
Hyper-heuristic Decision Tree Induction

Alan Vella, David Corne
School of MACS, Heriot-Watt University

Edinburgh, UK
mail@alanvella.com, dwcorne@gmail.com

Chris Murphy
Motorola Ltd,
Swindon, UK

Chris.Murphy@motorola.com

Abstract—Hyper-heuristics are increasingly used in function
and combinatorial optimization. Rather than attempt to solve a
problem using a fixed heuristic, a hyper-heuristic approach
attempts to find a combination of heuristics that solve a
problem (and in turn may be directly suitable for a class of
problem instances). Hyper-heuristics have been little explored
in data mining. Here we apply a hyper-heuristic approach to
data mining, by searching a space of decision tree induction
algorithms. The result of hyper-heuristic search in this case is a
new decision tree induction algorithm. We show that hyper-
heuristic search over a space of decision tree induction rules is
able to find decision tree induction algorithms that outperform
many different version of ID3 on unseen test sets.

Keywords- data mining, hyper-heuristics, decision trees,
evolutionary algorithm.

I. INTRODUCTION

Hyper-heuristics [1] are increasingly used in function and
combinatorial optimization. The essential idea of hyper-
heuristics is to search for an algorithm rather than for a
specific solution to a given problem. From the viewpoint of
evolutionary computation, a hyper-heuristic can be simply
regarded as a sophisticated encoding. The genotype
represents an algorithm, and when we interpret it, by running
the algorithm on the given problem data, the result is a
solution to a given problem instance. Hence we obtain a
candidate solution via a “genotype�algorithm->candidate-
solution” route, rather via a direct “genotype->candidate-
solution” mapping. The interesting aspect of hyper-heuristics
is the potential re-use of the algorithms that emerge from the
search process. With appropriate experimental design (e.g.,
by using many problem instances in the initial hyper-
heuristic training), new, effective and fast algorithms may be
discovered that apply to a wide class of problem instances.

 The origin of this notion can be traced to Fisher and
Thompson’s work [2], which investigated combinations of
basic rules for job-shop scheduling. Other work pursued
similar ideas, essentially re-discovering or extending [2]
during the 1990s. Most of this continued to be in the area of
job-shop scheduling. E.g. Fang et al [3] used evolutionary
algorithms to evolve sequences of heuristics for job-shop and
open-shop problems, while Zhang and Diettrich [4, 5]
developed novel job-shop scheduling heuristics within a
reinforcement learning framework. Another notable study
was that of Gratch et al. [6], which used hill-climbing in a
space of control strategies to find good algorithms for
controlling satellite communication schedules.

Hyper-heuristics have now been applied to a variety of
problems, however these are almost exclusively in the area
of combinatorial optimization, and therein the majority
involve scheduling. A few examples outside scheduling
include bin packing [7] and cutting-stock [8]. In bin-packing,
for example, novel constructive algorithms were developed
that outperformed standard bin-packing constructive
heuristics over a wide range of unseen test instances.

 Very little work has so far explored the use of hyper-
heuristics in data mining. Here, the task is invariably to find
a classifier (which might be a decision tree, a set of rules, a
neural network, etc…), which has good performance in
classifying test data. In other words, this is a search in
classifier space for a good classifier. To align this with the
possibility of using hyper-heuristics, we can consider this as
a search through the space of methods that build classifiers
from training data. To date, one group has started to explore
this idea. In Pappa and Freitas [9], grammar-based genetic
programming is used to evolve rule induction algorithms,
having presented the original idea in [10]. A broad category
of rule induction algorithms operates via “sequential
covering”: an initial rule is generated, covering some of the
dataset, and additional rules are generated in order until the
entire dataset is covered. There are several alternative ways
to generate the initial and subsequent rules. E.g. we may start
with a very general high-coverage (but low accuracy) rule,
and add conditions until accuracy and/or coverage move
beyond a threshold. Or, we may start with a very precise rule
and gradually remove conditions. In [9], the encoding covers
a vast space of possible ways to organize this process.

