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Abstract— Learning Bayesian networks from data is an N-P
hard problem with important practical applications. Several

researchers have designed algorithms to overcome eth
computational complexity of this task. Difficult challenges
remain however in reducing computation time for stucture

learning in networks of medium to large size and in
understanding problem-dependent aspects of perfornmee. In

this paper, we present two novel algorithms (Chain€0 and

K2ACO) that use Ant Colony Optimization (ACO). Both

algorithms search through the space of orderings ofdata

variables. The ChainACO approach uses chain structes to

reduce computational complexity of evaluation but & the

expense of ignoring the richer structure that is eplored in the

K2ACO approach. The novel algorithms presented hereare

ACO versions of previously published GA approacheswWe are

therefore able to compare ACO vs GA algorithms andChain vs

K2 evaluations. We present a series of experimentan three

well-known benchmark problems. Our results show prblem-

specific trade-offs between solution quality and aoputational

effort.

. INTRODUCTION

learning the structure of BNs from large datasetar area
that has gained importance in recent years andois n
widespread. In recent years, some powerful algosttior
the automatic learning of BNs from data have engrgbey
can be grouped into two main approaches: methostsdban
conditional independence tests, and methods basedarch
and scoring metrics.

The conditional independence approach attempts to
estimate from the data whether certain conditional
dependences exist between the variables. Thesadiempey
relationships are usually measured through usiatistital
or information theoretical tests. Measures sucRearson’s
product moment correlation coefficient, the Chi-8autest
and mutual information are often used [6] [7] [Bhe search
and score approach attempts to search for thestresture
in the space of possible structures, according szaing
function measuring the fit of each structure to da¢a. The
structure found to have the best score is therrmedu[9].
Algorithms of this type may also require node oiugrin
which a parent node precedes a child node so aartow
the search space [9]. The most common scoring ifurect
used in these algorithms include the K2-CH metf§, [

AYESIAN Networks (BNs) are probabilistic graphicalBDeu [10], BIC [11], and Minimum Description Length

models that represent the dependencies among afsetMDL) [12]. A range of well-known heuristic search
random variables in a chosen domain. A BN has twi&chniques have been applied in this way, includirig

components: a structure and a set of parameters. T@limbing

[13], Genetic Algorithms [14], Simulated

structure is a directed acyclic graph (DAG) and thé&nnealing [15], and Ant Colony Optimization (ACO}{]

parameters specify a joint probability distributiomer the
random variables [1]. BN is an efficient tool foerforming
probabilistic inference and is frequently utilizetbr
modeling domain knowledge in Decision Support Syste
such as fault diagnosis, risk analysis, decisiocalyais, and
medical expert systems [2][3][4].However, learning
Bayesian network is, in general, an NP-hard problers
known that the number of possible structures grewser-
exponentially with the number of nodes [5], and
evaluating all possible structures is infeasible rimost
practical domains, where the number of variableggially
large. The process of finding cheaper approaches
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[17].

In this paper we are interested in the search aodes
approach and will investigate two novel algorithrits
construct BN using Ant Colony Optimization. Prewdou
research has already applied ACO to BN learningain
variety of ways [17] [18] [19] [20] [21]. The experental
results in these papers show better performangecaf with
complicated networks compared to other algorithnierw

S?econstructing the test networks. ACO has beenesstally

applied to the Travelling Salesman Problem (TSR).[Zhe

1,J(o)roblem of finding an optimal ordering of variablassearch

and scoring approaches resembles the asymmetridZ3$P
[24], whose search space is the set of permutatibribe
nodes in a graph. In this paper, ACO will be useddarch
for the best node ordering on the domain that icéstthe
heuristic stage for constructing structure. We aim
empirically investigate to what extent ACO is affiognt
way of searching node orderings.

