
 
 

 

  

Abstract— Learning Bayesian networks from data is an N-P 
hard problem with important practical applications.  Several 
researchers have designed algorithms to overcome the 
computational complexity of this task. Difficult challenges 
remain however in reducing computation time for structure 
learning in networks of medium to large size and in 
understanding problem-dependent aspects of performance. In 
this paper, we present two novel algorithms (ChainACO and 
K2ACO) that use Ant Colony Optimization (ACO). Both 
algorithms search through the space of orderings of data 
variables. The ChainACO approach uses chain structures to 
reduce computational complexity of evaluation but at the 
expense of ignoring the richer structure that is explored in the 
K2ACO approach. The novel algorithms presented here are 
ACO versions of previously published GA approaches. We are 
therefore able to compare ACO vs GA algorithms and Chain vs 
K2 evaluations. We present a series of experiments on three 
well-known benchmark problems. Our results show problem-
specific trade-offs between solution quality and computational 
effort. 

I. INTRODUCTION 

BAYESIAN Networks (BNs) are probabilistic graphical 

models that represent the dependencies among a set of 
random variables in a chosen domain. A BN has two 
components: a structure and a set of parameters. The 
structure is a directed acyclic graph (DAG) and the 
parameters specify a joint probability distribution over the 
random variables [1].  BN is an efficient tool for performing 
probabilistic inference and is frequently utilized for 
modeling domain knowledge in Decision Support Systems, 
such as fault diagnosis, risk analysis, decision analysis, and 
medical expert systems [2][3][4]. However, learning 
Bayesian network is, in general, an NP-hard problem. It is 
known that the number of possible structures grows super-
exponentially with the number of nodes [5], and so 
evaluating all possible structures is infeasible in most 
practical domains, where the number of variables is typically 
large. The process of finding cheaper approaches for 
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learning the structure of BNs from large datasets is an area 
that has gained importance in recent years and is now 
widespread. In recent years, some powerful algorithms for 
the automatic learning of BNs from data have emerged. They 
can be grouped into two main approaches: methods based on 
conditional independence tests, and methods based on search 
and scoring metrics. 

The conditional independence approach attempts to 
estimate from the data whether certain conditional 
dependences exist between the variables. These dependency 
relationships are usually measured through using statistical 
or information theoretical tests. Measures such as Pearson’s 
product moment correlation coefficient, the Chi-Square test 
and mutual information are often used [6] [7] [8]. The search 
and score approach attempts to search for the best structure 
in the space of possible structures, according to a scoring 
function measuring the fit of each structure to the data. The 
structure found to have the best score is then returned [9]. 
Algorithms of this type may also require node ordering, in 
which a parent node precedes a child node so as to narrow 
the search space [9]. The most common scoring functions 
used in these algorithms include the K2-CH metric [9], 
BDeu [10], BIC [11], and Minimum Description Length 
(MDL) [12]. A range of well-known heuristic search 
techniques have been applied in this way, including: Hill 
Climbing [13], Genetic Algorithms [14], Simulated 
Annealing [15], and Ant Colony Optimization (ACO) [16] 
[17]. 

In this paper we are interested in the search and score 
approach and will investigate two novel algorithms to 
construct BN using Ant Colony Optimization. Previous 
research has already applied ACO to BN learning in a     
variety of ways [17] [18] [19] [20] [21]. The experimental 
results in these papers show better performance of ACO with 
complicated networks compared to other algorithms when 
reconstructing the test networks. ACO has been successfully 
applied to the Travelling Salesman Problem (TSP) [22]. The 
problem of finding an optimal ordering of variables in search 
and scoring approaches resembles the asymmetric TSP [23], 
[24], whose search space is the set of permutations of the 
nodes in a graph. In this paper, ACO will be used to search 
for the best node ordering on the domain that restricts the 
heuristic stage for constructing structure. We aim to 
empirically investigate to what extent ACO is an efficient 
way of searching node orderings. 

The remainder of the paper is organized as follows. We 
briefly introduce the ACO for BN structure learning and K2 
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algorithm in section 2. In section 3, we describe our novel 
approaches in terms of the ACO metaheuristic. We then 
describe the experiments carried out for testing our 
approaches in section 4. In section 5 we discuss the results 
and finally we draw conclusions in section 6.  