 Here we explore a hyper-heuristic approach to decision
tree induction, by searching a space of decision tree
induction algorithms. We use a simpler encoding than [9],
essentially restricting the algorithm space to a single overall
control structure. However we make more heuristic
‘components’ available, and hence explore a wider range of
variants of a specialized class of algorithms.

Simply put, the classic decision tree induction algorithm
builds a tree step by step by deciding, at each step, how to
develop the next node in the tree. This comes down to
choosing a specific attribute in the dataset. E.g., if the chosen
attribute is “gender”, then the current node will have two
children, one for the case “gender = male” and another for
“gender = female”. The choice of attribute is made by using
a heuristic, which tests how well each proposed attribute is at
discriminating between values of the target class. Our
method is to search a space of rulesets, where individual

rules essentially say “if the data still to be classified have
property X, then use heuristic Y to decide which attribute to
split on”. A simple approach is used for conflict resolution
between rules in a ruleset. An evolutionary algorithm
evolves the rulesets, where fitness is evaluated by using it to
build a decision tree on a collection of training datasets, and
finding the accuracy of these trees on test datasets.

The remainder is set out as follows. Section II describes
the algorithms, providing a simple introduction to ID3-style
decision tree induction, describing our hyper-heuristic
encoding, and then indicating the details of the evolutionary
algorithm used in conjunction with this encoding. Section III
describes the datasets and experiments and provides some
analysis and observations of the results. We provide a
concluding discussion in Section IV.

II. HYPER-HEURISTIC DECISION TREE INDUCTION

A. Decision Trees

Decision tree (DT) building algorithms build a DT
quickly using a recursive, divide-and-conquer strategy.
While building the tree, a typical algorithm employs a
heuristic to choose which attribute to use for creating the
current tree node. Imagine a dataset held by a loan company
with the attributes “gender”, “salary”, “age” and “high-risk”,
where the values for high-risk are either “yes” or “no” based
on past experience. A decision tree built on this data may
look like that in Fig. 1.

Figure 1. A simple example of a decision tree.

The contrived tree in Fig. 1 attempts to predict the value
of the “high-risk” attribute (in this case, this is the target
class) given the values of the other attributes. Each node uses
a single attribute to “split” the data among its child nodes.
E.g., the root node splits on gender; if an instance is “male”,
the next question comes from a node that splits on salary,
and so on.

When we start to build a tree, the first decision to make is
the choice of attribute for the root node. The key to this

choice is to examine, for each attribute, how well it divides
the data in terms of the target class. For example, if we found
that all males were high risk and all females were low risk in
the training dataset, then “gender” is a perfect attribute to
split on. If instead we found that male and female instances
contained equal proportions of high and low risk cases, then
we seem to gain nothing by splitting on gender. In general, a
heuristic is used to provide a score for each attribute, where
that score reflects the value of using that attribute for the
split. One of the most celebrated of such heuristics is
information gain [11], used in the ID3 [12] and ASSISTANT
[13] decision tree building algorithms.

Notice that, once we have chosen the attribute for the
root node, we create a child node for each value of that
attribute. In the example in Fig. 1, all of the “male” data
instances are carried to the left hand child, and all of the
“female” instances are carried to the right-hand child. For
each of these nodes, we now have the same decision to
make, and will again use a heuristic to decide which attribute
to split on. However, the difference is that each node
“carries” a specific set of instances, and the heuristic scores
will therefore depend on the position of the node in the tree.

B. Attribute Choice Heuristics

Straightforward decision tree algorithms therefore

repeatedly decide which attribute to split on for the current
node, using a heuristic to make the decision. Although
information gain is the most popular, there are several
alternative possibilities. Twelve such are listed here: Chi-
Square [14], Information Gain [11], Gain Ratio [15],
Symmetric Gain Ratio [16], Gini index [17], Modified Gini
index [18], Symmetric Gini index [19], J-Measure [20],
Minimum Description Length [21], Relevance [22], RELIEF
[23], Weight of Evidence [24].

