Hyper-heuristic Decision Tree Induction

Alan Vella, David Corne

School of MACS, Heriot-Watt University
Edinburgh, UK
mail@alanvella.com, dwcorne@gmail.com

Abstract—Hyper-heuristics are increasingly used in function
and combinatorial optimization. Rather than attemptto solve a
problem using a fixed heuristic, a hyper-heuristicapproach

attempts to find a combination of heuristics that elve a
problem (and in turn may be directly suitable for a class of
problem instances). Hyper-heuristics have been li¢t explored
in data mining. Here we apply a hyper-heuristic appoach to

data mining, by searching a space of decision tréaduction

algorithms. The result of hyper-heuristic search inthis case is a
new decision tree induction algorithm. We show thathyper-

heuristic search over a space of decision tree indtion rules is
able to find decision tree induction algorithms th& outperform

many different version of ID3 on unseen test sets.

Keywords- data mining, hyper-heuristics, decision trees,
evolutionary algorithm.

l. INTRODUCTION

Hyper-heuristics [1] are increasingly used in fimciand
combinatorial optimization. The essential idea ofjpdr-
heuristics is to search for agorithm rather than for a
specific solution to a given problem. From the \pemt of
evolutionary computation, a hyper-heuristic cansiaply

Chris Murphy

Motorola Ltd,
Swindon, UK
Chris.Murphy@motorola.com

Hyper-heuristics have now been applied to a vardty
problems, however these are almost exclusivehhédrea
of combinatorial optimization, and therein the rmmijo
involve scheduling. A few examples outside schexduli
include bin packing [7] and cutting-stock [8]. Im¥packing,
for example, novel constructive algorithms were eleped
that outperformed standard bin-packing constructive
heuristics over a wide range of unseen test ine&anc

Very little work has so far explored the use opén
heuristics in data mining. Here, the task is imsfaly to find
a classifier (which might be a decision tree, a set of rules, a
neural network, etc...), which has good performante i
classifying test data. In other words, this is arce in
classifier space for a good classifier. To aligis thith the
possibility of using hyper-heuristics, we can cdesithis as
a search through the space of methods that buakkiflers
from training data. To date, one group has stadeskplore
this idea. In Pappa and Freitas [9], grammar-bamatbtic
programming is used to evolve rule induction aldponis,
having presented the original idea in [10]. A braategory
of rule induction algorithms operates via “sequanti
covering”: an initial rule is generated, coverirgre of the
dataset, and additional rules are generated irr anatd the

regarded as a sophisticated encoding. The genotyptire dataset is covered. There are several atteenways

represents an algorithm, and when we interprbyitunning
the algorithm on the given problem data, the resmila
solution to a given problem instance. Hence we inobta
candidate solution via a “genotypealgorithm->candidate-
solution” route, rather via a direct “genotype->diate-
solution” mapping. The interesting aspect of hypeuwristics
is the potential re-use of the algorithms that gmdrom the
search process. With appropriate experimental de@&@g.,

to generate the initial and subsequent rules.viiegnay start
with a very general high-coverage (but low accuyacie,
and add conditions until accuracy and/or coveragerem
beyond a threshold. Or, we may start with a veegcige rule
and gradually remove conditions. In [9], the enngdiovers
a vast space of possible ways to organize thisgssoc

Here we explore a hyper-heuristic approach tositati
tree induction, by searching a space of decisice tr

by using many problem instances in the initial hype induction algorithms. We use a simpler encodingn tfai,

heuristic training), new, effective and fast alfumis may be
discovered that apply to a wide class of problestainces.
The origin of this notion can be traced to Fished
Thompson’s work [2], which investigated combinasoof
basic rules for job-shop scheduling. Other worksped
similar ideas, essentially re-discovering or exiegd[2]
during the 1990s. Most of this continued to behi@ area of
job-shop scheduling. E.g. Fang et al [3] used diaiary
algorithms to evolve sequences of heuristics forgbop and

essentially restricting the algorithm space torglsi overall
control structure. However we make more heuristic
‘components’ available, and hence explore a widage of
variants of a specialized class of algorithms.