 

II. BACKGROUND 

A. ACO for Bayesian Network Structure Learning 

   ACO [22] [25] [26] is a relatively new paradigm of bio-
inspired algorithms. The inspiration for ACO is the 
cooperative behavior of real ants by means of chemical 
pheromone trails, which are able to find the shortest path 
from a food source to their nest. Artificial ants move through 
a construction space: a path in such a space defines a series 
of construction steps that can be use to assemble a solution 
to some problem of interest. ACO algorithm has shown very 
good performance when applied to solving such hard 
combinatorial problems as TSP, the quadratic assignment 
problem [27], routing problems [28], and sorting problems 
[29].   
   To date, there has been only a limited amount of research 
that applys ACO algorithms to learning BN. Examples of 
these approaches include the ACO-B[16], MMACO[18][19], 
and ACO-E[20][21].etc. These approaches typically 
integrate with other greedy construction heuristic algorithms, 
such as Algorithm B [10], K2SN algorithm [30] and the 
local discovery algorithm MMPC [31]. The algorithms that 
have been developed so far for BN structure learning have 
investigated appropriate representations of the problem, 
specific heuristic information to help guide the ants, ways of 
updating the pheromone track, and the probabilistic 
transition rule that move the ants to the next stage  

We now review these existing ACO-based algorithms, 
emphasizing as we go those aspects particularly important to 
the approaches developed in this paper. These include: 
search space, nodes transitions rule, heuristic information, 
local and global updating rules. These ACO-based 
algorithms search in a range of different spaces. The space of 
orderings of the DAGs is searched in the ACO-K2SN 
algorithm; the graph made of DAGs with n  nodes in ACO-
B; the space of Equivalence Classes in the ACO-E 
algorithm; and the search space is the set of possible edges in 
the MMACO algorithm. All of these algorithms execute 
pheromone updating in two similar ways to that used on the 
TSP. One way is to updated step-by-step after each ant 
chooses a new node to visit, by reducing the amount of 
pheromone on the edge.  The other way is global update at 
the end of each iteration, using the best solution found so far.  

Each ACO-based algorithm has respective heuristic 

information ijη , because the heuristic for the arc from node 

i  to j  often either relates to the scoring metric being used 

or relates to the search space. For example, in ACO-K2SN, 
where the space is the ordering of DAGs, the heuristic 

information is defined as   

,

1

( ( ))
ij

j a jf x P x
η =  

wheref  is the scoring metric being used and ( )a jP x , the 

parent of jx  are found by K2 algorithm. However, in 

MMACO algorithm, where the space is the set of possible 
edges, the heuristic information is defined as  
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Here f  is the scoring metric found by BDeu score 

function [10]. In choosing which node to visit as the next 
node for an ant lying at a particular node in a particular state, 
all these algorithms utilize the same probabilistic transition 
rule. The rule uses the values given by heuristic information 
and pheromone to decide which node to visit next. This is a 
random choice based on a distribution given by the heuristic 
information and pheromone distribution. 

 

B.  K2 Algorithm   

In the search and score approach for learning BN 
structure, K2 is one of the best known algorithms that creates 
and evaluates a BN from a database of cases once an 
ordering between the system variables is given. For the 
evaluation of the joint probability of a network that it 
constructs, the formula of Cooper and Herskovits, the (K2-
CH) metric, is used [9]. This metric can be expressed as  
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Here iq denotes the number of possible different instances 

the parent of variable 
iX  can take. ir  is the number of 

values 
iX  has, 

ijkN  denotes the number of cases in the dataset 

D  in which 
iX  takes value k  of its 

iX  instance when its 

parent 
iaP  has its j  th value. 

ijN  is the sum of all 
ijkN  for all 

values ix  can take. As it is easier to work in the logarithmic 

space, in practice, the scoring function uses the value 
log( ( , ))SP B D  instead of ( , )SP B D . 

The K2-CH metric (1), decomposes into a product of 
factors: 
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Each factor expresses the possibility when ix  is the parent 

of jx . Such factor evaluations require counting of value 

combinations throughout the dataset and so represent the 
main computational effort of the algorithm. We therefore 



 
 

 

compare algorithm performance in terms of the number of 
such factor evaluations used to produce solutions of 
threshold quality. 
 

