) is the second.This particular decomposition of H-IFF results in a two-objective problem inwhich there are no local optima for a multi-objective hill-climber. Figure 4 (right)

9

200

250

300

350

400

450

0 10 20 30 40 50 60

fi
tn

es
s

number of leading 1s

The H-IFF Landscape The MH-IFF Landscape

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450

f 1

f
0Fig. 4. H-IFF and MH-IFFis a section through the two-objective landscape, MH-IFF, using the same stringsas used in the section through H-IFF. We see that if neighbouring points on thissection are worse in respect to one dimension, they are better in the other. Thishas transformed the problem into one that is now completely bit-climbable.That is, single bit changes can move a hill-climber from one end of the Paretofront to the other, including every point in between, without ever moving to adominated point. (In fact, every Pareto optimal solution can be reached by bit-climbing from any start point.) This transformation is possible because we haveaccess to the structure of the function and can thereby separate the conictingsub-goals inherent in the SOO version. This serves to illustrate the mechanismsof multi-objectivization - but naturally, we will not have this luxury in practicalapplications, like the TSP.4.2 TSP/MTSP: decomposition via multi-objectivizationThe travelling salesperson problem (TSP) is the most well-known of all NP -hardoptimization problems. For a comprehensive review and comparison of methodsused to solve it see [6], where the problem is stated as follows: We are given a setC = fc1; c2; : : : ; cNg of cities and for each pair fci; cjg of distinct cities there isa distance d(ci; cj). Our goal is to �nd an ordering � of the cities that minimizesthe quantity N�1Xi=1 d(c�(i); c�(i+1)) + d(c�(N); c�(1)): (10)In order to multi-objectivize the TSP, we need to identify sub-problems tobe solved. Of course, the TSP is NP-hard for the very reason that there is nogood decomposition of the problem, i.e. dependencies between components of theproblem exist in most instances. However, an obvious decomposition, although

10by no means perfect, is simply to divide the problem into two (or more) sub-tours, each to be minimized. This can be done in a number of ways, and somemay be preferable to others depending on how much is known about the probleminstance, but here we use a method that is general for the TSP class. Speci�cally,to make a two-objective formulation of the TSP, we de�ne two distinct sub-tours to be minimized. The sub-tours are de�ned by two cities, and the problembecomes:\minimize" f(�; a; b) = (f1(�; a; b); f2(�; a; b))where f1(�; a; b) =P��1(b)�1i=��1(a) d(c�(i); c�(i+1))and f2(�; a; b) =PN�1i=��1(b) d(c�(i); c�(i+1))+P��1(a)�1i=1 d(c�(i); c�(i+1)) + d(c�(N); c�(1)) (11)where a and b are the two cities speci�ed a priori, and if �(a) < �(b) they areswapped. It is intended that a and b are chosen arbitrarily. Notice that the sumof the two objectives is the same as the quantity to be minimized in (10). Thisensures that the optimum of (10) is coincident with at least one of the Paretooptima of (11), as required by our de�nition of multi-objectivizing.5 Results5.1 H-IFF/MH-IFFIn this section, we present a comparison of hillclimbing algorithms on the H-IFFproblem, and its multi-objectivized formulation, MH-IFF. All algorithms wererun on a 64-bit version of the problem, for the same number of function evalua-tions, num evals = 500000. Two di�erent mutation rates pm = 1=n; 2=n; n = 64were used in each algorithm to investigate whether mutation rate choice sub-stantially a�ected any of the algorithms. The choice of archive size for PAESwas 100. The DCGA and PESA algorithms require population sizes to be set.For DCGA, P = 100, and for PESA, PI = 10. For the simulated annealingalgorithm, preliminary runs were performed and T0 and Tf were adjusted untilthe acceptance probabilities fell into the required ranges described in Section 3.Table 1 shows the full set of results collected on the 64-bit H-IFF problem. Ineach case, the results were gathered from 30 independent runs of the algorithm.For all algorithms, all best genotypically di�erent solutions were stored o�-line,and the tabulated results relate to these o�-line results. The table clearly indi-cates that on H-IFF, removing the local optima through multi-objectivizationtransforms the problem from one that is very di�cult for a neighbourhoodsearcher, to one that is much easier. The performance of the SOO search algo-rithms improves with increased mutation rate pm, con�rming that they requirelarger steps to escape the local optima in the H-IFF problem. The multi-objectivealgorithms are almost una�ected by the choice of pm, indicating that they areable to reach the optima through small neighbourhood moves. These resultsdemonstrate the multi-objectivization principle, clearly and can be understoodwith reference to the discussion given to the problem in Section 4. In the follow-ing section we examine how the multi-objectivization technique established herefares on a real-world problem with a much less readily decomposable structure,the TSP.

