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Abstract—Hyper-heuristics are increasingly used in function 
and combinatorial optimization. Rather than attempt to solve a 
problem using a fixed heuristic, a hyper-heuristic approach 
attempts to find a combination of heuristics that solve a 
problem (and in turn may be directly suitable for a class of 
problem instances). Hyper-heuristics have been little explored 
in data mining. Here we apply a hyper-heuristic approach to 
data mining, by searching a space of decision tree induction 
algorithms. The result of hyper-heuristic search in this case is a 
new decision tree induction algorithm. We show that hyper-
heuristic search over a space of decision tree induction rules is 
able to find decision tree induction algorithms that outperform 
many different version of ID3 on unseen test sets.    

Keywords- data mining, hyper-heuristics, decision trees, 
evolutionary algorithm. 

I.  INTRODUCTION 

Hyper-heuristics [1] are increasingly used in function and 
combinatorial optimization. The essential idea of hyper-
heuristics is to search for an algorithm rather than for a 
specific solution to a given problem. From the viewpoint of 
evolutionary computation, a hyper-heuristic can be simply 
regarded as a sophisticated encoding. The genotype 
represents an algorithm, and when we interpret it, by running 
the algorithm on the given problem data, the result is a 
solution to a given problem instance. Hence we obtain a 
candidate solution via a “genotype�algorithm->candidate-
solution” route, rather via a direct “genotype->candidate-
solution” mapping. The interesting aspect of hyper-heuristics 
is the potential re-use of the algorithms that emerge from the 
search process. With appropriate experimental design (e.g., 
by using many problem instances in the initial hyper-
heuristic training), new, effective and fast algorithms may be 
discovered that apply to a wide class of problem instances.  

 The origin of this notion can be traced to Fisher and 
Thompson’s work [2], which investigated combinations of 
basic rules for job-shop scheduling. Other work pursued 
similar ideas, essentially re-discovering or extending [2] 
during the 1990s. Most of this continued to be in the area of 
job-shop scheduling. E.g. Fang et al [3] used evolutionary 
algorithms to evolve sequences of heuristics for job-shop and 
open-shop problems, while Zhang and Diettrich [4, 5] 
developed novel job-shop scheduling heuristics within a 
reinforcement learning framework. Another notable study 
was that of Gratch et al. [6], which used hill-climbing in a 
space of control strategies to find good algorithms for 
controlling satellite communication schedules.   

Hyper-heuristics have now been applied to a variety of 
problems, however these are almost exclusively in the area 
of combinatorial optimization, and therein the majority 
involve scheduling. A few examples outside scheduling 
include bin packing [7] and cutting-stock [8]. In bin-packing, 
for example, novel constructive algorithms were developed 
that outperformed standard bin-packing constructive 
heuristics over a wide range of unseen test instances.  

 Very little work has so far explored the use of hyper-
heuristics in data mining. Here, the task is invariably to find 
a classifier (which might be a decision tree, a set of rules, a 
neural network, etc…), which has good performance in 
classifying test data. In other words, this is a search in 
classifier space for a good classifier. To align this with the 
possibility of using hyper-heuristics, we can consider this as 
a search through the space of methods that build classifiers 
from training data. To date, one group has started to explore 
this idea. In Pappa and Freitas [9], grammar-based genetic 
programming is used to evolve rule induction algorithms, 
having presented the original idea in [10]. A broad category 
of rule induction algorithms operates via “sequential 
covering”: an initial rule is generated, covering some of the 
dataset, and additional rules are generated in order until the 
entire dataset is covered. There are several alternative ways 
to generate the initial and subsequent rules. E.g. we may start 
with a very general high-coverage (but low accuracy) rule, 
and add conditions until accuracy and/or coverage move 
beyond a threshold. Or, we may start with a very precise rule 
and gradually remove conditions. In [9], the encoding covers 
a vast space of possible ways to organize this process.  