III.  CHAINACO AND K2ACO ALGORITHMS 

We propose two novel algorithms using ACO for BNs 
structure learning based on two existing approaches 
ChainGA and K2GA. In this paper, we name the new 
approaches as ChainACO and K2ACO respectively. 

ChainGA[32] is a search and score heuristic. It based on 
the hypothesis that a chain is a sufficiently good model to 
locate node orderings on which good BN structure can be 
built. The node ordering can be evaluated by building its 
associated chain structure and evaluating it given the data 
with scoring metric. This is a relatively cheap evaluation in 
terms of the number of K2-CH factor evaluations needed. 
The ChainGA for BN structure learning has two phases: in 
the first phase, a Genetic Algorithm (GA) is used to evolve 
the best ordering based on, chain model evaluations. 
Wherein the second, post-evolution phase, K2 is run 
sequentially on the best orderings found in the first phase 
and the best overall structure is returned. Previous results 
have shown that the ChainGA can get a significant reduction 
in computational cost. 

 The main idea of ChainACO approach comes from 
ChainGA. ChainACO also has two phases, depicted in Fig.1. 
In the first phase of ChainACO, we construct chains using 
ACO instead of GA. The second phase applies K2 to the best 
orderings found and returns the best structure. This is 
identical to the second phase in ChainGA. 
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Fig. 1:  ChainAC 

 
The K2GA algorithm [33] similarly uses a GA to search 

the space of node orderings rather than the full space of BN 
structures. Here however there is only a single GA phase. 
The fitness of each ordering is calculated by running the K2 
search algorithm on each ordering evaluated and returning 
the score of the network structure found. The best structure 
returned is that generated by K2 from the best ordering 
evaluated in this fashion. 

Here we use ACO to replace the GA search in K2GA. In 
K2ACO, the initial individuals in the population are 
randomly created node orderings which are then optimized 
by a colony of ants in this space until a good ordering is 
found. During the ACO process, the fitness of each ordering 
is calculated by running the K2 search algorithm on it. Once 
the optimization terminates, as with K2GA, the structure 
corresponding to best ordering found is automatically 
obtained. Fig. 2 shows the operation of K2ACO.  
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Fig. 2: K2ACO 

 
The main components in ChainACO and K2ACO 

algorithms are defined as follows: 
1) The search space can be regarded as a graph with n  

nodes, one for each random variable. The possible search 
space is the set of !n  orderings. 

2)  Node transitions rules. Ants in node  i  moves to node 
j  according to the probabilistic state transition rule,             
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Where ( , )i jτ contains the pheromone amount deposited 



 
 

 

in the arc which connect node i  with node j . ( ),i jη  

represents heuristic information, which is  a weighting 
function that assigns at each construction step a heuristic 
value to each feasible solution between any two nodes. q is 

a random number uniformly distributed in[0,1] , 

( )0 00 1q q≤ ≤  is a parameter, β  is a parameter which 

control the relative importance of pheromone verse the 
probability, and  S is random variable selected according to 
the probability given in (4). 
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In our approaches, the heuristic information 
ijη  in (3) and 

(4) is defined according to the possibility( , )g i j , which 

expresses the possibility when ix  is the parent of jx , this is 

calculated from the K2-CH metric in our algorithm as 
defined in formula (2) .       
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    3) Local and updating rules. Ants prefer to move to nodes 
which are connected by high possibility( , )g i j and a high 

amount of pheromone. Every time that an edge is chosen by 
one ant, the amount of pheromone is changed by applying 
the local updating rule (5):                 
 

0( , ) (1 ) ( , )                      (5)i j i jτ ρ τ ρ τ← − + ⋅  

The local updating rule is intended to avoid a very strong 
edge being chosen by all the ants. Once all ants have 
completed their tours a globe pheromone updating rule (6) is 
applied:    
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In (5) and (6), bothρ and ( )0 , 1α ρ α< ≤  are parameters 

which control the pheromone evaporation and ( )C S+  is the 

cost associated the best solution. 
    4) The initial level of pheromone( , )i jτ  in probabilistic 

state transition and in pheromone updating rules is defined in 
formula (7)      
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where n  is the number of variables and ( )2 :GA Kf G D−

 is the 

fitness which we obtained from [32]. 
The specific parameter values used are provided in the 
following section describing our experiments. 
 