Simply put, the classic decision tree inductionoathm
builds a tree step by step by deciding, at eagh, $tew to
develop the next node in the tree. This comes dtavn
choosing a specific attribute in the dataset. H.the chosen
attribute is “gender”, then the current node wilivh two

open-shop problems, while Zhang and Diettrich [4, 5 children, one for the case “gender = male” and taerofor

developed novel job-shop scheduling heuristics iwith
reinforcement learning framework. Another notabtedg
was that of Gratch et al. [6khich used hill-climbing in a
space of control strategies to find good algorithfos
controlling satellite communication schedules.

“gender = female”. The choice of attribute is mageusing
a heuristic, which tests how well each proposetbate is at
discriminating between values of the target claGsir
method is to search a space of rulesets, whereidogil

rules essentially say “if the data still to be slisd have
property X, then use heuristic Y to decide whidhilaite to
split on”. A simple approach is used for confliesolution
between rules in a ruleset. An evolutionary aldonit
evolves the rulesets, where fithess is evaluatedsbyg it to
build a decision tree on a collection of trainirgtatets, and
finding the accuracy of these trees on test dataset

The remainder is set out as follows. Section licdbss
the algorithms, providing a simple introductionl3-style
decision tree induction, describing our hyper-rstiqi
encoding, and then indicating the details of thelwionary
algorithm used in conjunction with this encodingcton Il
describes the datasets and experiments and prosaies
analysis and observations of the results. We peowd
concluding discussion in Section IV.

Il HYPER-HEURISTICDECISION TREEINDUCTION

A. Decision Trees

Decision tree (DT) building algorithms build a DT
quickly using a recursive, divide-and-conquer stygt
While building the tree, a typical algorithm empdown
heuristic to choose which attribute to use for tingathe
current tree node. Imagine a dataset held by adoerpany
with the attributes “gender”, “salary”, “age” antdigh-risk”,
where the values for high-risk are either “yes™mo” based
on past experience. A decision tree built on tlasadmay

look like that in Fig. 1.

male female
<2 @
>60 18730 3N-90
211-60
Y N Y N
<2 > 60
21160
Y N Y

Figure 1. A simple example of a decision tree.

The contrived tree in Fig. 1 attempts to prediet Walue
of the “high-risk” attribute (in this case, this ike target
class) given the values of the other attributeshEmde uses
a single attribute to “split” the data among itsl¢modes.
E.g., the root node splits on gender; if an instaisc'male”,
the next question comes from a node that splitsalary,
and so on.

When we start to build a tree, the first decisimmiake is
the choice of attribute for the root node. The keythis

choice is to examine, for each attribute, how wtetlivides

the data in terms of the target class. For exanfple found
that all males were high risk and all females weverisk in

the training dataset, then “gender” is a perfetibaite to
split on. If instead we found that male and femaftances
contained equal proportions of high and low riskesa then
we seem to gain nothing by splitting on gendeigéneral, a
heuristic is used to provide a score for eachbaitei, where
that score reflects the value of using that attebior the
split. One of the most celebrated of such heussiE
information gain [11], used in the ID3 [12] and ASTANT

[13] decision tree building algorithms.

Notice that, once we have chosen the attributettfer
root node, we create a child node for each valu¢hat
attribute. In the example in Fig. 1, all of the ‘efadata
instances are carried to the left hand child, ahdfathe
“female” instances are carried to the right-handdch-or
each of these nodes, we now have the same dedision
make, and will again use a heuristic to decide Wwhitribute
to split on. However, the difference is that eaabden
“carries” a specific set of instances, and the isdarscores
will therefore depend on the position of the nadéhke tree.

B. Attribute Choice Heuristics

Straightforward decision tree algorithms therefore
repeatedly decide which attribute to split on foe turrent
node, using a heuristic to make the decision. Aitfio
information gain is the most popular, there areesav
alternative possibilities. Twelve such are listesteh Chi-
Square [14], Information Gain [11], Gain Ratio [15]
Symmetric Gain Ratio [16], Gini index [17], ModifleGini
index [18], Symmetric Gini index [19], J-MeasureO]2
Minimum Description Length [21], Relevance [22], REF
[23], Weight of Evidence [24].