 Here we explore a hyper-heuristic approach to decision 
tree induction, by searching a space of decision tree 
induction algorithms. We use a simpler encoding than [9], 
essentially restricting the algorithm space to a single overall 
control structure. However we make more heuristic 
‘components’ available, and hence explore a wider range of 
variants of a specialized class of algorithms.  

Simply put, the classic decision tree induction algorithm 
builds a tree step by step by deciding, at each step, how to 
develop the next node in the tree. This comes down to 
choosing a specific attribute in the dataset. E.g., if the chosen 
attribute is “gender”, then the current node will have two 
children, one for the case “gender = male” and another for 
“gender = female”. The choice of attribute is made by using 
a heuristic, which tests how well each proposed attribute is at 
discriminating between values of the target class. Our 
method is to search a space of rulesets, where individual 



rules essentially say “if the data still to be classified have 
property X, then use heuristic Y to decide which attribute to 
split on”. A simple approach is used for conflict resolution 
between rules in a ruleset. An evolutionary algorithm 
evolves the rulesets, where fitness is evaluated by using it to 
build a decision tree on a collection of training datasets, and 
finding the accuracy of these trees on test datasets.  

The remainder is set out as follows. Section II describes 
the algorithms, providing a simple introduction to ID3-style 
decision tree induction, describing our hyper-heuristic 
encoding, and then indicating the details of the evolutionary 
algorithm used in conjunction with this encoding. Section III 
describes the datasets and experiments and provides some 
analysis and observations of the results. We provide a 
concluding discussion in Section IV. 

 

II. HYPER-HEURISTIC DECISION TREE INDUCTION 

A. Decision Trees 

Decision tree (DT) building algorithms build a DT 
quickly using a recursive, divide-and-conquer strategy. 
While building the tree, a typical algorithm employs a 
heuristic to choose which attribute to use for creating the 
current tree node. Imagine a dataset held by a loan company 
with the attributes “gender”, “salary”, “age” and “high-risk”, 
where the values for high-risk are either “yes” or “no” based 
on past experience. A decision tree built on this data may 
look like that in Fig. 1. 

 

 
Figure 1.  A simple example of a decision tree. 

The contrived tree in Fig. 1 attempts to predict the value 
of the “high-risk” attribute (in this case, this is the target 
class) given the values of the other attributes. Each node uses 
a single attribute to “split” the data among its child nodes. 
E.g., the root node splits on gender; if an instance is “male”, 
the next question comes from a node that splits on salary, 
and so on.  

When we start to build a tree, the first decision to make is 
the choice of attribute for the root node. The key to this 

choice is to examine, for each attribute, how well it divides 
the data in terms of the target class. For example, if we found 
that all males were high risk and all females were low risk in 
the training dataset, then “gender” is a perfect attribute to 
split on. If instead we found that male and female instances 
contained equal proportions of high and low risk cases, then 
we seem to gain nothing by splitting on gender. In general, a 
heuristic is used to provide a score for each attribute, where 
that score reflects the value of using that attribute for the 
split. One of the most celebrated of such heuristics is 
information gain [11], used in the ID3 [12] and ASSISTANT 
[13] decision tree building algorithms. 

Notice that, once we have chosen the attribute for the 
root node, we create a child node for each value of that 
attribute. In the example in Fig. 1, all of the “male” data 
instances are carried to the left hand child, and all of the 
“female” instances are carried to the right-hand child. For 
each of these nodes, we now have the same decision to 
make, and will again use a heuristic to decide which attribute 
to split on. However, the difference is that each node 
“carries” a specific set of instances, and the heuristic scores 
will therefore depend on the position of the node in the tree.  