 

IV.  EXPERIMENTAL   EVALUATION 

    In order to measure the performance of the two proposed 
approaches, we carried out a set of experiments for both 
ChainACO and K2ACO algorithms. We also ran 
comparative experiments on ChainGA and K2GA 
algorithms. The aim of the experiments is to compare 
performance of four approaches to modeling three 
benchmarks data sets. We are also interested in the 
differences between algorithms based on ACO (ACO 
algorithms) and GA (GA algorithms), algorithms based on 
Chain (Chain algorithms) and K2 (K2 algorithms) 
respectively. Three benchmark problems have been selected 
in our research: Asia, Car and Alarm. The Asia network is a 
simple network with 8 binary nodes and 8 edges. It is a 
diagnostic demonstrative Bayesian network [34]. The Car 
Diagnostic Network consists of 18 nodes and 17 edges. It 
can be applied to diagnose malfunctioning of self-propelling 
vehicles [35]. The Alarm network is a medical diagnostic 
system for intensive care patient monitoring consisting of 37 
nodes and 46 edges [36]. All the data cases are sampled 
using the Netica tool [37].  In this paper, the dataset sizes for 
Asia, Car and Alarm are 5000, 10000 and 3000 cases 
respectively. 

 

A. Experimental Design 

As described in section 3, both ChainACO and ChainGA 
algorithm have two phases. K2ACO and K2GA algorithms, 
on the other hand, each have a single phase. We set phase 
transition parameters and stopping conditions for each 
algorithm as follows: 

For ChainACO and ChainGA algorithms, we specify a 
phase-transition parameter T  such that when the population 
best chain structure score exceeds T , the algorithm transits 
to the second phase.  

For K2ACO and K2GA algorithms, we specify a stopping 
condition 

0T  according to previous experimental results in 

[32].  We run the ACO and GA iteration under the condition 
of the fitness of Bayesian network structure less than 

0T  

respectively to construct the best structures and get the best 
fitness at the same time. 

In all cases the scoring metric used to evaluate the search 
is the K2-CH metric. The parameters used in ChainACO and 
K2ACO are shown in Table 1. The parameter settings of 
ChainGA and K2GA are shown in Table 2. These 
parameters are the same, for the GA algorithms, as those 



 
 

 

used in [32].  
 
 

TABLE 1: The ACO Parameter Settings 

ACO Settings                   Asia              Car               Alarm  
Number of ant 
Number  of  iteration 

 
0q  

β  
,ρ α  

Number of Run 

6                   8                    8 
    30                30    30 

       0.95 
   3 

       0.1 
   30 

0.8 
2 
0.1 
30 

  0.9 
   2  
  0.1 
  30 

            
 

TABLE 2: The GA Parameter Settings 

GA Settings                    Asia               Car               Alarm  
Evolution type 
Number of  Offspring 
Selection 
Crossover 
Mutation 
Population size 
Number of Run 

    Steady State(Genitor) 
                        1 

           Rank Selection 
  Cycle Crossover: rate:0.9 

   Displacement Mutation:rate:0.1 
100                  20                     10 
 30                   30                     30 

 
 

B.  Experimental Results 

For each algorithm, we recorded the following run data:  
1) The value of the K2-CH metric (log version) in eq. (1). 

We know that this score associated with the best structure, as 
the score is the logarithm of a probability, and so it is 
negative number. The closer to zero, the closer the 
probability is to 1.  This means the better is the network. 

2) The number of factor evaluation (F.E.). F.E. is utilized 
to evaluate the efficiency of the algorithms [32]. It is defined 
as being the count of times the term (2) is accessed when 
Formula (1) is used. In ChainACO algorithm, the F.E. comes 
from three parts: the evaluations needed to generate initial 

heuristic information ijη  for node transitions rules, the 

evaluations needed to calculate chain structure scores in 
phase 1, and the evaluations needed in the K2 search phase 
for obtaining the structure score. In ChainGA, the F.E. score 
is made up of two parts: the evaluations needed in the chain 
structure phase and those in the K2 search phase. In K2ACO, 
the number of F.E. includes those needed for the initial 

heuristic information ijη  for node transitions rules and those 

needed for the K2 score evaluations. In K2GA, the F.E score 
is calculated solely from the K2 score evaluations needed.  