Each of the above can be (and have been) used to

estimate the quality of a distribution, and as sucivides an
alternative measure for assessing the way thdatget class
values of the ‘remaining’ instances in the dataaet
distributed among the values of any given attriaailable
for splitting. The research literature containsiaas studies
comparing the performance of two or more of thevabo
heuristics on one or more data sets, e.g. [25—27].

C. TheHyper-Heuristic Decision Tree Encoding

We encode a decision tree building algorithm astaof
rules that indicate which heuristic to use in cliwogsthe
attribute for the current node. A single rulesell typically
therefore use multiple heuristics in each treeebud run.
The intuition behind this is simply that alternativ
approaches may be better for different stages eé tr
building. E.g. the appropriate heuristics for tlo®trnode

when building a many-attribute dataset may be quite

different from the heuristics that will work bettadeep in the
tree when few attributes are available for spliftidAs a DT
building algorithm works its way down the tree, tetaset

partition which needs to be split gets smaller anshller.
Also, as indicated, the set of available candidsiktting
attributes changes as fewer attributes remain. eSithe
‘problem state’ of our DT building algorithm is dimuously
changing as the tree is being built, we see nmreagy the
heuristic that chooses the best splitting attribhtes to
remain static throughout the whole tree-buildinggess.
Indeed, we might get better trees if we adapt thiktic to
be used according to the data set partition thatsi¢o be
split. In such a scenario, our HH rules would beliag to
any possible data set partition (instead of just ithitial

Note that we do not use pruning methods [28, 23h@
current research. Although this limits the genegdion
quality of the trees, this also simplifies the camigon
studies. We expect incorporate pruning in laterkyaptice
that it will be trivial to incorporate pruning intdhe
interpretation of an HHDT chromosome.

E. Details of the Evolutionary Algorithms

We use a straightforward evolutionary algorithm JE&
search the space of HHDT rulesets. An individual

complete data set). Our DT building algorithm wouldchromosome, representing a senatiles, is simply a list of

employ a toolbox of heuristics and our HH wouldrtheck
and choose the best heuristic according to theresbf the
partition that needs to be split.

D. Detailsof the HHDT Encoding

Our HHDT encoding relies on calculating the entropy
each splitting attribute, as follows:

H(A) =Y P(a,) Dog(P(a,))

i=1

... WhereA is an attribute withm possible valuesy, ..., an
and P(a) is the probability ofA having valuea. P(a) is
simply the proportion of instances in the curreaitiion of
the dataset (i.e. those instances that are awilablthe
current tree node) that have vahjéor attributeA.

n 5-tuples, plus a single additional gene represgnthe
default heuristic choice. A single 5-tuple is of florm:

(x, high, y, low, h)

with the obvious interpretation (see example rute i
subsection ID). The values ok andy are integers ranging
from 0 to 100, and the values bfgh and low are real
numbers in the interval [0, 1]. The heuristic gérie simply
an integer indexing the heuristics available foe us the
experiment. Generally this could be the set of @2ristics in
section IIC, or indeed any others. However we have found it
best to focus on the heuristics that generally haeebest
individual performance while also keeping the hstigs in
our toolbox as varied as possible, and hence in our
experiments we limit the choice of heuristics tdormation
gain, gain ratio, symmetric gain, relief, and J-suza.

The EA uses a population of size 45—50 tournament

The HHDT encoding simply comprises a set of rulesselection with tournament size 8pbp, and generation gap

each of which examines (in a simple way) the entraues
among the attributes, and decides to use a spéeiidstic.
A single rule has the following format:

IF

(X% >high) AND (Y% <low)
THEN

use heuristit

replacement in which 75% of the population areaegdl in
each generation, maintaining the best 25% of tlewipus
generation. This is a very ‘high-pressure’ EA, detately so
to promote fast progress, since individual fitnegaluations
(see section 1IB) are quite time-consuming. One point
crossover is used, with crossover preserving caepldes
(i.e. the crossover point falls between 5-tuplesd anot
within them). Mutation is applied to each child: every gene
is changed with a probability. In all cases, a mutated value