The remainder of the paper is organized as folldvs.
briefly introduce the ACO for BN structure learningd K2



algorithm in section 2. In section 3, we descrilbe novel information is defined as

approaches in terms of the ACO metaheuristic. Wan th _ 1

describe the experiments carried out for testing ou i _m

approaches in section 4. In section 5 we discusgdhults . !

and finally we draw conclusions in section 6. wheref is the scoring metric being used aRj(x;) . the

parent of X; are found by K2 algorithm. However, in

Il. BACKGROUND MMACO algorithm, where the space is the set of fbss
edges, the heuristic information is defined as
A. ACO for Bayesian Network Structure Learning
ACO [22] [25] [26] is a relatively new paradigaf bio- n;, =1+ f (sK 0( En.g)— f( sO( E §z)
inspired algorithms. The inspiration for ACO is the
cooperative behavior of real ants by means of cb@mi Heref is the scoring metric found by BDeu score
pheromone trails, which are able to find the stsrfgath fynction [10]. In choosing which node to visit de tnext

from a food source to their nest. Artificial antsve through ,5de for an ant lying at a particular node in dipalar state
afconstructpn space: ﬁ path 'anUCh a space 6edieries 5| these algorithms utilize the same probabilistansition
of construction steps that can be use to assemséguton rule. The rule uses the values given by heurisficrmation

to some problem of interest. ACQ algorithm has showary %'"ld pheromone to decide which node to visit nekis Ts a
good performance when applied to solving such har d hoice based distributi . b .
combinatorial problems as TSP, the quadratic sqn | 2ndom choice based on a istribution given byhearistic

problem [27], routing problems [28], and sortingkplems information and pheromone distribution.
[29].

To date, there has been only a limited amouneséarch B, K2 Algorithm
that applys ACO algorithms to learning BN. Exampies In the search and score approach for learning BN
these approaches include the ACO-B[16], MMACO[18][1 gy cture, K2 is one of the best known algorithia treates
and ACO-E[20][21].etc. These approaches typicalling evaluates a BN from a database of cases once an
integrate with other greedy construction heuriatgorithms,  ordering between the system variables is given. ther
such as Algorithm B [10], K2SN algorithm [30] anbet evaluation of the joint probability of a networkathit
local discovery algorithm MMPC [31]. The algorithrttsat  constructs, the formula of Cooper and Herskovhs, (K2-
have been developed so far for BN structure legrhimve CH) metric, is used [9]. This metric can be expedsas
investigated appropriate representations of theblpmo,
specific heuristic information to help guide thésaways of noa (ri —1)! f
updating the pheromone track, and the probabilistic P(Bs, D) = F( Bs)l_l ”ml—l N ! @)
transition rule that move the ants to the nextestag T s

We now review these existing ACO-based algorithms,
emphasizing as we go those aspects particularlgritapt to
the approaches developed in this paper. Thesedecluthe parent of variableX, can take.l; is the number of
search space, nodes transitions rule, heuristmrrrdtion,
local and global updating rules. These ACO-ba
algorithms search in a range of different spacke. §pace of D in which x takes valuek of its x instance when its
orderings of the DAGs is searched in the ACO-K2SIgarentp hasits | th value., is the sum of allN, for all
algorithm; the graph made of DAGs with nodes in ACO- o ) . i
B; the space of Equivalence Classes in the ACO-2luesX can take. As itis easier to work in the logariihm
algorithm; and the search space is the set oflplesstiges in space, in practice, the scoring function uses thtiev
the MMACO algorithm. All of these algorithms exeeut |og(P(B,, D)) instead ofP(B;, D).
pheromone updating in two similar ways to that usedhe The K2-CH metric (1), decomposes into a product of
TSP. One way is to updated step-by-step after eath ¢,.iors:
chooses a new node to visit, by reducing the amaofint 4 (r. _1)! ;
pheromone on the edge. The other way is globahtapdt F= r"—ﬂ N ! (2
the end of each iteration, using the best soldtond so far. 1= (Nii +r _1) =

Each ACO-based algorithm has respective heurISt|§;ach factor expresses the possibility wh¥nis the parent

information /7, , because the heuristic for the arc from node ] . .
of X; . Such factor evaluations require counting of value

Here(} denotes the number of possible different instances

Se\(/jaluesxi has,Nijk denotes the number of cases in the dataset

i to | often either relates to the scoring metric beiegdu

or relates to the search space. For example, in-KZ8N,
where the space is the ordering of DAGSs, the hgaris

combinations throughout the dataset and so reprdken
main computational effort of the algorithm. We #ifere



compare algorithm performance in terms of the nunuje
such factor evaluations used to produce solutiofis
threshold quality.