3) The number of arcs found.  
 
The results of our experiments are displayed in Tables 3-

5. We have carried out 30 runs of each algorithm for each 
benchmark problem considered. The best score, F.E and 
their corresponding standard deviations are averaged over 30 
runs. Success rates (S.R.) are obtained through comparison 

of the score of the best structure in each run with the target 
score. In our experiments, to the target is the stopping 
condition

0T , for example, in Asia network, 
0 11150.00T = − . 

The arcs which we achieved correspond to the best-ever 
score obtained by each algorithm. 

 
TABLE 3: Experimental Results for Asia (

0 11150.00T = − ) 

                   Avg. Best Score      F. E.                   S.R.    Arcs  

ChainACO  -11167.33±18.89  128.0±4.54           50%       8 

K2ACO      -11146.22±1.85     1166.3±630.05     90%       8 

ChainGA    -11153.95±12.16   1133.43±197.24  57%        8 

K2GA         -11145.99±1.22     2468.73±15.13    100%     8  

                              
TABLE 4: Experimental Results for Car (

0 23175.00T = − ) 

                   Avg. Best Score             F. E.             S.R.   Arcs  

ChainACO  -23186.77±18.04  2083.1±263.17     30%      23 

K2ACO      -23163.83±4.07     2707.83±1784.1  60%      20 

ChainGA    -23270±126.75      964.83±198.46     25%     20 

K2GA         -23163.17±7.52    1774.63±468.07   100%   20 

                   
TABLE 5: Experimental Results for Alarm (

0 30110.00T =− ) 

                   Avg. Best Score             F. E.             S.R.   Arcs  

ChainACO  -29814.2±90.99    2480.07±1252    100%     54 

K2ACO      -30073.3±94.99    7225.07±3405.1    57%     68 

ChainGA    -30443.6±220.96  1235.93±205.85    10%     68 

K2GA         -30087.7±182.31  2596.97±497.15    53%     63  

  
 

V. DISCUSSION 

Tables 3, 4, and 5 display the results obtained for the Asia, 
Car and Alarm networks, respectively. Table 6 displays 
normalized structural differences from the original network 
for each algorithm on each benchmark. This includes arcs 
added (A), arcs deleted (D), and arcs inverted (I). 
“Normalized” means here that, on each problem, the 
absolute number of each structural difference measured is 
divided by the corresponding number for ACOChain. Thus, 
a normlaised value is smaller than 1.00 denotes the 
corresponding approach performs better than ChainACO, 
whereas a value greater than 1.00 indicates a weaker 
performance than ChainACO. 

With the aim of comparing overall computational 
efficiency, Table 7 displays the success rates per 10000 F.E. 
for each algorithm. Fig. 3, 4, and 5 plot the best scores over 
all runs for each algorithm for the Asia, Car, and Alarm 



 
 

 

networks respectively.  
 
 
      TABLE 6: Normalized structural differences within four algorithms 

to three benchmarks model. 

                      ChainACO     K2ACO    ChainGA   K2GA 

 
Asia 

 

A       1.00                1.00            1.00           1.00 
D       1.00                1.00            1.00           1.00 
 I        1.00               0.25            0.25           0.25 

 
Car 

A       1.00                0.50             0.63           0.50 

D 
 I 

1.00                0.50             1.00           0.50 
1.00                1.00             1.00           1.25 

 
Alarm 

A       1.00                1.25             1.29           1.18 
D       1.00                0.95             1.00           1.00 
 I        1.00               1.67              0.67           1.00 

 
 

TABLE 7: Success rates per 10,000 F.E. 

                            Asia                    Car Alarm 

ChainACO 
K2ACO 
ChainGA 
K2GA 

39.06 
7.72 
5.03 
4.05 

1.44 
2.22 
2.59 
5.64 

4.03 
0.79 
0.81 
2.04 

 
We now make detailed observations on the results for 

each benchmark problem: 
 For the Asia dataset, we carried out a one way ANOVA 

test using the Bonferroni correction with the four algorithms 
to compare the averaged score. The results indicate that there 
is a significant difference between the ChainACO approach 
and the other three approaches, ( )3,116 22.819, 0.05F P= < .  