... where:x andy are both percentage values ranging from (s a uniformly random new value from the approgri@nge.

to 100, and high and low are thresholds for theopgtvalue
H. The meaning of the above example rule i<f of the
attributes have entropy values abadvigh, and if y% of
attributes have entropy values bellmw, then use heuristic
to choose the splitting attribute at the currerteno

A single HHDT chromosome comprises a small set of

Ill. DATASETS AND EXPERIMENTS

Datasets

We use 12 well known datasets with diverse

such rules, and default heuristic, representing a complete characteristics in terms of their sizes, and thaimbers and

algorithm for building a decision tree, on any data as
follows. When a choice needs to made to split anibate
(this happens whenever the instances availablbeanode
carry more than the value of the target attributibe
condition of each rule is tested, and consequesitier O, 1,
or >1 heuristics are put forward for use. If O sulare
triggered, the default heuristic is used. If 1 rigeriggered,
then the corresponding heuristic is used. If >1tims
heuristics are triggered, and no individual heigistas the
majority vote, then the default heuristic is used.

types of attributes. All are available from the U@achine
learning repository [30]. Table | lists the datasee use, and
summarizes some key characteristics. They contain a
mixture of categorical and numeric attributes. Whem
attribute is categorical (i.e. its values are fraramall set of
discrete possibilities), a node of a decision tretgich splits
on that attribute, simply has one branch for eaaes (see
the ‘Gender’ node in Fig. 1). In the case of a nticaé
attribute, we use a discretization of the attribvdues that
partitions the values into a small set of interv&lg. in Fig.
1, ‘Salary’ has been discretized into three intlsrvBhere are

many ways to discretize [31—33]. In prior experirnsewe
have found that, from the viewpoint of decisioretaality,
equal-frequency-binning [31] with five bins performs as well
as most other methods. All of the numerical attésun the
datasets used in these experiments are pre-prddessdive
discrete categories via equal-frequency-binning.is Th
effectively means that the smallest 20% of valuésao
numerical attribute are in bin 1, the next largg¥% are in
bin 2, and so on. These bins might be labeled ffeeny
small” to “very large” (for example), if we were tild an
easily understandable decision tree.

TABLE I. DATASETS USED IN OUR EXPERIMENTS
Dataset . o No. %age with
Title Attribute distribution instances targ?et class
Car 7 categoric, 0 numeric 1728 70%
Spect 23 categoric, 0 numeric 267 79%
votes84 17 categoric, 0 numeric 435 45%
Derma 34 categoric, 1 numeric 366 17%
Flags 25 categoric, 4 numeric 194 31%
Contrac 8 categoric, 2 humerig 1,473 43%
Credit 10 categoric, 6 numeri 690 56%
Heart 8 categoric, 6 numeric 270 44%
lonosphere 0 categoric, 35 humerjc 351 36%
Wine 0 categoric, 14 numeric 178 39%
Ecoli 0 categoric, 8 numeric 336 43%
Yeast 0 categoric, 9 humeric 1,484 31%

B. Experiments

When we apply HHDT to a dataset, the basic appraoach
evaluating the fitness of any HHDT chromosome isise
the ruleset specified by the chromosome to butléa using

The fitness of the HHDT ruleset during trainingtaken as
the mean of the 36 (9 folds, 4 datasets) test cmiracies.
This setup aims to discourage overfitting, and aeehfound
it leads to better results on the individual datatiean if they
had been used as the sole dataset during traiRinglly, as
indicated, the ultimate result of a single HHDT rim
obtained as follows: a single HHDT is returned froine
training process — the one with the best trainiiige$s
(breaking ties randomly). This HHDT is then usedtild a
tree on the full training dataset(s), and the amoyof these
trees is recorded on entirely unseen test sets.

Here we report on two sets of experiments using two
different evolutionary algorithm and HHDT setups.dach
set of experiments, there are three sets of tiialeach trial,
a distinct group of four datasets from Table | &edi An
evolutionary algorithm is used to evolve HHDT rgs and
the entire trial is repeated 10 times.

The fine details of the EAs and the HHDT encodiags
detailed next. These are relatively arbitrary desifoices,
representing just two samples among the vast rasfge
potential setups. As such they represent prelinginar
investigation of the feasibility of the overall appch.