lll. CHAINACO AND K2ACO ALGORITHMS

0 The K2GA algorithm [33] similarly uses a GA to sgar
the space of node orderings rather than the faltsmpf BN
structures. Here however there is only a single ghase.
The fitness of each ordering is calculated by migrihe K2
search algorithm on each ordering evaluated andgnieg
the score of the network structure found. The kasicture

We propose two novel algorithms using ACO for BNgetymed is that generated by K2 from the best rorde
structure learning based on two existing approach@$giyated in this fashion.

ChainGA and K2GA. In this paper, we name the new pere we use ACO to replace the GA search in K2®A. |

approaches as ChainACO and K2ACO respectively.
ChainGA[32] is a search and score heuristic. leHasn
the hypothesis that a chain is a sufficiently gooaddel to
locate node orderings on which good BN structune loca
built. The node ordering can be evaluated by buogjdits
associated chain structure and evaluating it gibendata
with scoring metric. This is a relatively cheap ledion in
terms of the number of K2-CH factor evaluations dezk
The ChainGA for BN structure learning has two pbkase
the first phase, a Genetic Algorithm (GA) is usecetolve

the best ordering based on, chain model evaluations The number of ants M

K2ACO, the initial individuals in the population ear
randomly created node orderings which are thermopsid
by a colony of ants in this space until a good ordgis
found. During the ACO process, the fithess of eatering
is calculated by running the K2 search algorithnito®nce
the optimization terminates, as with K2GA, the stuue
corresponding to best ordering found is automdyical
obtained. Fig. 2 shows the operation of K2ACO.

The initial pheromone 7, Heuristic information/};

Wherein the second, post-evolution phase, K2 is run |

sequentially on the best orderings found in thst fphase
and the best overall structure is returned. Previasults
have shown that the ChainGA can get a significadtction
in computational cost.

The main idea of ChainACO approach comes from m X = % =X Sh... £,

ChainGA. ChainACO also has two phases, depictédgri.
In the first phase of ChainACO, we construct chaiesg
ACO instead of GA. The second phase applies KRedest
orderings found and returns the best structure.s Tiki
identical to the second phase in ChainGA.

The initial pheromone 7, Heuristic information /7 j; ,
The number of ants m
v
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Fig. 2: K2ACO

The main components in ChainACO and K2ACO
algorithms are defined as follows:

1) The search space can be regarded as a graphwith
nodes, one for each random variable. The possieck
space is the set af! orderings.

2) Node transitions rules. Ants in node moves to node
] according to the probabilistic state transitiolefu

. Y .
(_Jagma FUDI i ¥} <o

S otheev

3)

Wherer (i, ] ) contains the pheromone amount deposited



in the arc which connect nodé with nodej. f(i,;j)

represents heuristic information, which is a weéigh
function that assigns at each construction stepewristic
value to each feasible solution between any twaesoq is

a random number uniformly distributed [@1],
%(05 CIoSl) is a parameter,s is a parameter which
control the relative importance of pheromone vetise

probability, andS is random variable selected according to

the probability given in (4).

BUOD DY S
p(i.i)= Z(:-)T(i,j)[’ﬂ'j )8 1 ¢
0 otherwise

In our approaches, the heuristic informatiqlp in (3) and
(4) is defined according to the possibiljyi, j), which
expresses the possibility whef) is the parent ofXJ. , this is

calculated from the K2-CH metric in our algorithns a
1

defined in formula (2) .
(r-1! =

a(i.) =] cerEkG

3) Local and updating rules. Ants prefer to méw nodes
which are connected by high possibilif{i, j) and a high
amount of pheromone. Every time that an edge isahdy
one ant, the amount of pheromone is changed byyiagpl
the local updating rule (5):

7(,]) « A-p)r(j )+ pl, ¢
The local updating rule is intended to avoid a v&rgng

edge being chosen by all the ants. Once all ant® ha

completed their tours a globe pheromone updatitg(f) is
applied:

(i,j) « @-a)(.j)ralda( ) (t
Where
1 s
— if 0os*
8o(ij) = C(g) if {ij}
I if{ij}DS+

In (5) and (6), bottpand a(0< p,a<1) are parameters
which control the pheromone evaporation e@(@) is the

cost associated the best solution.
4) The initial level of pheromongi, j) in probabilistic

state transition and in pheromone updating ruleefged in
formula (7)

_ 1
"1 (Gor o D)

where N is the number of variables ar\qGGA_KZZ D) is the

fitness which we obtained from [32].
The specific parameter values used are providedhén
following section describing our experiments.