11Table 1. Results of the comparison between algorithms on a 64-bit H-IFF problem.Two of the algorithms are multi-objective and use the MH-IFF decomposition of theproblem, namely PAES and PESA. The other three algorithms use the H-IFF objectivefunction directly. Essentially the results compare two single-point hill-climbers, SHCand PAES, and two multi-point hill-climbers, DCGA and PESA. In both cases, themulti-objective algorithm signi�cantly outperforms (using any statistical test) its SOOcounterpart. The results of the simulated annealing algorithm (SA) act as a benchmark,indicating the level of performance that can be achieved when escape from local optimais made possible on the original landscape. The columns, `% one' and `% both', indicatethe percentage of the runs where respectively one of the optima and both optima werefound over the thirty independent runs of each algorithm. Note that only PAES andPESA are able to �nd both optima.Algorithm pm best mean � % one % bothSHC 1=n 288 242.13 22.52 0 02=n 336 267.47 29.46 0 0PAES 1=n 448 415.20 51.26 70 472=n 448 418.13 50.68 74 43DCGA 1=n 300 270.06 13.80 0 02=n 448 323.93 26.54 3 0PESA 1=n 448 448.00 0.00 100 1002=n 448 448.00 0.00 100 100SA 1=n 448 435.20 26.04 80 02=n 448 435.20 26.04 80 05.2 TSP/MTSPWe present results for a range of TSP instances of varying size and type. Allproblems are symmetric, i.e. the distance from A to B is the same as from B to A,where A and B are any two cities. The RAN-20 and RAN-50 problems have 20and 50 cities respectively, and are non-Euclidean random weight problems wherethe distance between each pair of cities is a random real number in [0,1). TheEUC-50 and EUC-100 are two randomly generated Euclidean problems wherethe cities are given co-ordinates in a 2-d plane, x 2 [0; 1); y 2 [0; 1) and thedistance between pairs of nodes is then the Euclidean distance. The problem,kroB100, is taken from TSPLIB and is also a 100-node Euclidean TSP problem.The last problem, mnPeano-92, is a 92-node fractal problem2 with a knownoptimal solution [13].In each algorithm, the representation, initialization, and mutation operatorsused are identical: the representation of a tour is an N -gene permutation of thenumbers 1::N ; the initialization procedure simply generates a random permu-tation of N cities; and the mutation operator used is the 2-change operator,originally put forward in [3]. It works by selecting two non-identical cities andreversing the order of all the cities between (and including) them. This operatorpreserves all but two edges in the tour.2 We conjecture that fractal TSP problems may be particularly suitable for multi-objectivization because their inherently hierarchical structure suggests they may beamenable to decomposition.

12 On each di�erent TSP instance, all the algorithms are run for the samenumber of function evaluations, num evals , given for each problem in Table 2.The PESA and DCGA algorithms further require population sizes to be set. Asbefore, we use the default values of P = 100 for DCGA, and PI = 10 for PESA.Setting the SA parameters is carried out as before using preliminary runs toderive an appropriate T0 and Tf .The choice of city pairs to be used in the multi-objective algorithms is in-vestigated. First, we present results (Table 2) in which - for the multi-objectivealgorithms, PAES and PESA - a single, random pair of cities was selected andthis pair used in all runs. Later, we report the maximum deviation from these re-sults for other choices of city pairs. Finally, we investigate the choice of city pairsusing the EUC-50 problem by selecting a pair of cities that are very close, andanother pair where they are maximally distant, and repeating our experimentsfor these choices.Table 2. Summary TSP results. In the `Optimum' column, �gures given in bold fontrepresent the known optimum value; other �gures are estimates. For the RAN-20 prob-lem, the optimum is an estimate based on the fact that SA reached this value on 30consecutive runs, and given the small size of the problem. For the RAN-50 problem,the estimated �gure is based on the expected limiting value of an optimal tour [6],and similarly for EUC-50 and EUC-100, the estimates are based on the formula forexpected tour length = KpNA with N the number of cities, A = 1:0 the area in whichthe cities are placed, and K � 0:7124 [6].Algorithm Problem num evals Optimum Best Mean �SHC RAN-20 500000 2.547394 2.550811 2.81 0.14PAES RAN-20 500000 2.547394 2.547394 2.66 0.14SA RAN-20 500000 2.547394 2.547394 2.55 0.00SHC RAN-50 500000 2.0415 2.620087 3.09 0.28PAES RAN-50 500000 2.0415 2.259948 2.73 0.22DCGA RAN-50 500000 2.0415 2.307587 2.46 0.09PESA RAN-50 500000 2.0415 2.189421 2.32 0.28SA RAN-50 500000 2.0415 2.130675 2.30 0.10SHC EUC-50 500000 5.0374 5.904673 6.23 0.20PAES EUC-50 500000 5.0374 5.801026 6.03 0.13DCGA EUC-50 500000 5.0374 5.707789 5.76 0.05PESA EUC-50 500000 5.0374 5.692169 5.78 0.08SA EUC-50 500000 5.0374 5.692169 5.72 0.03SHC EUC-100 2000000 7.124 8.143720 8.55 0.23PAES EUC-100 2000000 7.124 8.028227 8.35 0.24DCGA EUC-100 2000000 7.124 7.902731 8.16 0.14PESA EUC-100 2000000 7.124 7.795515 7.97 0.10SA EUC-100 2000000 7.124 7.853258 7.98 0.07PESA kroB100 2000000 22141 22141 22546.1 324.2SA kroB100 2000000 22141 22217 22529.2 173.0SHC mnPeano-92 1000000 5697.93 5857.47 6433.45 197.1PAES mnPeano-92 1000000 5697.93 5879.63 6255.30 197.6