In the first set of trials, the EA terminates afted0
generations, has population sizep=45, uses 1 point
crossover, and has a mutation rate not5%. The HH
encoding uses rulesets with a fixed size of 3 ruleih
coarse-valued threshold genes and fine-valued pege
genes (all integers 0,...100 are availabkEgch trial used a
set of four datasets that varied in their charésttes,
ensuring that there was a mixture of datasets with
categorical, all numerical, and mixed attributesach trial.

In the second set of trials, the EA terminatesr &fte0

thetraining data, and then test the accuracy of the tree on thgenerations, has population sipep=50 and uses 2 point

test data. In our experiments, in all cases, wetfedd cross
validation within the fitness function, thus providing a
relatively robust evaluation of performance on tdsta
during training. Essentially, this means that theowe
process is repeated 9 times within the fitness tfong for
different ‘folds’ of training and test sets. To iesdte the
quality of the best HHDT found during training, wee it to
build a tree over the entire training set (i.e.ralle folds),
and record the accuracy of that tree on an entwelkeen
dataset that played no part in the training proeeiss is, in
essence, the missing “10fold”. Experimental results
referred to later are always results obtained af sinseen
test sets. Finally, having learned
investigations (for which there is no space to suamniwe
here), we use multiple data sets within a singiaing run;
that is, the fitness of a single HHDT chromosomeaiis

average overN datasets, each subject to 9-fold cross

validation. In this paper we always haw=4, and the
complete picture of the evaluation process for rglsi
HHDT chromosome is as follows:

For each dataset:
For each fold of the dataset:
Build a tree on the training data.
Evaluate the tree on the test data.

crossover. Rulesets were allowed to vary in sipenf3 to
12, and hence there was an additional mutationatipar
applied to every child, which either deleted a mnty
chosen rule from a ruleset (if it contained 4 orenales) or
added a randomly generated rule (if it containess an
12). Each child has a probability of 5% of havingue
added or deleted. The standard mutation operatbisrcase
was set am = 5%. Meanwhile, the percentage genear(d
y) were coarse-grained, allowed to take only 21 iptess
values (0, 5, ..., 95, 100), and the threshold gemese
allowed to take on any of 20 possible values: {P@1, ...,
0.95, 1}.Other details of this EA were the same as before.

from preliminary

C. Results

Table Il summarizes the results of the first set of
experiments. For example, the value of 0.779 inHRDT
row and the {yeast, votes, heart, flags} columnidates that
the HHDT mean performance on unseen test setsager
over 10 independent trials, was 0.779 (i.e. 77.@%uacy,

to 3 significant figures) when the HHDT evolutioropess
used those four datasets. The value of 0.770 forriration
Gain in the same column indicates that (using thees
training/test partitions, and unseen test sets)etingvalent

value for ID3 employing the Information Gain hetidsis

77.0% accuracy. The ‘overall’ column gives the mean

accuracy over the three sets of trials. Ranks wppdied for
each set of trials, ranging from 1 (best perfornearto 13’
(worst), and the rightmost column gives the meank @ver
all trials. The methods are arranged in order oAmiank,
and the best result in each column isbold (where there
seem to be ties, these are broken to more signifitigits).
We do not have space here to list the full setesilts for
each of the ten independent runs, but we can répatraT-
test comparing the HHDT ranks with those of Releeaand
MDL vyields ap valueof < 0.05 indicating >95% confidence
in the assertion that the evolved HHDT trees delhetter
unseen test set performance than the hp8€es for any of
the other heuristids.

HHDTs appear to have the best overall performatiee (
most appropriate indicator is mean rank, which @-n
parametric), suggesting that the hyperheuristidnitrg
process is capable of leading to specific comhnatiof
heuristics whose behavior generalizes well.