 

B. Attribute Choice Heuristics 

 
Straightforward decision tree algorithms therefore 

repeatedly decide which attribute to split on for the current 
node, using a heuristic to make the decision. Although 
information gain is the most popular, there are several 
alternative possibilities. Twelve such are listed here: Chi-
Square [14], Information Gain [11], Gain Ratio [15], 
Symmetric Gain Ratio [16], Gini index [17], Modified Gini 
index [18], Symmetric Gini index [19], J-Measure [20], 
Minimum Description Length [21], Relevance [22], RELIEF 
[23], Weight of Evidence [24]. 

Each of the above can be (and have been) used to 
estimate the quality of a distribution, and as such provides an 
alternative measure for assessing the way that the target class 
values of the ‘remaining’ instances in the dataset are 
distributed among the values of any given attribute available 
for splitting. The research literature contains various studies 
comparing the performance of two or more of the above 
heuristics on one or more data sets, e.g. [25—27]. 

 

C. The Hyper-Heuristic Decision Tree Encoding 

 
We encode a decision tree building algorithm as a set of 

rules that indicate which heuristic to use in choosing the 
attribute for the current node. A single ruleset will typically 
therefore use multiple heuristics in each tree-building run. 
The intuition behind this is simply that alternative 
approaches may be better for different stages of tree 
building. E.g. the appropriate heuristics for the root node 
when building a many-attribute dataset may be quite 
different from the heuristics that will work better deep in the 
tree when few attributes are available for splitting. As a DT 
building algorithm works its way down the tree, the dataset 
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partition which needs to be split gets smaller and smaller. 
Also, as indicated, the set of available candidate splitting 
attributes changes as fewer attributes remain. Since the 
‘problem state’ of our DT building algorithm is continuously 
changing as the tree is being built, we see no reason why the 
heuristic that chooses the best splitting attribute has to 
remain static throughout the whole tree-building process. 
Indeed, we might get better trees if we adapt the heuristic to 
be used according to the data set partition that needs to be 
split. In such a scenario, our HH rules would be applied to 
any possible data set partition (instead of just the initial 
complete data set). Our DT building algorithm would 
employ a toolbox of heuristics and our HH would then pick 
and choose the best heuristic according to the features of the 
partition that needs to be split. 

 

D. Details of the HHDT Encoding 

 
Our HHDT encoding relies on calculating the entropy of 

each splitting attribute, as follows:   
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… where A is an attribute with m possible values: a1, …, am 
and P(ai) is the probability of A having value ai. P(ai) is 
simply the proportion of instances in the current partition of 
the dataset (i.e. those instances that are available at the 
current tree node) that have value ai  for attribute A. 

The HHDT encoding simply comprises a set of rules, 
each of which examines (in a simple way) the entropy values 
among the attributes, and decides to use a specific heuristic. 
A single rule has the following format:  

 
IF  

 (x% > high)   AND   (y% < low)  
THEN  

use heuristic h  
 

… where: x and y  are both percentage values ranging from 0 
to 100, and high and low are thresholds for the entropy value 
H. The meaning of the above example rule is: if x% of the 
attributes have entropy values above high, and if y% of 
attributes have entropy values below low, then use heuristic h 
to choose the splitting attribute at the current node. 

 A single HHDT chromosome comprises a small set of 
such rules, and a default heuristic, representing a complete 
algorithm for building a decision tree, on any dataset, as 
follows. When a choice needs to made to split an attribute 
(this happens whenever the instances available at the node 
carry more than the value of the target attribute), the 
condition of each rule is tested, and consequently either 0, 1, 
or >1 heuristics are put forward for use. If 0 rules are 
triggered, the default heuristic is used. If 1 rule is triggered, 
then the corresponding heuristic is used. If >1 distinct 
heuristics are triggered, and no individual heuristic has the 
majority vote, then the default heuristic is used.   

Note that we do not use pruning methods [28, 29] in the 
current research. Although this limits the generalization 
quality of the trees, this also simplifies the comparison 
studies. We expect incorporate pruning in later work; notice 
that it will be trivial to incorporate pruning into the 
interpretation of an HHDT chromosome.  

