

Abstract— Learning Bayesian networks from data is an N-P
hard problem with important practical applications. Several
researchers have designed algorithms to overcome the
computational complexity of this task. Difficult challenges
remain however in reducing computation time for structure
learning in networks of medium to large size and in
understanding problem-dependent aspects of performance. In
this paper, we present two novel algorithms (ChainACO and
K2ACO) that use Ant Colony Optimization (ACO). Both
algorithms search through the space of orderings of data
variables. The ChainACO approach uses chain structures to
reduce computational complexity of evaluation but at the
expense of ignoring the richer structure that is explored in the
K2ACO approach. The novel algorithms presented here are
ACO versions of previously published GA approaches. We are
therefore able to compare ACO vs GA algorithms and Chain vs
K2 evaluations. We present a series of experiments on three
well-known benchmark problems. Our results show problem-
specific trade-offs between solution quality and computational
effort.

I. INTRODUCTION

BAYESIAN Networks (BNs) are probabilistic graphical

models that represent the dependencies among a set of
random variables in a chosen domain. A BN has two
components: a structure and a set of parameters. The
structure is a directed acyclic graph (DAG) and the
parameters specify a joint probability distribution over the
random variables [1]. BN is an efficient tool for performing
probabilistic inference and is frequently utilized for
modeling domain knowledge in Decision Support Systems,
such as fault diagnosis, risk analysis, decision analysis, and
medical expert systems [2][3][4]. However, learning
Bayesian network is, in general, an NP-hard problem. It is
known that the number of possible structures grows super-
exponentially with the number of nodes [5], and so
evaluating all possible structures is infeasible in most
practical domains, where the number of variables is typically
large. The process of finding cheaper approaches for

Manuscript received February 2010.
Y. Wu is with the IDEAS Research Institute, Robert Gordon University,

Aberdeen, UK (e-mail: y.wu3@rgu.ac.uk).
J. McCall is with the IDEAS Research Institute, Robert Gordon

University, Aberdeen, UK (Corresponding author: telephone +44(0)1224
262780 e-mail: jm@comp.rgu.ac.uk).

D. Corne is with the School of Mathematics and Computer Science,
Heriot-Watt University, Edinburgh, UK (e-mail: dwcorne@macs.hw.ac.uk
).

learning the structure of BNs from large datasets is an area
that has gained importance in recent years and is now
widespread. In recent years, some powerful algorithms for
the automatic learning of BNs from data have emerged. They
can be grouped into two main approaches: methods based on
conditional independence tests, and methods based on search
and scoring metrics.

The conditional independence approach attempts to
estimate from the data whether certain conditional
dependences exist between the variables. These dependency
relationships are usually measured through using statistical
or information theoretical tests. Measures such as Pearson’s
product moment correlation coefficient, the Chi-Square test
and mutual information are often used [6] [7] [8]. The search
and score approach attempts to search for the best structure
in the space of possible structures, according to a scoring
function measuring the fit of each structure to the data. The
structure found to have the best score is then returned [9].
Algorithms of this type may also require node ordering, in
which a parent node precedes a child node so as to narrow
the search space [9]. The most common scoring functions
used in these algorithms include the K2-CH metric [9],
BDeu [10], BIC [11], and Minimum Description Length
(MDL) [12]. A range of well-known heuristic search
techniques have been applied in this way, including: Hill
Climbing [13], Genetic Algorithms [14], Simulated
Annealing [15], and Ant Colony Optimization (ACO) [16]
[17].

In this paper we are interested in the search and score
approach and will investigate two novel algorithms to
construct BN using Ant Colony Optimization. Previous
research has already applied ACO to BN learning in a
variety of ways [17] [18] [19] [20] [21]. The experimental
results in these papers show better performance of ACO with
complicated networks compared to other algorithms when
reconstructing the test networks. ACO has been successfully
applied to the Travelling Salesman Problem (TSP) [22]. The
problem of finding an optimal ordering of variables in search
and scoring approaches resembles the asymmetric TSP [23],
[24], whose search space is the set of permutations of the
nodes in a graph. In this paper, ACO will be used to search
for the best node ordering on the domain that restricts the
heuristic stage for constructing structure. We aim to
empirically investigate to what extent ACO is an efficient
way of searching node orderings.

The remainder of the paper is organized as follows. We
briefly introduce the ACO for BN structure learning and K2

Two Novel Ant Colony Optimization Approaches for Bayesian
Network Structure Learning

Yanghui Wu, John McCall, and David Corne

algorithm in section 2. In section 3, we describe our novel
approaches in terms of the ACO metaheuristic. We then
describe the experiments carried out for testing our
approaches in section 4. In section 5 we discuss the results
and finally we draw conclusions in section 6.