TABLE II. SUMMARI ZED RESULTS OF FIRST GROUP OF EXPERIMENTS

yeast Car congac

votes ecoli credit over- Mean
Msthod heart derma iono all rank

flags wine spect
HHDT 0.779 0.906 0.771 0.818 3.33
Relevance 0.773 0.914 0.765 0.818 4.33
M.D.L 0.776 0.898 0.774 0.816 4.33
Chi-Squ. 0.774 0.903 0.768 0.815 6
Gain Ratio 0.772 0.904 0.769 0.815 6.33
Inf. Gain 0.77 0.913 0.76 0.814 7
Gini Index 0.76 0.912 0.763 0.817 7
Sym. Gini 0.755 0.905 0.769 0.81 7.33
Sym. Gain 0.756 0.887 0.771 0.805 7.67
Wt. Evid. 0.78 0.852 0.763 0.798 7.67
J-Measure 0.772 0.891 0.764 0.809 8
Mod. Gini 0.757 0.906 0.749 0.804 9
RELIEF 0.749 0.815 0.725 0.763 13

Table Ill summarizes the results of the secondodet
experiments. The major differences in this casetlzt the
rulesets were allowed to vary in size, and all &rlstics
were available for use in the rulesets.

HHDT is joint second along with ID3 using the
Relevance heuristic [22]. In terms of statistidghgficance,
we note that the difference in rank between GaitioRend
HHDT is significant with a confidence of >90%, atitk
superiority of HHDT over MDL is significant with
confidence >95%. HHDT performs well in this settiddls,
but achieves a relatively low rank in the {contracedit,
iono, spect} trial, which dampens its overall penfance.
We suspect the availability of all 12 heuristicsl @ne larger
allowed sizes for the rulesets contributed to atgredegree
of over-fitting in this experiments.

TABLE III. SUMMARIZED RESULTS OF SECOND GROUP OF

EXPERIMENTS

yeast car cong_ac
votes ecoli credit over- Mean
Method heart derma iono all rank
flags wine spect
Gain Ratio 0.778 0.912 0.771 0.820 2.33
Relevance 0.770 0.909 0.771 0.817 3.67
HHDT 0.780 0.915 0.756 0.817 3.67
M.D.L. 0.778 0.900 0.766 0.815 5
Gini Index 0.763 0.907 0.764 0.811 7
Inf. Gain 0.767 0.911 0.754 0.811 7
Chi-Sq. 0.765 0.911 0.751 0.809 7.33
Wt Evid. 0.774 0.857 0.760 0.797 7.67
Sym. Gain 0.761 0.896 0.771 0.809 8
Sym. Gini 0.761 0.907 0.759 0.809 8.67
Mod. Gini 0.767 0.901 0.743 0.804 8.67
J-Measure 0.762 0.895 0.761 0.806 9
RELIEF 0.740 0.819 0.724 0.761 13

IV. CONCLUDING DISCUSSION

We have investigated hyper-heuristics for discangri
decision tree building algorithms. A key aspects aofy
hyper-heuristic approach, when the general ainovgatds
deriving algorithms that may be generally useful ather
problems or datasets, is to understand what areetbeant
aspects of ‘state’ during the solution-constructfmocess.
That is, when the decision is made to use a péaticu
heuristic, it is on the basis of specific obsemadi of the
current partial tree and the dataset. We expedt tina
prospects for hyper-heuristic methods in decisioee t
induction, and in data mining in general, will dedemuch
on finding appropriate measures on which to basse th
decision. Such measures will be ones that haveancehof
general salience, rather than being too specificthe
dataset(s) in question. In this paper the staterrimdtion is
the set of entropy values among the remainingoatis, and
the rules effectively suppose that the appropridigice of
heuristic can be made on the basis of a simple
characterization of the distribution of entropyues.

This method has clearly yielded some degree ofemscc
In each of three distinct trials, each using a s&pa
collection of datasets, an evolved HHDT algorithsvable
to generally outperform 12 alternatives on unsessh sets.
The comparative algorithms are equivalent to IDBgia
single chosen heuristic, and included among thesmmibst
popular ID3 variants.