E. Details of the Evolutionary Algorithms 

 
We use a straightforward evolutionary algorithm (EA) to 

search the space of HHDT rulesets. An individual 
chromosome, representing a set of n rules, is simply a list of 
n 5-tuples, plus a single additional gene representing the 
default heuristic choice. A single 5-tuple is of the form: 

 
(x, high, y, low, h) 

 
with the obvious interpretation (see example rule in 
subsection II.D). The values of x and y  are integers ranging 
from 0 to 100, and the values of high and low are real 
numbers in the interval [0, 1]. The heuristic gene h is simply 
an integer indexing the heuristics available for use in the 
experiment. Generally this could be the set of 12 heuristics in 
section II.C, or indeed any others. However we have found it 
best to focus on the heuristics that generally have the best 
individual performance while also keeping the heuristics in 
our toolbox as varied as possible, and hence in our 
experiments we limit the choice of heuristics to: information 
gain, gain ratio, symmetric gain, relief, and J-measure.  

The EA uses a population of size 45—50 tournament 
selection with tournament size 0.4×pop, and generation gap 
replacement in which 75% of the population are replaced in 
each generation, maintaining the best 25% of the previous 
generation. This is a very ‘high-pressure’ EA, deliberately so 
to promote fast progress, since individual fitness evaluations 
(see section III.B) are quite time-consuming. One point 
crossover is used, with crossover preserving complete rules 
(i.e. the crossover point falls between 5-tuples, and not 
within them).  Mutation is applied to each child: every gene 
is changed with a probability m. In all cases, a mutated value 
is a uniformly random new value from the appropriate range. 
 

III.  DATASETS AND EXPERIMENTS 

A. Datasets 

We use 12 well known datasets with diverse 
characteristics in terms of their sizes, and their numbers and 
types of attributes. All are available from the UCI Machine 
learning repository [30]. Table I lists the datasets we use, and 
summarizes some key characteristics. They contain a 
mixture of categorical and numeric attributes. When an 
attribute is categorical (i.e. its values are from a small set of 
discrete possibilities), a node of a decision tree, which splits 
on that attribute, simply has one branch for each value (see 
the ‘Gender’ node in Fig. 1). In the case of a numerical 
attribute, we use a discretization of the attribute values that 
partitions the values into a small set of intervals. E.g. in Fig. 
1, ‘Salary’ has been discretized into three intervals. There are 



many ways to discretize [31—33]. In prior experiments we 
have found that, from the viewpoint of decision tree quality, 
equal-frequency-binning [31] with five bins performs as well 
as most other methods. All of the numerical attributes in the 
datasets used in these experiments are pre-processed into five 
discrete categories via equal-frequency-binning. This 
effectively means that the smallest 20% of values of a 
numerical attribute are in bin 1, the next largest 20% are in 
bin 2, and so on. These bins might be labeled from “very 
small” to “very large” (for example), if we were to build an 
easily understandable decision tree.   

 

TABLE I.  DATASETS USED IN OUR EXPERIMENTS 

Dataset 
Title Attribute distribution No. 

instances 
%age with 
target class 

Car 7 categoric, 0 numeric 1728 70% 
Spect 23 categoric, 0 numeric 267 79% 

votes84 17 categoric, 0 numeric 435 45% 
Derma 34 categoric, 1 numeric 366 17% 
Flags 25 categoric, 4 numeric 194 31% 

Contrac 8 categoric, 2 numeric 1,473 43% 
Credit 10 categoric, 6 numeric 690 56% 
Heart 8 categoric, 6 numeric 270 44% 

Ionosphere 0 categoric, 35 numeric 351 36% 
Wine 0 categoric, 14 numeric 178 39% 
Ecoli 0 categoric, 8 numeric 336 43% 
Yeast 0 categoric, 9 numeric 1,484 31% 

 