13From Table 2 we can see that, without exception, the results of the PAESalgorithm are superior to the SHC algorithm at a statistically signi�cant level3,over the range of problem instances in the Table. This shows that the number oflocal optima in the TSP problem, using the 2-change neighbourhood, is reducedby the method of multi-objectivization we have proposed.Although the number of local optima has successfully been reduced by multi-objectivization, this does not make PAES more e�ective than other methods forsolving TSP. We are only using PAES to indicate the basic advantage of multi-objectivization over hill-climbing in a SOO problem. Compared with DCGA,PAES performs poorly on all problems. However, PESA, the multi-objectivecounterpart of DCGA, outperforms DCGA on all but one of the problems. PESAis also competitive with the SA algorithm, which has its own explicit meansof escaping from local optima. This result adds further evidence that multi-objectivization can enable an algorithm to avoid local optima e�ectively.To investigate the e�ect of the choice of city pairs, the 50-node EuclideanTSP problem was used. First, a choice of city pair in which the cities were veryclose to each other and relatively far from others was selected. 30 runs wereperformed using this pair and the results were: best = 5:804719, mean = 6:10,and � = 0:22. Then, with cities in opposite corners of the plane the resultswere: best = 5:818185, mean = 6:09, � = 0:16. So both are worse than the`random' choice used in the results in Table 2: best = 5:801026, mean = 6:03,� = 0:13. However, although there is some seeming dependence on city choice,all three of these results are better than the results of the SHC algorithm onthis problem. Some alternative choices of city pairs were used on some of theother problems, too. On the random 20-node problem, three di�erent choices ofnode pair were tried. There was a 1.5% variation in the mean over 30 runs, forthe di�erent node-pair choices. On the 50-node Euclidean problem, two di�erentpairs of cities were chosen for the PESA algorithm. The di�erence in means over30 runs was 0.4%. On no runs did the choice of city pair a�ect the mean TSPtour length by more than 2%.6 DiscussionThe examples in the previous sections have illustrated di�erent ways in whichadditional objectives can be de�ned for a SOO problem and that this multi-objectivization can facilitate improved search for neighbourhood based algo-rithms. We suggested earlier that a successful multi-objectivization may involvedecomposing the original function into a number of sub-problems and that thesesub-problems should be as independent as possible. In the H-IFF/MH-IFF exam-ple, we can separate the two competing components of the problem completely,making the problem very easy for a hill-climber. In TSP this is not so easy -there is no (known) method to decomposeNP-hard problems, like TSP, that cre-ates independent sub-problems - indeed, it is the interdependency of the problemcomponents that puts them in this class. Nonetheless, we suggest that there maybe some merit in examining further the parallels between sub-problems in SOO,3 Using a large-sample test of hypothesis for the di�erence in two population means [12](which does not depend upon distribution), at the 95% con�dence level.