Each of the above can be (and have been) used to
estimate the quality of a distribution, and as such provides an
alternative measure for assessing the way that the target class
values of the ‘remaining’ instances in the dataset are
distributed among the values of any given attribute available
for splitting. The research literature contains various studies
comparing the performance of two or more of the above
heuristics on one or more data sets, e.g. [25—27].

C. The Hyper-Heuristic Decision Tree Encoding

We encode a decision tree building algorithm as a set of

rules that indicate which heuristic to use in choosing the
attribute for the current node. A single ruleset will typically
therefore use multiple heuristics in each tree-building run.
The intuition behind this is simply that alternative
approaches may be better for different stages of tree
building. E.g. the appropriate heuristics for the root node
when building a many-attribute dataset may be quite
different from the heuristics that will work better deep in the
tree when few attributes are available for splitting. As a DT
building algorithm works its way down the tree, the dataset

Gender

Salary Age

male female

< 20

21—60
 > 60 18—30 31—90

Salary Y Y N

Y N

21—60

Y

N

< 20 > 60

partition which needs to be split gets smaller and smaller.
Also, as indicated, the set of available candidate splitting
attributes changes as fewer attributes remain. Since the
‘problem state’ of our DT building algorithm is continuously
changing as the tree is being built, we see no reason why the
heuristic that chooses the best splitting attribute has to
remain static throughout the whole tree-building process.
Indeed, we might get better trees if we adapt the heuristic to
be used according to the data set partition that needs to be
split. In such a scenario, our HH rules would be applied to
any possible data set partition (instead of just the initial
complete data set). Our DT building algorithm would
employ a toolbox of heuristics and our HH would then pick
and choose the best heuristic according to the features of the
partition that needs to be split.

D. Details of the HHDT Encoding

Our HHDT encoding relies on calculating the entropy of

each splitting attribute, as follows:

∑
=

⋅=
m

i
ii aPaPAH

1

))(log()()(

… where A is an attribute with m possible values: a1, …, am
and P(ai) is the probability of A having value ai. P(ai) is
simply the proportion of instances in the current partition of
the dataset (i.e. those instances that are available at the
current tree node) that have value ai for attribute A.

The HHDT encoding simply comprises a set of rules,
each of which examines (in a simple way) the entropy values
among the attributes, and decides to use a specific heuristic.
A single rule has the following format:

IF

 (x% > high) AND (y% < low)
THEN

use heuristic h

… where: x and y are both percentage values ranging from 0
to 100, and high and low are thresholds for the entropy value
H. The meaning of the above example rule is: if x% of the
attributes have entropy values above high, and if y% of
attributes have entropy values below low, then use heuristic h
to choose the splitting attribute at the current node.

 A single HHDT chromosome comprises a small set of
such rules, and a default heuristic, representing a complete
algorithm for building a decision tree, on any dataset, as
follows. When a choice needs to made to split an attribute
(this happens whenever the instances available at the node
carry more than the value of the target attribute), the
condition of each rule is tested, and consequently either 0, 1,
or >1 heuristics are put forward for use. If 0 rules are
triggered, the default heuristic is used. If 1 rule is triggered,
then the corresponding heuristic is used. If >1 distinct
heuristics are triggered, and no individual heuristic has the
majority vote, then the default heuristic is used.

Note that we do not use pruning methods [28, 29] in the
current research. Although this limits the generalization
quality of the trees, this also simplifies the comparison
studies. We expect incorporate pruning in later work; notice
that it will be trivial to incorporate pruning into the
interpretation of an HHDT chromosome.

E. Details of the Evolutionary Algorithms

We use a straightforward evolutionary algorithm (EA) to

search the space of HHDT rulesets. An individual
chromosome, representing a set of n rules, is simply a list of
n 5-tuples, plus a single additional gene representing the
default heuristic choice. A single 5-tuple is of the form:

(x, high, y, low, h)

with the obvious interpretation (see example rule in
subsection II.D). The values of x and y are integers ranging
from 0 to 100, and the values of high and low are real
numbers in the interval [0, 1]. The heuristic gene h is simply
an integer indexing the heuristics available for use in the
experiment. Generally this could be the set of 12 heuristics in
section II.C, or indeed any others. However we have found it
best to focus on the heuristics that generally have the best
individual performance while also keeping the heuristics in
our toolbox as varied as possible, and hence in our
experiments we limit the choice of heuristics to: information
gain, gain ratio, symmetric gain, relief, and J-measure.