K2GA obtained the best structure score and the highest 
success rate, however, the number of F.E. is the biggest, 
almost twenty times that required by ChainACO. With 
respect to the number of F.E., ChainACO is the cheapest 
one; however, the success rate is the lowest. In order to show 
the trade-offs between efficiency and success rate, the 
success rate per 10000 function evaluations is shown across 
all experiments in Table 7. We observe that ChainACO 
provides the best trade-off for the Asia networks. Table 3 
shows that each algorithm finds the same number of arcs. 
Table 6 displays the differences only in the inverted arcs. 
Comparing the Chain algorithms and K2 algorithms, we can 
find that the former is cheaper in Factor evaluation; this 
result is in accord with the hypothesis that a chain model is a 
sufficiently good model to locate node orderings of which 
good BN structure can be built [32]. The Box plots of the 
best scores found for the four algorithms across all 
experiments are displayed in Fig. 3. 

For the Car diagnosis problem, the comparative results 
shown in Table 4 are notably different from those obtained 
on the Asia network. The one way ANOVA Bonferroni test 
with the four algorithms to compare the averaged score show 
that there is a significant difference between the K2GA 

approach and the other three approaches, 

( )3,116 18.035, 0.05F P= < .The success rates in Table 4 also 

are observably different, compared with K2GA, ChainACO 
and ChainGA have very low success rates. Therefore we 
might need to re-start these algorithms three and four times 
respectively to get the same quality of result as K2GA. From 
Table 7, it can be seen that the K2GA performs better than 
the three others. ChainACO obtained the lowest rate, the 
value is only 1.44. The structural arcs found in Table 4 and 
Table 6 show that ChainACO has more added and deleted 
arc than the other three algorithms. The results for the Car 
problem are that the GA outperforms ACO in computational 
effort and structure quality.  Box plots of the best scores over 
all runs for each algorithm are displayed in Fig. 4.   

For the Alarm problem, the difference is apparent in the 
Best score, F.E, success rate, and the arc found between 
ChainACO and other three algorithms. ANOVA tests using 
the Bonferroni correction show there is a significant 
difference between the ChainACO approach and the other 
three approaches, ( )3,116 80.726, 0.05F P= < . From Table 

6, we can find that the structural errors between ChainACO 
and other three algorithms also have significant differences. 
Table 7 shows that ChainACO obtained the best trade-off. It 
is interesting to note that K2ACO and ChainGA have 
significant differences in factor evaluation and success rates 
but very similar ratios. Both of them are only one fifths of 
the ChainACO’s result. The experimental results for Alarm 
data also show that the K2 algorithms need more time in 
factor evaluation than Chain algorithms, the number of F.E. 
in K2ACO is nearly three times that for ChainACO, and in 
K2GA is nearly twice to ChainGA. The best scores found for 
the four algorithms are displayed in Fig. 5.   
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Fig. 3: The Box plots of the Best found Structure scores for Asia at each 

run for all algorithms  
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      Fig. 4: The Box plots of the Best found Structure scores for Car at 

each run for all algorithms  
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     Fig. 5: The Box plots of the Best found Structure scores for Alarm at 

each run for all algorithms  

 

VI. CONCLUSION 

In this paper, we have proposed two new search and score 
algorithms for learning BN structures. Each utilizes the ACO 
metaheuristic to guide the search of node orderings. 
ChainACO uses ACO evolving on chain structures. This 
reduces computational expense of the search but with a 
penalty on the success in retrieving structure on known 
benchmarks K2ACO also searches node orderings using the 
K2 algorithm directly to construct and score locally 
optimized structures. K2ACO is more computationally 
expensive but in general has a higher success rate in 
recovering the known structures. We applied our approaches 
to three different benchmark datasets of varying 
complexities. We also compared our methods to two existing 
approaches which also search node orderings but utilizing 
genetic algorithms.  

We conclude that there is a high degree of problem 
dependency both in the effectiveness and the efficiency of 
the approaches used. Both the choice of metaheuristic and 
the choice of scoring method can significantly affect 
performance. We also conclude that, for some problems, 

repeated restarts will be beneficial. This suggests that one 
way forward is to develop hyperheuristic approaches that 
adapt themselves to a particular problem as they learn. An 
important aspect of this will be to understand how particular 
structural features interact with particular heuristics to either 
promote or inhibit learning. 
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