II. BACKGROUND

A. ACO for Bayesian Network Structure Learning

 ACO [22] [25] [26] is a relatively new paradigm of bio-
inspired algorithms. The inspiration for ACO is the
cooperative behavior of real ants by means of chemical
pheromone trails, which are able to find the shortest path
from a food source to their nest. Artificial ants move through
a construction space: a path in such a space defines a series
of construction steps that can be use to assemble a solution
to some problem of interest. ACO algorithm has shown very
good performance when applied to solving such hard
combinatorial problems as TSP, the quadratic assignment
problem [27], routing problems [28], and sorting problems
[29].
 To date, there has been only a limited amount of research
that applys ACO algorithms to learning BN. Examples of
these approaches include the ACO-B[16], MMACO[18][19],
and ACO-E[20][21].etc. These approaches typically
integrate with other greedy construction heuristic algorithms,
such as Algorithm B [10], K2SN algorithm [30] and the
local discovery algorithm MMPC [31]. The algorithms that
have been developed so far for BN structure learning have
investigated appropriate representations of the problem,
specific heuristic information to help guide the ants, ways of
updating the pheromone track, and the probabilistic
transition rule that move the ants to the next stage

We now review these existing ACO-based algorithms,
emphasizing as we go those aspects particularly important to
the approaches developed in this paper. These include:
search space, nodes transitions rule, heuristic information,
local and global updating rules. These ACO-based
algorithms search in a range of different spaces. The space of
orderings of the DAGs is searched in the ACO-K2SN
algorithm; the graph made of DAGs with n nodes in ACO-
B; the space of Equivalence Classes in the ACO-E
algorithm; and the search space is the set of possible edges in
the MMACO algorithm. All of these algorithms execute
pheromone updating in two similar ways to that used on the
TSP. One way is to updated step-by-step after each ant
chooses a new node to visit, by reducing the amount of
pheromone on the edge. The other way is global update at
the end of each iteration, using the best solution found so far.

Each ACO-based algorithm has respective heuristic

information ijη , because the heuristic for the arc from node

i to j often either relates to the scoring metric being used

or relates to the search space. For example, in ACO-K2SN,
where the space is the ordering of DAGs, the heuristic

information is defined as

,

1

(())
ij

j a jf x P x
η =

wheref is the scoring metric being used and ()a jP x , the

parent of jx are found by K2 algorithm. However, in

MMACO algorithm, where the space is the set of possible
edges, the heuristic information is defined as

() (), ,1ij k ij k jif s E e f s E eη = + ∪ − ∪

Here f is the scoring metric found by BDeu score

function [10]. In choosing which node to visit as the next
node for an ant lying at a particular node in a particular state,
all these algorithms utilize the same probabilistic transition
rule. The rule uses the values given by heuristic information
and pheromone to decide which node to visit next. This is a
random choice based on a distribution given by the heuristic
information and pheromone distribution.

B. K2 Algorithm

In the search and score approach for learning BN
structure, K2 is one of the best known algorithms that creates
and evaluates a BN from a database of cases once an
ordering between the system variables is given. For the
evaluation of the joint probability of a network that it
constructs, the formula of Cooper and Herskovits, the (K2-
CH) metric, is used [9]. This metric can be expressed as

()
()1 1 1

1 !
(,) () ! (1)

1 !

i iq rn
i

S S ijk
i j kij i

r
P B D P B N

N r= = =

−
=

+ −∏ ∏ ∏

Here iq denotes the number of possible different instances

the parent of variable
iX can take. ir is the number of

values
iX has,

ijkN denotes the number of cases in the dataset

D in which
iX takes value k of its

iX instance when its

parent
iaP has its j th value.

ijN is the sum of all
ijkN for all

values ix can take. As it is easier to work in the logarithmic

space, in practice, the scoring function uses the value
log((,))SP B D instead of (,)SP B D .

The K2-CH metric (1), decomposes into a product of
factors:

 ()
()1 1

1 !
! (2)

1

i iq r
i

ijk
j kij i

r
F N

N r= =

−
=

+ −∏ ∏

Each factor expresses the possibility when ix is the parent

of jx . Such factor evaluations require counting of value

combinations throughout the dataset and so represent the
main computational effort of the algorithm. We therefore

compare algorithm performance in terms of the number of
such factor evaluations used to produce solutions of
threshold quality.

III. CHAINACO AND K2ACO ALGORITHMS

We propose two novel algorithms using ACO for BNs
structure learning based on two existing approaches
ChainGA and K2GA. In this paper, we name the new
approaches as ChainACO and K2ACO respectively.