The EA uses a population of size 45—50 tournament
selection with tournament size 0.4×pop, and generation gap
replacement in which 75% of the population are replaced in
each generation, maintaining the best 25% of the previous
generation. This is a very ‘high-pressure’ EA, deliberately so
to promote fast progress, since individual fitness evaluations
(see section III.B) are quite time-consuming. One point
crossover is used, with crossover preserving complete rules
(i.e. the crossover point falls between 5-tuples, and not
within them). Mutation is applied to each child: every gene
is changed with a probability m. In all cases, a mutated value
is a uniformly random new value from the appropriate range.

III. DATASETS AND EXPERIMENTS

A. Datasets

We use 12 well known datasets with diverse
characteristics in terms of their sizes, and their numbers and
types of attributes. All are available from the UCI Machine
learning repository [30]. Table I lists the datasets we use, and
summarizes some key characteristics. They contain a
mixture of categorical and numeric attributes. When an
attribute is categorical (i.e. its values are from a small set of
discrete possibilities), a node of a decision tree, which splits
on that attribute, simply has one branch for each value (see
the ‘Gender’ node in Fig. 1). In the case of a numerical
attribute, we use a discretization of the attribute values that
partitions the values into a small set of intervals. E.g. in Fig.
1, ‘Salary’ has been discretized into three intervals. There are

many ways to discretize [31—33]. In prior experiments we
have found that, from the viewpoint of decision tree quality,
equal-frequency-binning [31] with five bins performs as well
as most other methods. All of the numerical attributes in the
datasets used in these experiments are pre-processed into five
discrete categories via equal-frequency-binning. This
effectively means that the smallest 20% of values of a
numerical attribute are in bin 1, the next largest 20% are in
bin 2, and so on. These bins might be labeled from “very
small” to “very large” (for example), if we were to build an
easily understandable decision tree.

TABLE I. DATASETS USED IN OUR EXPERIMENTS

Dataset
Title Attribute distribution No.

instances
%age with
target class

Car 7 categoric, 0 numeric 1728 70%
Spect 23 categoric, 0 numeric 267 79%

votes84 17 categoric, 0 numeric 435 45%
Derma 34 categoric, 1 numeric 366 17%
Flags 25 categoric, 4 numeric 194 31%

Contrac 8 categoric, 2 numeric 1,473 43%
Credit 10 categoric, 6 numeric 690 56%
Heart 8 categoric, 6 numeric 270 44%

Ionosphere 0 categoric, 35 numeric 351 36%
Wine 0 categoric, 14 numeric 178 39%
Ecoli 0 categoric, 8 numeric 336 43%
Yeast 0 categoric, 9 numeric 1,484 31%

B. Experiments

When we apply HHDT to a dataset, the basic approach to
evaluating the fitness of any HHDT chromosome is to use
the ruleset specified by the chromosome to build a tree using
the training data, and then test the accuracy of the tree on the
test data. In our experiments, in all cases, we use 9-fold cross
validation within the fitness function, thus providing a
relatively robust evaluation of performance on test data
during training. Essentially, this means that the above
process is repeated 9 times within the fitness function, for
different ‘folds’ of training and test sets. To estimate the
quality of the best HHDT found during training, we use it to
build a tree over the entire training set (i.e. all nine folds),
and record the accuracy of that tree on an entirely unseen
dataset that played no part in the training process – this is, in
essence, the missing “10th fold”. Experimental results
referred to later are always results obtained on such unseen
test sets. Finally, having learned from preliminary
investigations (for which there is no space to summarize
here), we use multiple data sets within a single training run;
that is, the fitness of a single HHDT chromosome is an
average over N datasets, each subject to 9-fold cross
validation. In this paper we always have N=4, and the
complete picture of the evaluation process for a single
HHDT chromosome is as follows:

For each dataset:
For each fold of the dataset:

Build a tree on the training data.
Evaluate the tree on the test data.