IV. EXPERIMENTAL EVALUATION

In order to measure the performance of the pivaposed
approaches, we carried out a set of experimentddon
ChainACO and K2ACO algorithms. We also ran
comparative experiments on ChainGA and K2GA
algorithms. The aim of the experiments is to corapar
performance of four approaches to modeling three
benchmarks data sets. We are also interested in the
differences between algorithms based on ACO (ACO
algorithms) and GA (GA algorithms), algorithms s
Chain (Chain algorithms) and K2 (K2 algorithms)
respectively. Three benchmark problems have bédentsd
in our research: Asia, Car and Alarm. The Asia oekws a
simple network with 8 binary nodes and 8 edgess la
diagnostic demonstrative Bayesian network [3Bhe Car
Diagnostic Network consists of 18 nodes and 17 ®die
can be applied to diagnose malfunctioning of sedfpelling
vehicles [35]. The Alarm network is a medical diagtic
system for intensive care patient monitoring cdimgjsof 37
nodes and 46 edges [36]. All the data cases arg@ledm
using the Netica tool [37]. In this paper, theadat sizes for
Asia, Car and Alarm are 5000, 10000 and 3000 cases
respectively.

A. Experimental Design

As described in section 3, both ChainACO and ChainG
algorithm have two phases. K2ACO and K2GA algorghm
on the other hand, each have a single phase. Wghase
transition parameters and stopping conditions fache
algorithm as follows:

For ChainACO and ChainGA algorithms, we specify a
phase-transition parameter such that when the population
best chain structure score excegdsthe algorithm transits
to the second phase.

For K2ACO and K2GA algorithms, we specify a stogpin
condition T, according to previous experimental results in

[32]. We run the ACO and GA iteration under thedition
of the fitness of Bayesian network structure lesanty,

respectively to construct the best structures aidige best
fitness at the same time.

In all cases the scoring metric used to evaluaes#arch
is the K2-CH metric. The parameters used in Chai@A@d
K2ACO are shown in Table 1. The parameter settioigs
ChainGA and K2GA are shown in Table 2. These
parameters are the same, for the GA algorithmghase



used in [32]. of the score of the best structure in each run Wiéhtarget
score. In our experiments, to the target is theppstm

conditionT,, for example, in Asia networky, =-11150.0(.
TABLE 1: The ACO Parameter Settings

The arcs which we achieved correspond to the hest-e

ACO Settings Asia rca Alarm score obtained by each algorithm.

Number of ant 6 8 8

Number of iteration 30 30 30 TABLE 3: Experimental Results for Asia’é =-11150.00
% 0.8 0.9 0.95 Ao BosiS FE SR A
B > > 3 vg. Best Score .E. .R. rcs
p.a 0.1 0.1 0.1 ChainACO -11167.33+18.8928.0+4.54 50% 8

Number of Run 30 30 30

K2ACO  -11146.22+1.85 1166.3+630.05 90%8
ChainGA -11153.95%¥12.16 1133.43%£197.24 57%8

TABLE 2: The GA Parameter Settings K2GA  -11145.99+1.22 2468.73+15.13 100% 8

GA Settings Asia arC Alarm
Evolution type Steady State(Genitor)
Number of Offspring 1 TABLE 4: Experimental Results for Cal{ = -23175.00
Selection Rank Selection Avg. Best Score F.E S.R. Arcs
Crossover Cycle Crossover: rate:0.9 -

- 0,
Mutation Displacement Mutation:rate:0.1 ChainACO -23186.77+18.04 2083.1+263.17 30%3
Population size 100 20 10 K2ACO  -23163.83+4.07 2707.83%¥1784.1 60%20
Number of Run 30 30 30