ChainGA[32] is a search and score heuristic. It based on
the hypothesis that a chain is a sufficiently good model to
locate node orderings on which good BN structure can be
built. The node ordering can be evaluated by building its
associated chain structure and evaluating it given the data
with scoring metric. This is a relatively cheap evaluation in
terms of the number of K2-CH factor evaluations needed.
The ChainGA for BN structure learning has two phases: in
the first phase, a Genetic Algorithm (GA) is used to evolve
the best ordering based on, chain model evaluations.
Wherein the second, post-evolution phase, K2 is run
sequentially on the best orderings found in the first phase
and the best overall structure is returned. Previous results
have shown that the ChainGA can get a significant reduction
in computational cost.

 The main idea of ChainACO approach comes from
ChainGA. ChainACO also has two phases, depicted in Fig.1.
In the first phase of ChainACO, we construct chains using
ACO instead of GA. The second phase applies K2 to the best
orderings found and returns the best structure. This is
identical to the second phase in ChainGA.

Till
satisfies
the
stopping
criteria

The initial pheromone , Heuristic information ,

The number of ants
0τ i jη

m

Pheromone updating

Ants

1

2

L

m

Chain Structures

j l ix x x→ → L

 L L L

2 i nx x x→ →L

j l ix x x→ → L

Scores

1

2

m

f

f

f

L

Node Transition rule K2-CH

End of ACO

K2 Search

1x

ix

L

2x

nx

Best node ordering
 k i j nx x x x→ → L

Till
satisfies
the
stopping
criteria

The initial pheromone , Heuristic information ,

The number of ants
0τ i jη

m

Pheromone updating

Ants

1

2

L

m

Chain Structures

j l ix x x→ → L

 L L L

2 i nx x x→ →L

j l ix x x→ → L

Scores

1

2

m

f

f

f

L

Node Transition rule K2-CH

End of ACO

K2 Search

1x

ix

L

2x

nx
1x

ix

L

2x

nx

Best node ordering
 k i j nx x x x→ → L

Fig. 1: ChainAC

The K2GA algorithm [33] similarly uses a GA to search

the space of node orderings rather than the full space of BN
structures. Here however there is only a single GA phase.
The fitness of each ordering is calculated by running the K2
search algorithm on each ordering evaluated and returning
the score of the network structure found. The best structure
returned is that generated by K2 from the best ordering
evaluated in this fashion.

Here we use ACO to replace the GA search in K2GA. In
K2ACO, the initial individuals in the population are
randomly created node orderings which are then optimized
by a colony of ants in this space until a good ordering is
found. During the ACO process, the fitness of each ordering
is calculated by running the K2 search algorithm on it. Once
the optimization terminates, as with K2GA, the structure
corresponding to best ordering found is automatically
obtained. Fig. 2 shows the operation of K2ACO.

Till
satisfies
the
stopping
criteria

The initial pheromone , Heuristic information ,

The number of ants

0τ ijη

m

Ants

1

2

Node orderings Structures and Scores

1 j lx x x→ →L

 LLL

j l ix x x→ →L

1, 1

2, 2

,

 m m

S f

S f

S f

L

m

L

2 i nx x x→ →L

Node Transition rule K2 Search

Pheromone Updating

Output

1x

ix

L

2x

nx

Till
satisfies
the
stopping
criteria

The initial pheromone , Heuristic information ,

The number of ants

0τ ijη

m

Ants

1

2

Node orderings Structures and Scores

1 j lx x x→ →L

 LLL

j l ix x x→ →L

1, 1

2, 2

,

 m m

S f

S f

S f

L

m

L

2 i nx x x→ →L

Node Transition rule K2 Search

Pheromone Updating

Output

1x

ix

L

2x

nx
1x

ix

L

2x

nx

Fig. 2: K2ACO

The main components in ChainACO and K2ACO

algorithms are defined as follows:
1) The search space can be regarded as a graph with n

nodes, one for each random variable. The possible search
space is the set of !n orderings.

2) Node transitions rules. Ants in node i moves to node
j according to the probabilistic state transition rule,

()
[]{ } 0arg max [(,)] (,) if

 (3)
 otherwise

ku J i
i j i j q q

s
S

βτ η
∈

 ≤=

Where (,)i jτ contains the pheromone amount deposited

in the arc which connect node i with node j . (),i jη

represents heuristic information, which is a weighting
function that assigns at each construction step a heuristic
value to each feasible solution between any two nodes. q is

a random number uniformly distributed in[0,1] ,

()0 00 1q q≤ ≤ is a parameter, β is a parameter which

control the relative importance of pheromone verse the
probability, and S is random variable selected according to
the probability given in (4).