The fitness of the HHDT ruleset during training is taken as
the mean of the 36 (9 folds, 4 datasets) test set accuracies.
This setup aims to discourage overfitting, and we have found
it leads to better results on the individual datasets than if they
had been used as the sole dataset during training. Finally, as
indicated, the ultimate result of a single HHDT run is
obtained as follows: a single HHDT is returned from the
training process – the one with the best training fitness
(breaking ties randomly). This HHDT is then used to build a
tree on the full training dataset(s), and the accuracy of these
trees is recorded on entirely unseen test sets.

Here we report on two sets of experiments using two
different evolutionary algorithm and HHDT setups. In each
set of experiments, there are three sets of trials. In each trial,
a distinct group of four datasets from Table I is used. An
evolutionary algorithm is used to evolve HHDT rulesets, and
the entire trial is repeated 10 times.

The fine details of the EAs and the HHDT encodings are
detailed next. These are relatively arbitrary design choices,
representing just two samples among the vast range of
potential setups. As such they represent preliminary
investigation of the feasibility of the overall approach.

In the first set of trials, the EA terminates after 100
generations, has population size pop=45, uses 1 point
crossover, and has a mutation rate of m=5%. The HH
encoding uses rulesets with a fixed size of 3 rules, with
coarse-valued threshold genes and fine-valued percentage
genes (all integers 0,…100 are available). Each trial used a
set of four datasets that varied in their characteristics,
ensuring that there was a mixture of datasets with all
categorical, all numerical, and mixed attributes in each trial.

In the second set of trials, the EA terminates after 150
generations, has population size pop=50 and uses 2 point
crossover. Rulesets were allowed to vary in size from 3 to
12, and hence there was an additional mutation operation,
applied to every child, which either deleted a randomly
chosen rule from a ruleset (if it contained 4 or more rules) or
added a randomly generated rule (if it contained less than
12). Each child has a probability of 5% of having a rule
added or deleted. The standard mutation operator in this case
was set at m = 5%. Meanwhile, the percentage genes (x and
y) were coarse-grained, allowed to take only 21 possible
values (0, 5, …, 95, 100), and the threshold genes were
allowed to take on any of 20 possible values: {0.05, 0.1, …,
0.95, 1}. Other details of this EA were the same as before.

C. Results

Table II summarizes the results of the first set of

experiments. For example, the value of 0.779 in the HHDT
row and the {yeast, votes, heart, flags} column indicates that
the HHDT mean performance on unseen test sets, averaged
over 10 independent trials, was 0.779 (i.e. 77.9% accuracy,
to 3 significant figures) when the HHDT evolution process
used those four datasets. The value of 0.770 for Information
Gain in the same column indicates that (using the same
training/test partitions, and unseen test sets) the equivalent

value for ID3 employing the Information Gain heuristic is
77.0% accuracy. The ‘overall’ column gives the mean
accuracy over the three sets of trials. Ranks were applied for
each set of trials, ranging from 1 (best performance) to 13th
(worst), and the rightmost column gives the mean rank over
all trials. The methods are arranged in order of mean rank,
and the best result in each column is in bold (where there
seem to be ties, these are broken to more significant digits).
We do not have space here to list the full sets of results for
each of the ten independent runs, but we can report that a T-
test comparing the HHDT ranks with those of Relevance and
MDL yields a p value of < 0.05 indicating >95% confidence
in the assertion that the evolved HHDT trees deliver better
unseen test set performance than the ID3(h) trees for any of
the other heuristics h.

HHDTs appear to have the best overall performance (the
most appropriate indicator is mean rank, which is non-
parametric), suggesting that the hyperheuristic training
process is capable of leading to specific combinations of
heuristics whose behavior generalizes well.