14and objectives in MOO. Speci�cally, if di�erent objectives separate out di�erentcomponents of a problem then di�erent points on the Pareto front correspond tosolutions that are more or less specialized to di�erent sub-problems. Our exper-iments support the intuition that it will be easier to discover a set of di�erentspecialists than it is to discover a generalist directly. In the experiments in thispaper we used only mutation to investigate this, but if we could �nd some wayto combine together di�erent specialists from the front then perhaps it wouldfacilitate discovery of generalists more directly. In a sense, this is the intuitionbehind recombination in the multi-objective Messy GA (MOMGA) [15].However, the MOMGA assumes a number of objectives given a priori, andlike other MOO methods, it is not intended as a technique for problem decom-position in SOO problems. But related research suggests that it may be possibleto automatically discover objectives relating to sub-problems, and thereby ap-ply a MOMGA-like algorithm to SOO problems. The Symbiogenic EvolutionaryAdaptation Model [18] shares some features with the MOMGA but uses groupevaluation of individuals to encourage them to self-organize to cover the prob-lem space, and automatically discover sub-problems to be used as the objectives.This algorithm successfully solves the H-IFF problem without the introductionof additional objectives provided by the researcher.7 ConclusionsIn this paper, we have de�ned a process that we call \multi-objectivization"whereby the scalar function of a SOO problem is replaced by a vector of func-tions such that the resulting MOO problem has Pareto optima which coincidewith the optima of the original problem. We investigated the e�ects of this trans-formation, in particular, the reduction of local optima for hill-climbing style al-gorithms. We illustrated the e�ect of the approach �rst on an abstract building-block problem, H-IFF, that is trivially amenable to such a decomposition. Wethen investigated the approach further, using several small instances of the TSP,where decomposition is inherently di�cult. We de�ned a multi-objectivizationof the problem based on minimizing two sub-tours. Our results showed that thissimple multi-objectivization does seem to reduce the e�ect of local optima onsimple hill-climbing algorithms. These preliminary results, suggest that there isa link between the presence of local optima in SOO problems and an underly-ing conict of implicit objectives, and they shed some light on the processes ofmulti-objective search.AcknowledgmentsThe authors would like to thank Anthony Bucci, Michiel de Jong, and the anony-mous reviewers for their excellent comments and criticisms.References1. R. Bellman. Dynamic programming and multi-stage decision processes of stochastictype. In Proceedings of the second symposium in linear programming, volume 2,pages 229{250, Washington D.C., 1955. NBS and USAF.

152. D. W. Corne and J. D. Knowles. The Pareto-envelope based selection algorithm formultiobjective optimization. In Proceedings of the Sixth International Conferenceon Parallel Problem Solving from Nature (PPSN VI), pages 839{848, Berlin, 2000.Springer-Verlag.3. M. M. Flood. The travelling-salesman problem. Operations Research, 4:61{75,1956.4. J. Horn, D. Goldberg, and K. Deb. Long path problems for mutation-based algo-rithms. Technical Report 92011, Illinois Genetic Algorithms Laboratory, Universityof Illinois at Urbana-Champaign, Urbana IL, 1992.5. M. Huynen, P. Stadler, and W. Fontana. Smoothness within ruggedness: Therole of neutrality in adaptation. Proceedings of the National Academy of Sciences(USA), 93:397{401, 1996.6. D. S. Johnson and L. A. McGeoch. The travelling salesman problem: a case study.In E. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization,pages 215{310. John Wiley and Sons, 1997.7. T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,University of New Mexico, Albuquerque, 1995.8. J. D. Knowles and D. W. Corne. The Pareto archived evolution strategy: A newbaseline algorithm for multiobjective optimisation. In 1999 Congress on Evolu-tionary Computation, pages 98{105, Washington, D.C., July 1999. IEEE ServiceCenter.9. J. D. Knowles and D. W. Corne. Approximating the nondominated front usingthe Pareto archived evolution strategy. Evolutionary Computation, 8(2):149{172,2000.10. S. J. Louis and G. J. E. Rawlins. Pareto optimality, GA-easiness and deception.In S. Forrest, editor, Proceedings of the Fifth International Conference on GeneticAlgorithms (ICGA-5), pages 118{123, San Mateo, CA, 1993. Morgan Kaufmann.11. S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, Universityof Illinois at Urbana-Champaign, Urbana, IL, USA, 1995. IlliGAL Report 95001.12. W. Mendenhall and R. J. Beaver. Introduction to Probability and Statistics - 9thedition. Duxbury Press, International Thomson Publishing, Paci�c Grove, CA,1994.13. M. G. Norman and P. Moscato. The euclidean traveling salesman problem and aspace-�lling curve. Chaos, Solitons and Fractals, 6:389{397, 1995.14. C. R. Reeves. Modern heuristic techniques. In V. Rayward-Smith, I. Osman,C. Reeves, and G. Smith, editors, Modern Heuristic Search Methods, chapter 1,pages 1{26. John Wiley and Sons Ltd., 1996.15. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Optimization with MessyGenetic Algorithms. In Proceedings of the 2000 ACM Symposium on Applied Com-puting, pages 470{476, Villa Olmo, Como, Italy, 2000. ACM.16. R. A. Watson, G. S. Hornby, and J. B. Pollack. Modeling building-block inter-dependency. In Parallel Problem Solving from Nature - PPSN V, pages 97{106.Springer-Verlag, 1998.17. R. A. Watson and J. B. Pollack. Analysis of recombinative algorithms on a hier-archical building-block problem. In Foundations of Genetic Algorithms (FOGA),2000.18. R. A. Watson and J. B. Pollack. Symbiotic combination as an alternative to sexualrecombination in genetic algorithms. In Proceedings of the Sixth InternationalConference of Parallel Problem Solving From Nature (PPSN VI), pages 425{436.Springer-Verlag, 2000.