B. Experiments 

When we apply HHDT to a dataset, the basic approach to 
evaluating the fitness of any HHDT chromosome is to use 
the ruleset specified by the chromosome to build a tree using 
the training data, and then test the accuracy of the tree on the 
test data. In our experiments, in all cases, we use 9-fold cross 
validation within the fitness function, thus providing a 
relatively robust evaluation of performance on test data 
during training. Essentially, this means that the above 
process is repeated 9 times within the fitness function, for 
different ‘folds’ of training and test sets. To estimate the 
quality of the best HHDT found during training, we use it to 
build a tree over the entire training set (i.e. all nine folds), 
and record the accuracy of that tree on an entirely unseen 
dataset that played no part in the training process – this is, in 
essence, the missing “10th fold”. Experimental results 
referred to later are always results obtained on such unseen 
test sets. Finally, having learned from preliminary 
investigations (for which there is no space to summarize 
here), we use multiple data sets within a single training run; 
that is, the fitness of a single HHDT chromosome is an 
average over N datasets, each subject to 9-fold cross 
validation. In this paper we always have N=4, and the 
complete picture of the evaluation process for a single 
HHDT chromosome is as follows: 
 

For each dataset: 
For each fold of the dataset:   

Build a tree on the training data. 
Evaluate the tree on the test data.  

 
The fitness of the HHDT ruleset during training is taken as 
the mean of the 36 (9 folds, 4 datasets) test set accuracies. 
This setup aims to discourage overfitting, and we have found 
it leads to better results on the individual datasets than if they 
had been used as the sole dataset during training. Finally, as 
indicated, the ultimate result of a single HHDT run is 
obtained as follows: a single HHDT is returned from the 
training process – the one with the best training fitness 
(breaking ties randomly). This HHDT is then used to build a 
tree on the full training dataset(s), and the accuracy of these 
trees is recorded on entirely unseen test sets. 

Here we report on two sets of experiments using two 
different evolutionary algorithm and HHDT setups. In each 
set of experiments, there are three sets of trials. In each trial, 
a distinct group of four datasets from Table I is used. An 
evolutionary algorithm is used to evolve HHDT rulesets, and 
the entire trial is repeated 10 times.  

The fine details of the EAs and the HHDT encodings are 
detailed next. These are relatively arbitrary design choices, 
representing just two samples among the vast range of 
potential setups. As such they represent preliminary 
investigation of the feasibility of the overall approach. 

In the first set of trials, the EA terminates after 100 
generations, has population size pop=45, uses 1 point 
crossover, and has a mutation rate of m=5%. The HH 
encoding uses rulesets with a fixed size of 3 rules, with 
coarse-valued threshold genes and fine-valued percentage 
genes (all integers 0,…100 are available). Each trial used a 
set of four datasets that varied in their characteristics, 
ensuring that there was a mixture of datasets with all 
categorical, all numerical, and mixed attributes in each trial. 

In the second set of trials, the EA terminates after 150 
generations, has population size pop=50 and uses 2 point 
crossover. Rulesets were allowed to vary in size from 3 to 
12, and hence there was an additional mutation operation, 
applied to every child, which either deleted a randomly 
chosen rule from a ruleset (if it contained 4 or more rules) or 
added a randomly generated rule (if it contained less than 
12). Each child has a probability of 5% of having a rule 
added or deleted. The standard mutation operator in this case 
was set at m = 5%. Meanwhile, the percentage genes (x and 
y) were coarse-grained, allowed to take only 21 possible 
values (0, 5, …, 95, 100), and the threshold genes were 
allowed to take on any of 20 possible values: {0.05, 0.1, …, 
0.95, 1}. Other details of this EA were the same as before.  