In terms of performance on the given datasetsrabelts
here are not difficult to beat using alternativeecplized
techniques. However, in terms of developing speedy
constructive DT algorithms with good performancé{ BT
is clearly promising. One possibility that ariseenfi this
work is the potential for finding an HHDT rulesethich we
might call, for example, 1D4) that generally outioems the
classic ID3 on arbitrary collections of datasetst tivere not
seen during the HHDT training process. In resultg n
reported here, tests of HHDT rulesets have fouremth
competitive with ID3 on unseen datasets (as opptseds

used here, unseen holdout portions of the datasets for
training), but neither better nor worse with stata
significance. But we expect that such is achievajilen

(8]

better understanding of how to choose appropriatégl

collections of datasets for training, and giveneetifie
choices of state indicators to use within the rules

Meanwhile, there is clearly promise for the current[

HHDT method for developing effective DT buildersr fo
datasets that are similar (in senses yet to beetdfito those
used during training (indeed, Pappa and Freitag¢@je to
similar conclusions). A clear application niche fuch a
method is where there arecurring datasets. This happens,
for example, in scenarios where classifiers nedzbthept up
to date, or entirely refreshed, by constant rediegr from
new data that comes from a consistent source.ig lsisrery
common situation. E.g. many financial trading syste
employ classifiers that are trained on data frdiimeal recent
time window, and these need to be relearned daily
monthly with an updated dataset. In commerce agiibics,
consumer buying patterns are learned from ‘basket’
similar data, and classifiers must be continuatigenerated
from new data to maintain insight into current gats. This
notion is also discussed in the hyperheuristic doatbrial
optimization context, for example in [34] where tathors
suggest re-using a HH for solving timetabling pewb$ on
problems similar to the one used to evolve the HH.

In future work we will test HHDT in the context of
developing a DT building ruleset that must be camty

reused on continually updated datasets. We willb als

examine alternative ways to represent state infooman
the rules, towards finding a new generally useftiltiilder,
or perhaps one that specializes in a wide cladatafsets.

ACKNOWLEDGEMENT
We thank Motorola Ltd for sponsorship of this work.

REFERENCES

[1] P. Ross, Hyper-heuristics, Search Methodologiedrodiictory
Tutorials in Optimization and Decision Support Teicjues (E. K.

Burke and G. Kendall, eds.), Springer, 2005, p®-526.

H. Fisher and G. L. Thompson, Probabilistic leagriombinations of
local job-shop scheduling rules, Factory Schedulidgnference
(Carnegie Institute of Technology), 1961.

H. L. Fang, P. Ross, and D. Corne, A promising geregorithm
approach to job shop scheduling, rescheduling, apdn-shop
scheduling problems, 5th ICGA Morgan Kauf., 1993, 375-382.

Zhang, W. and Dietterich, T. G. A reinforcemerdrfgng approach
to job-shop scheduling. In Proceedings of the Femnth International
Joint Conference on Artificial Intelligence, 19%&ges 1114-1120.

Zhang, W. and Dietterich, T.G. High-performanceb-ghop
scheduling with a time-delay TBY network. In Touretzky et al.
(eds) Advances in Neural Information Processingtedys: Proc. of
the 1995 Conf., 1996, pages 1024-1030, Cambridde,MIT Press.

J. Gratch, S. Chien, and G. DeJong, Learning seaatftrol
knowledge for deep space network scheduling, Rr@th Int;| Conf.
on Machine Learning (Amherst, MA), 1993, pp. 135214

Ross P., Hart E., Marin-Blazquez J.G. and SchulgnBelLearning a
procedure that can solve hard bin-packing problenmew GA-based
approach to hyperheuristics. In Proc. GECCO 2003.

(2]

(3]

[4]

(5]

(6]

(71

10]

(11]
[12]

[13]

(14]
[15]
(0]
[16]
[17]
(18]

[19]

(20]
[21]
[22]

(23]

[24]
[25]
[26]

[27]

(28]
[29]

[30]

(31]

[32]

(33]

(34]

Terashima-Marin H., Moran-Saavedra A., Ross, Pmitag hyper-
heuristics with GAs when solving 2D-regular cuttstgck problems.
IEEE Congress on EC, v.2. 2005. pp. 1104-1110.

Automatically evolving rule induction algorithms. G Pappa and A.
A. Freitas. In Fuernkranz, Scheffer, and SpiliopoyKeds), Proc.17
ECML, LNCS volume 4212 pp. 341-352, 2006.