TABLE II. SUMMARI ZED RESULTS OF FIRST GROUP OF EXPERIMENTS

Method

yeast
votes
heart
flags

Car
ecoli

derma
wine

contrac
credit
iono
spect

over-
all

Mean
rank

HHDT 0.779 0.906 0.771 0.818 3.33
Relevance 0.773 0.914 0.765 0.818 4.33
M.D.L 0.776 0.898 0.774 0.816 4.33
Chi-Squ. 0.774 0.903 0.768 0.815 6
Gain Ratio 0.772 0.904 0.769 0.815 6.33
Inf. Gain 0.77 0.913 0.76 0.814 7
Gini Index 0.76 0.912 0.763 0.817 7
Sym. Gini 0.755 0.905 0.769 0.81 7.33
Sym. Gain 0.756 0.887 0.771 0.805 7.67
Wt. Evid. 0.78 0.852 0.763 0.798 7.67
J-Measure 0.772 0.891 0.764 0.809 8
Mod. Gini 0.757 0.906 0.749 0.804 9
RELIEF 0.749 0.815 0.725 0.763 13

Table III summarizes the results of the second set of
experiments. The major differences in this case are that the
rulesets were allowed to vary in size, and all 12 heuristics
were available for use in the rulesets.

HHDT is joint second along with ID3 using the
Relevance heuristic [22]. In terms of statistical significance,
we note that the difference in rank between Gain Ratio and
HHDT is significant with a confidence of >90%, and the
superiority of HHDT over MDL is significant with
confidence >95%. HHDT performs well in this set of trials,
but achieves a relatively low rank in the {contrac, credit,
iono, spect} trial, which dampens its overall performance.
We suspect the availability of all 12 heuristics and the larger
allowed sizes for the rulesets contributed to a greater degree
of over-fitting in this experiments.

TABLE III. SUMMARI ZED RESULTS OF SECOND GROUP OF
EXPERIMENTS

Method

yeast
votes
heart
flags

car
ecoli

derma
wine

contrac
credit
iono
spect

over-
all

Mean
rank

Gain Ratio 0.778 0.912 0.771 0.820 2.33
Relevance 0.770 0.909 0.771 0.817 3.67

HHDT 0.780 0.915 0.756 0.817 3.67
M.D.L. 0.778 0.900 0.766 0.815 5

Gini Index 0.763 0.907 0.764 0.811 7
Inf. Gain 0.767 0.911 0.754 0.811 7
Chi-Sq. 0.765 0.911 0.751 0.809 7.33
Wt Evid. 0.774 0.857 0.760 0.797 7.67

Sym. Gain 0.761 0.896 0.771 0.809 8
Sym. Gini 0.761 0.907 0.759 0.809 8.67
Mod. Gini 0.767 0.901 0.743 0.804 8.67
J-Measure 0.762 0.895 0.761 0.806 9

RELIEF 0.740 0.819 0.724 0.761 13

IV. CONCLUDING DISCUSSION

We have investigated hyper-heuristics for discovering
decision tree building algorithms. A key aspects of any
hyper-heuristic approach, when the general aim is towards
deriving algorithms that may be generally useful on other
problems or datasets, is to understand what are the relevant
aspects of ‘state’ during the solution-construction process.
That is, when the decision is made to use a particular
heuristic, it is on the basis of specific observations of the
current partial tree and the dataset. We expect that the
prospects for hyper-heuristic methods in decision tree
induction, and in data mining in general, will depend much
on finding appropriate measures on which to base this
decision. Such measures will be ones that have a chance of
general salience, rather than being too specific to the
dataset(s) in question. In this paper the state information is
the set of entropy values among the remaining attributes, and
the rules effectively suppose that the appropriate choice of
heuristic can be made on the basis of a simple
characterization of the distribution of entropy values.

This method has clearly yielded some degree of success.
In each of three distinct trials, each using a separate
collection of datasets, an evolved HHDT algorithm was able
to generally outperform 12 alternatives on unseen test sets.
The comparative algorithms are equivalent to ID3 using a
single chosen heuristic, and included among them the most
popular ID3 variants.