 

C. Results 

 
Table II summarizes the results of the first set of 

experiments. For example, the value of 0.779 in the HHDT 
row and the {yeast, votes, heart, flags} column indicates that 
the HHDT mean performance on unseen test sets, averaged 
over 10 independent trials, was 0.779 (i.e. 77.9% accuracy, 
to 3 significant figures) when the HHDT evolution process 
used those four datasets. The value of 0.770 for Information 
Gain in the same column indicates that (using the same 
training/test partitions, and unseen test sets) the equivalent 



value for ID3 employing the Information Gain heuristic is 
77.0% accuracy. The ‘overall’ column gives the mean 
accuracy over the three sets of trials. Ranks were applied for 
each set of trials, ranging from 1 (best performance) to 13th 
(worst), and the rightmost column gives the mean rank over 
all trials. The methods are arranged in order of mean rank, 
and the best result in each column is in bold (where there 
seem to be ties, these are broken to more significant digits). 
We do not have space here to list the full sets of results for 
each of the ten independent runs, but we can report that a T-
test comparing the HHDT ranks with those of Relevance and 
MDL yields a p value of < 0.05 indicating >95% confidence 
in the assertion that the evolved HHDT trees deliver better 
unseen test set performance than the ID3(h) trees for any of 
the other heuristics h. 

HHDTs appear to have the best overall performance (the 
most appropriate indicator is mean rank, which is non-
parametric), suggesting that the hyperheuristic training 
process is capable of leading to specific combinations of 
heuristics whose behavior generalizes well.  

TABLE II.  SUMMARI ZED RESULTS OF FIRST GROUP OF EXPERIMENTS 

Method 

yeast 
votes 
heart 
flags 

Car 
ecoli 

derma 
wine 

contrac 
credit 
iono 
spect 

over-
all 

Mean 
rank 

HHDT 0.779 0.906 0.771 0.818 3.33 
Relevance 0.773 0.914 0.765 0.818 4.33 
M.D.L 0.776 0.898 0.774 0.816 4.33 
Chi-Squ. 0.774 0.903 0.768 0.815 6 
Gain Ratio 0.772 0.904 0.769 0.815 6.33 
Inf. Gain 0.77 0.913 0.76 0.814 7 
Gini Index 0.76 0.912 0.763 0.817 7 
Sym. Gini 0.755 0.905 0.769 0.81 7.33 
Sym. Gain 0.756 0.887 0.771 0.805 7.67 
Wt. Evid. 0.78 0.852 0.763 0.798 7.67 
J-Measure 0.772 0.891 0.764 0.809 8 
Mod. Gini 0.757 0.906 0.749 0.804 9 
RELIEF 0.749 0.815 0.725 0.763 13 

 
 

Table III summarizes the results of the second set of 
experiments. The major differences in this case are that the 
rulesets were allowed to vary in size, and all 12 heuristics 
were available for use in the rulesets.  

HHDT is joint second along with ID3 using the 
Relevance heuristic [22]. In terms of statistical significance, 
we note that the difference in rank between Gain Ratio and 
HHDT is significant with a confidence of >90%, and the 
superiority of HHDT over MDL is significant with 
confidence >95%. HHDT performs well in this set of trials, 
but achieves a relatively low rank in the {contrac, credit, 
iono, spect} trial, which dampens its overall performance. 
We suspect the availability of all 12 heuristics and the larger 
allowed sizes for the rulesets contributed to a greater degree 
of over-fitting in this experiments. 

 

TABLE III.  SUMMARI ZED RESULTS OF SECOND GROUP OF 
EXPERIMENTS 

Method 

yeast 
votes 
heart 
flags 

car 
ecoli 

derma 
wine 

contrac 
credit 
iono 
spect 

over-
all 

Mean 
rank 

Gain Ratio 0.778 0.912 0.771 0.820 2.33 
Relevance 0.770 0.909 0.771 0.817 3.67 

HHDT 0.780 0.915 0.756 0.817 3.67 
M.D.L. 0.778 0.900 0.766 0.815 5 

Gini Index 0.763 0.907 0.764 0.811 7 
Inf. Gain 0.767 0.911 0.754 0.811 7 
Chi-Sq. 0.765 0.911 0.751 0.809 7.33 
Wt Evid. 0.774 0.857 0.760 0.797 7.67 