Pappa, G.L., Freitas, A.A.. Towards a genetic pogning
algorithm for au-tomatically evolving rule induaticalgorithms. In
Furnkranz, J., ed.: Proc.ECML/PKDD-2004 WorkshopAmlvances
in Inductive Learning. (2004) 93—108

Mitchell T. Machine Learning. McGraw-Hill, 1997.

Quinlan J.R. Induction of Decision Trees. Machireatning 1: 81-
106. 1986.

Kononenko 1., Bratko I. and Roskar E. ExperimemsAutomatic
Learning of Medical Diagnostic Rules. Technical Bep Jozef
Stefan Institute, Ljubljana. 1984.

Smyth P. and Goodman R.M. Rule Induction using rimftion
Theory. Knowledge Discovery in Databases. 19915§176.

Quinlan J.R. C4.5: Programs for Machine Learningoran
Kaufman, Los Altos CA. 1993.

L6épez De Mantaras R. A Distance-Based Attribute&ain Measure
for Decision Tree Induction. Machine Learning 6:®. 1991.

Brieman, L., Friedman J., Olshen R. and Stone @sIfication and
Regression Trees. Chapman & Hall, Wadsworth Inc. Nb84.

Kononenko |. Estimating Attributes: Analysis and téhsions of
RELIEF. In Proc. 7th Eur. Conf. on Mach. Learn949pp. 171-182.
Zhou X.J. and Dillon T.S. A Statistical-Heuristiedture Selection

Criterion for Decision Tree Induction. IEEE Transn Pattern
Analysis and Machine Intelligence, 3(8). 1991. &p4-841.

Smyth P. and Goodman R.M. Rule Induction using rimétion
Theory. Knowledge Discovery in Databases. 1991.5$176.
Kononenko |. On Biases in Estimating Multi-Valuedtributes. 1st
Int'l Conf. on KDDM. 1995. pp. 1034-1040.

Baim P.W. A Method for Attribute Selection in Indive Learning
Systems. IEEE Trans. on PAMI, 10: 888-896. 1988.

Kira K. and Rendell L. The Feature Selection Probl¢raditional
methods and a new algorithm. In Proceedings ofltd National
Conference on Artificial Intelligence. 1992. pp91234.

Michie D. Personal Models of Rationality. Journdl $tatistical
Planning and Inference, 25: 381-399. 1990.

Mingers J. An Empirical Comparison of Selection Ma&s for
Decision-Tree Induction. Machine Learning, 3(4) 998p. 319-342.
Breiman L. Technical note: some properties of 8pijt criteria.
Machine Learning, v.24, n.1. 1996. pp.41-47.

Badulescu L.A. The Choice of the Best AttributeeBdbn Measure
in Decision Tree Induction. Annals of University Gfaiova, Math.
Comp. Sci. Ser., v. 34. 2007. pp. 88-93.

Niblett T. and Bratko I|. Learning Decision RulesNioisy Domains.
In Proceedings of Expert Systems, Cambridge UnilyelPsess. 1986.
Quinlan J.R. Simplifying Decision Trees. Internaéd Journal of
Man-Machine Studies, 27(3). 1987. pp. 221-248.

Asuncion, A. & Newman, D.J. (2007). UCI Machine Leiag
Repository [http://www.ics.uci.edu/~mlearn/MLRegosy.html].
Irvine, CA: U. of Calif., School of Info. and Comian Science.

Han J. and Kamber M. Data mining: concepts and niecies.
Morgan Kaufmann, San Francisco, CA. 2000.

Fayyad U.M. and Irani K.B. Multi-interval Discreéition of
Continuous-Valued Attributes for Classification beag. In Proc.
13th Int'l Joint Conf. on Artificial Intelligencel993. pp. 1022-1027.

Kerber R. ChiMerge: Discretization of Numeric Auies. In Proc.
9th Int'l Conf. of AAAI, 1992. pp. 123-128.
Terashima-Marin H., Ross P. and Valenzuela-RendéfEwdlution

of Constraint Satisfaction Strategies in Examimaflometabling. In
Proc. GECCO 1999. pp. 635-642.