In terms of performance on the given datasets, the results
here are not difficult to beat using alternative specialized
techniques. However, in terms of developing speedy
constructive DT algorithms with good performance, HHDT
is clearly promising. One possibility that arises from this
work is the potential for finding an HHDT ruleset (which we
might call, for example, ID4) that generally outperforms the
classic ID3 on arbitrary collections of datasets that were not
seen during the HHDT training process. In results not
reported here, tests of HHDT rulesets have found them
competitive with ID3 on unseen datasets (as opposed to, as

used here, unseen holdout portions of the datasets used for
training), but neither better nor worse with statistical
significance. But we expect that such is achievable given
better understanding of how to choose appropriate
collections of datasets for training, and given effective
choices of state indicators to use within the rules.

Meanwhile, there is clearly promise for the current
HHDT method for developing effective DT builders for
datasets that are similar (in senses yet to be defined) to those
used during training (indeed, Pappa and Freitas [9] come to
similar conclusions). A clear application niche for such a
method is where there are recurring datasets. This happens,
for example, in scenarios where classifiers need to be kept up
to date, or entirely refreshed, by constant re-learning from
new data that comes from a consistent source. This is a very
common situation. E.g. many financial trading systems
employ classifiers that are trained on data from a fixed recent
time window, and these need to be relearned daily or
monthly with an updated dataset. In commerce applications,
consumer buying patterns are learned from ‘basket’ or
similar data, and classifiers must be continually regenerated
from new data to maintain insight into current patterns. This
notion is also discussed in the hyperheuristic combinatorial
optimization context, for example in [34] where the authors
suggest re-using a HH for solving timetabling problems on
problems similar to the one used to evolve the HH.

 In future work we will test HHDT in the context of
developing a DT building ruleset that must be constantly
reused on continually updated datasets. We will also
examine alternative ways to represent state information in
the rules, towards finding a new generally useful DT builder,
or perhaps one that specializes in a wide class of datasets.

ACKNOWLEDGEMENT

We thank Motorola Ltd for sponsorship of this work.

REFERENCES

[1] P. Ross, Hyper-heuristics, Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques (E. K.
Burke and G. Kendall, eds.), Springer, 2005, pp. 529-556.

[2] H. Fisher and G. L. Thompson, Probabilistic learning combinations of
local job-shop scheduling rules, Factory Scheduling Conference
(Carnegie Institute of Technology), 1961.

[3] H. L. Fang, P. Ross, and D. Corne, A promising genetic algorithm
approach to job shop scheduling, rescheduling, and open-shop
scheduling problems, 5th ICGA Morgan Kauf., 1993, pp. 375–382.

[4] Zhang, W. and Dietterich, T. G. A reinforcement learning approach
to job-shop scheduling. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, 1995, pages 1114-1120.

[5] Zhang, W. and Dietterich, T. G. High-performance job-shop
scheduling with a time-delay TD(λ) network. In Touretzky et al.
(eds) Advances in Neural Information Processing Systems: Proc. of
the 1995 Conf., 1996, pages 1024-1030, Cambridge, MA. MIT Press.

[6] J. Gratch, S. Chien, and G. DeJong, Learning search control
knowledge for deep space network scheduling, Proc. 10th Int;l Conf.
on Machine Learning (Amherst, MA), 1993, pp. 135–142.

[7] Ross P., Hart E., Marin-Blazquez J.G. and Schulenberg S. Learning a
procedure that can solve hard bin-packing problems: a new GA-based
approach to hyperheuristics. In Proc. GECCO 2003.

[8] Terashima-Marin H., Moran-Saavedra A., Ross, P. Forming hyper-
heuristics with GAs when solving 2D-regular cutting stock problems.
IEEE Congress on EC, v.2. 2005. pp. 1104-1110.

[9] Automatically evolving rule induction algorithms. G. L. Pappa and A.
A. Freitas. In Fuernkranz, Scheffer, and Spiliopoulou, (eds), Proc.17th
ECML, LNCS volume 4212 pp. 341-352, 2006.