Sym. Gain 0.761 0.896 0.771 0.809 8 
Sym. Gini 0.761 0.907 0.759 0.809 8.67 
Mod. Gini 0.767 0.901 0.743 0.804 8.67 
J-Measure 0.762 0.895 0.761 0.806 9 

RELIEF 0.740 0.819 0.724 0.761 13 
 

IV. CONCLUDING DISCUSSION 

We have investigated hyper-heuristics for discovering 
decision tree building algorithms. A key aspects of any 
hyper-heuristic approach, when the general aim is towards 
deriving algorithms that may be generally useful on other 
problems or datasets, is to understand what are the relevant 
aspects of ‘state’ during the solution-construction process. 
That is, when the decision is made to use a particular 
heuristic, it is on the basis of specific observations of the 
current partial tree and the dataset. We expect that the 
prospects for hyper-heuristic methods in decision tree 
induction, and in data mining in general, will depend much 
on finding appropriate measures on which to base this 
decision. Such measures will be ones that have a chance of 
general salience, rather than being too specific to the 
dataset(s) in question. In this paper the state information is 
the set of entropy values among the remaining attributes, and 
the rules effectively suppose that the appropriate choice of 
heuristic can be made on the basis of a simple 
characterization of the distribution of entropy values.  

This method has clearly yielded some degree of success. 
In each of three distinct trials, each using a separate 
collection of datasets, an evolved HHDT algorithm was able 
to generally outperform 12 alternatives on unseen test sets. 
The comparative algorithms are equivalent to ID3 using a 
single chosen heuristic, and included among them the most 
popular ID3 variants. 

In terms of performance on the given datasets, the results 
here are not difficult to beat using alternative specialized  
techniques. However, in terms of developing speedy 
constructive DT algorithms with good performance, HHDT  
is clearly promising. One possibility that arises from this 
work is the potential for finding an HHDT ruleset (which we 
might call, for example, ID4) that generally outperforms the 
classic ID3 on arbitrary collections of datasets that were not 
seen during the HHDT training process. In results not 
reported here, tests of HHDT rulesets have found them 
competitive with ID3 on unseen datasets (as opposed to, as 



used here, unseen holdout portions of the datasets used for 
training), but neither better nor worse with statistical 
significance. But we expect that such is achievable given 
better understanding of how to choose appropriate 
collections of datasets for training, and given effective 
choices of state indicators to use within the rules. 

Meanwhile, there is clearly promise for the current 
HHDT method for developing effective DT builders for 
datasets that are similar (in senses yet to be defined) to those 
used during training (indeed, Pappa and Freitas [9] come to 
similar conclusions). A clear application niche for such a 
method is where there are recurring datasets. This happens, 
for example, in scenarios where classifiers need to be kept up 
to date, or entirely refreshed, by constant re-learning from 
new data that comes from a consistent source. This is a very 
common situation. E.g. many financial trading systems 
employ classifiers that are trained on data from a fixed recent 
time window, and these need to be relearned daily or 
monthly with an updated dataset. In commerce applications, 
consumer buying patterns are learned from ‘basket’ or 
similar data, and classifiers must be continually regenerated 
from new data to maintain insight into current patterns. This 
notion is also discussed in the hyperheuristic combinatorial 
optimization context, for example in [34] where the authors 
suggest re-using a HH for solving timetabling problems on 
problems similar to the one used to evolve the HH. 

 In future work we will test HHDT in the context of 
developing a DT building ruleset that must be constantly 
reused on continually updated datasets. We will also 
examine alternative ways to represent state information in 
the rules, towards finding a new generally useful DT builder, 
or perhaps one that specializes in a wide class of datasets.     
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