ChainGA -23270+126.75 964.83%£198.46 25% 20
K2GA -23163.17+7.52 1774.63+468.07100% 20

B. Experimental Results

For each algorithm, we recorded the following raed
1) The value of the K2-CH metric (log version) i €1). Avg. Best Score F.E S.R. Arcs
We know that this score associated with the besttstre, as ~chainACO -29814.2+90.99 2480.07+1252 100% 54

the score is the logarithm of a probability, and isds
negative number. The closer to zero, the closer thdC2ACO  -30073.3£94.99  7225.07£3405.1  57%8

probability is to 1. This means the better isrirénork. ChainGA -30443.6+220.96235.93+205.85 10% 68

2) The number of factor evaluation (F.E.). F.Eutitized . N 0
to evaluate the efficiency of the algorithms [32]s defined K2GA -30087.7+182.31 2596.97#497.15 53% 63

as being the count of times the term (2) is acces#®en
Formula (1) is used. In ChainACO algorithm, the.Fe@mes
from three parts: the evaluations needed to gemenital

heuristic information /7, for node transitions rules, the V. DISCUSSION

evaluations needed to calculate chain structurgescmn Tables 3, 4, and 5 display the results obtainethiersia,
phase 1, and the evaluations needed in the K2Ispa@se Car and Alarm networks, respectively. Table 6 digpl
for obtaining the structure score. In ChainGA, FiE. score  normalized structural differences from the originatwork

is made up of two parts: the evaluations needatlérchain - for each algorithm on each benchmark. This incluaes
structure phase and those in the K2 search pha8&2ACO, added (A), arcs deleted (D), and arcs inverted (I).

the number of F.E. includes those needed for tligalin “Normalized” means here that, on each pr0b|em' the

heuristic informationj; for node transitions rules and thoseabsolute number of each structural difference medsis
divided by the corresponding number for ACOChaihug,
a normlaised value is smaller than 1.00 denotes the
corresponding approach performs better than ChamAC
whereas a value greater than 1.00 indicates a weake
performance than ChainACO.

With the aim of comparing overall computational
aefficiency, Table 7 displays the success rateslpen0 F.E.
for each algorithm. Fig. 3, 4, and 5 plot the lsesires over
all runs for each algorithm for the Asia, Car, aflhrm

TABLE 5: Experimental Results for Alarm'lg =-30110.01)

needed for the K2 score evaluations. In K2GA, the deore
is calculated solely from the K2 score evaluatinesded.
3) The number of arcs found.

The results of our experiments are displayed inldsaB-
5. We have carried out 30 runs of each algorithmefach
benchmark problem considered. The best score, Rd&E
their corresponding standard deviations are averager 30
runs. Success rates (S.R.) are obtained througlparison



networks respectively.

TABLE 6: Normalized structural differences withiaufr algorithms
to three benchmarks model.

ChainACO K2ACO ChainGAK2GA

A 1.00 1.00 1.00 1.00
Asia | D 1.00 1.00 1.00 1.00

| 1.00 0.25 0.25 0.25

A 1.00 0.50 0.63 0.50
Car D 1.00 0.50 1.00 0.50

I 1.00 1.00 1.00 1.25

A 1.00 1.25 1.29 1.18
Alarm | D 1.00 0.95 1.00 1.00

I 1.00 1.67 0.67 1.0C

TABLE 7: Success rates per 10,000 F.E.
Asia Car Alarm

ChainACO 39.06 1.44 4.03
K2ACO 7.72 2.22 0.79
ChainGA 5.03 2.59 0.81
K2GA 4.05 5.64 2.04

We now make detailed observations on the resuits f
each benchmark problem:

For the Asia dataset, we carried out a one way XNO
test using the Bonferroni correction with the falgorithms
to compare the averaged score. The results indicatehere
is a significant difference between the ChainACQ@rapch
and the other three approaches(,an@ = 2281%P< 0.C