[10] Pappa, G.L., Freitas, A.A.: Towards a genetic programming
algorithm for au-tomatically evolving rule induction algorithms. In
Furnkranz, J., ed.: Proc.ECML/PKDD-2004 Workshop on Advances
in Inductive Learning. (2004) 93—108.

[11] Mitchell T. Machine Learning. McGraw-Hill, 1997.

[12] Quinlan J.R. Induction of Decision Trees. Machine Learning 1: 81-
106. 1986.

[13] Kononenko I., Bratko I. and Roskar E. Experiments in Automatic
Learning of Medical Diagnostic Rules. Technical Report, Jozef
Stefan Institute, Ljubljana. 1984.

[14] Smyth P. and Goodman R.M. Rule Induction using Information
Theory. Knowledge Discovery in Databases. 1991. pp.159-176.

[15] Quinlan J.R. C4.5: Programs for Machine Learning. Morgan
Kaufman, Los Altos CA. 1993.

[16] López De Mántaras R. A Distance-Based Attribute Selection Measure
for Decision Tree Induction. Machine Learning 6: 81-92. 1991.

[17] Brieman, L., Friedman J., Olshen R. and Stone C. Classification and
Regression Trees. Chapman & Hall, Wadsworth Inc. NY. 1984.

[18] Kononenko I. Estimating Attributes: Analysis and Extensions of
RELIEF. In Proc. 7th Eur. Conf. on Mach. Learn. 1994. pp. 171-182.

[19] Zhou X.J. and Dillon T.S. A Statistical-Heuristic Feature Selection
Criterion for Decision Tree Induction. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 3(8). 1991. pp. 834-841.

[20] Smyth P. and Goodman R.M. Rule Induction using Information
Theory. Knowledge Discovery in Databases. 1991. pp.159-176.

[21] Kononenko I. On Biases in Estimating Multi-Valued Attributes. 1st
Int’l Conf. on KDDM. 1995. pp. 1034-1040.

[22] Baim P.W. A Method for Attribute Selection in Inductive Learning
Systems. IEEE Trans. on PAMI, 10: 888-896. 1988.

[23] Kira K. and Rendell L. The Feature Selection Problem: traditional
methods and a new algorithm. In Proceedings of the 10th National
Conference on Artificial Intelligence. 1992. pp. 129-134.

[24] Michie D. Personal Models of Rationality. Journal of Statistical
Planning and Inference, 25: 381-399. 1990.

[25] Mingers J. An Empirical Comparison of Selection Measures for
Decision-Tree Induction. Machine Learning, 3(4) 1989. pp. 319-342.

[26] Breiman L. Technical note: some properties of splitting criteria.
Machine Learning, v.24, n.1. 1996. pp.41-47.

[27] Badulescu L.A. The Choice of the Best Attribute Selection Measure
in Decision Tree Induction. Annals of University of Craiova, Math.
Comp. Sci. Ser., v. 34. 2007. pp. 88-93.

[28] Niblett T. and Bratko I. Learning Decision Rules in Noisy Domains.
In Proceedings of Expert Systems, Cambridge University Press. 1986.

[29] Quinlan J.R. Simplifying Decision Trees. International Journal of
Man-Machine Studies, 27(3). 1987. pp. 221-248.

[30] Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning
Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: U. of Calif., School of Info. and Computer Science.

[31] Han J. and Kamber M. Data mining: concepts and techniques.
Morgan Kaufmann, San Francisco, CA. 2000.

[32] Fayyad U.M. and Irani K.B. Multi-interval Discretization of
Continuous-Valued Attributes for Classification Learning. In Proc.
13th Int’l Joint Conf. on Artificial Intelligence. 1993. pp. 1022-1027.

[33] Kerber R. ChiMerge: Discretization of Numeric Attributes. In Proc.
9th Int’l Conf. of AAAI, 1992. pp. 123-128.

[34] Terashíma-Marin H., Ross P. and Valenzuela-Rendón M. Evolution
of Constraint Satisfaction Strategies in Examination Timetabling. In
Proc. GECCO 1999. pp. 635-642.