K2GA obtained the best structure score and the elsigh
success rate, however, the number of F.E. is thgest,
almost twenty times that required by ChainACO. Witt
respect to the number of F.E., ChainACO is the pbsta
one; however, the success rate is the lowest.derao show
the trade-offs between efficiency and success rtie,
success rate per 10000 function evaluations is stamross
all experiments in Table 7. We observe that Chai@AC
provides the best trade-off for the Asia networkable 3
shows that each algorithm finds the same numbearcs.
Table 6 displays the differences only in the inedrarcs.
Comparing the Chain algorithms and K2 algorithms,can
find that the former is cheaper in Factor evalugtithis
result is in accord with the hypothesis that a cimaodel is a
sufficiently good model to locate node orderingswdfich
good BN structure can be built [32]. The Box plofsthe

approach and the other three approaches,
F (3,11@ = 18.03% < 0.C.The success rates in Table 4 also

are observably different, compared with K2GA, CH&®
and ChainGA have very low success rates. Therefae
might need to re-start these algorithms three and times
respectively to get the same quality of result a6K. From
Table 7, it can be seen that the K2GA performsebéettan
the three others. ChainACO obtained the lowest, réite

value is only 1.44. The structural arcs found ibl€a4 and

Table 6 show that ChainACO has more added andedklet
arc than the other three algorithms. The resuitstfe Car
problem are that the GA outperforms ACO in compaoiet
effort and structure quality. Box plots of the t&sores over
all runs for each algorithm are displayed in Fig. 4

For the Alarm problem, the difference is apparenthie
Best score, F.E, success rate, and the arc foutwede
ChainACO and other three algorithms. ANOVA testmgls
the Bonferroni correction show there is a significa
difference between the ChainACO approach and therot

three approachesf (3,114 = 80.7262< 0.C. From Table

6, we can find that the structural errors betwebni@ACO
and other three algorithms also have significaffextinces.
Table 7 shows that ChainACO obtained the best tofidét
is interesting to note that K2ZACO and ChainGA have
gignificant differences in factor evaluation and¢cass rates
but very similar ratios. Both of them are only difths of
the ChainACO'’s result. The experimental results Atarm
data also show that the K2 algorithms need more fim
factor evaluation than Chain algorithms, the nunifefF.E.
in K2ACO is nearly three times that for ChainAC@gdan
K2GA is nearly twice to ChainGA. The best scoragfib for
the four algorithms are displayed in Fig. 5.

-11140.000

-11160.000

Score

-11180.000

-11200.000

74
*

T T T T
ChainACO K2ACO ChainGA K2GA

Fig. 3: The Box plots of the Best found Structurerss for Asia at each

best scores found for the four algorithms acrosls alin for all algorithms

experiments are displayed in Fig. 3.

For the Car diagnosis problem, the comparative ltsesu
shown in Table 4 are notably different from thos¢amed
on the Asia network. The one way ANOVA Bonferroestt
with the four algorithms to compare the averagedesshow
that there is a significant difference between K2GA
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CONCLUSION

In this paper, we have proposed two new searclseoic
algorithms for learning BN structures. Each utdizbe ACO

repeated restarts will be beneficial. This suggé#sas one
way forward is to develop hyperheuristic approacties
adapt themselves to a particular problem as thasnleAn
important aspect of this will be to understand hgasticular
structural features interact with particular heticgsto either
promote or inhibit learning.

(1

(2

(3]

(4]

(5]

(6]
(71
(8]

(9]

[10]
[11]

[12]

[13]

[14

metaheuristic to guide the search of node orderings

ChainACO uses ACO evolving on chain structures.sThi[
reduces computational expense of the search buit avit
penalty on the success in retrieving structure oowh
benchmarks K2ACO also searches node orderings tising [16
K2 algorithm directly to construct and score

optimized structures.

recovering the known structures. We applied ouragghes
benchmark datasets
complexities. We also compared our methods to tisting
approaches which also search node orderings Higingi

to three different

genetic algorithms.

15]

]

K2ACO is more computationally
expensive but in general has a higher success imate [17] L.M. de Campos, J.M. Fernandez-Luna, J.A. Gamdk, Buerta, Ant

(19]

We conclude that there is a high degree of problem

dependency both in the effectiveness and the effagi of
the approaches used. Both the choice of metahieuaist
the choice of scoring method can significantly elffe
performance. We also conclude that, for some progle

[20
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