()
[][]

[]
()

()(,) (,)
 if

(,) (,), (4)

 0 otherwise
k

k

k
u J i

i j i j
s J i

i j i jp i j

β

β

τ η
τ η

∈

∈

=

∑

In our approaches, the heuristic information
ijη in (3) and

(4) is defined according to the possibility(,)g i j , which

expresses the possibility when ix is the parent of jx , this is

calculated from the K2-CH metric in our algorithm as
defined in formula (2) .

()
()1 1

1 !
(,) !

1

i iq r
i

ijk
j kij i

r
g i j N

N r= =

−
=

+ −∏ ∏

 3) Local and updating rules. Ants prefer to move to nodes
which are connected by high possibility(,)g i j and a high

amount of pheromone. Every time that an edge is chosen by
one ant, the amount of pheromone is changed by applying
the local updating rule (5):

0(,) (1) (,) (5)i j i jτ ρ τ ρ τ← − + ⋅

The local updating rule is intended to avoid a very strong
edge being chosen by all the ants. Once all ants have
completed their tours a globe pheromone updating rule (6) is
applied:

(,) (1) (,) (,) (6)i j i j i jτ α τ α σ← − + ⋅∆

Where

() () { }

{ }

1

,

 ij

if ij S
C Si j

if ij S

σ
τ

+
+

+

 ∈
∆ =

 ∉

In (5) and (6), bothρ and ()0 , 1α ρ α< ≤ are parameters

which control the pheromone evaporation and ()C S+ is the

cost associated the best solution.
 4) The initial level of pheromone(,)i jτ in probabilistic

state transition and in pheromone updating rules is defined in
formula (7)

()0
2

1
 (7)

:GA Kn f G D
τ

−

=
⋅

where n is the number of variables and ()2 :GA Kf G D−

 is the

fitness which we obtained from [32].
The specific parameter values used are provided in the
following section describing our experiments.

IV. EXPERIMENTAL EVALUATION

 In order to measure the performance of the two proposed
approaches, we carried out a set of experiments for both
ChainACO and K2ACO algorithms. We also ran
comparative experiments on ChainGA and K2GA
algorithms. The aim of the experiments is to compare
performance of four approaches to modeling three
benchmarks data sets. We are also interested in the
differences between algorithms based on ACO (ACO
algorithms) and GA (GA algorithms), algorithms based on
Chain (Chain algorithms) and K2 (K2 algorithms)
respectively. Three benchmark problems have been selected
in our research: Asia, Car and Alarm. The Asia network is a
simple network with 8 binary nodes and 8 edges. It is a
diagnostic demonstrative Bayesian network [34]. The Car
Diagnostic Network consists of 18 nodes and 17 edges. It
can be applied to diagnose malfunctioning of self-propelling
vehicles [35]. The Alarm network is a medical diagnostic
system for intensive care patient monitoring consisting of 37
nodes and 46 edges [36]. All the data cases are sampled
using the Netica tool [37]. In this paper, the dataset sizes for
Asia, Car and Alarm are 5000, 10000 and 3000 cases
respectively.

A. Experimental Design

As described in section 3, both ChainACO and ChainGA
algorithm have two phases. K2ACO and K2GA algorithms,
on the other hand, each have a single phase. We set phase
transition parameters and stopping conditions for each
algorithm as follows:

For ChainACO and ChainGA algorithms, we specify a
phase-transition parameter T such that when the population
best chain structure score exceeds T , the algorithm transits
to the second phase.

For K2ACO and K2GA algorithms, we specify a stopping
condition

0T according to previous experimental results in

[32]. We run the ACO and GA iteration under the condition
of the fitness of Bayesian network structure less than

0T

respectively to construct the best structures and get the best
fitness at the same time.

In all cases the scoring metric used to evaluate the search
is the K2-CH metric. The parameters used in ChainACO and
K2ACO are shown in Table 1. The parameter settings of
ChainGA and K2GA are shown in Table 2. These
parameters are the same, for the GA algorithms, as those

used in [32].

TABLE 1: The ACO Parameter Settings

ACO Settings Asia Car Alarm
Number of ant
Number of iteration

0q

β
,ρ α

Number of Run

6 8 8
 30 30 30

 0.95
 3

 0.1
 30

0.8
2
0.1
30

 0.9
 2
 0.1
 30

TABLE 2: The GA Parameter Settings

GA Settings Asia Car Alarm
Evolution type
Number of Offspring
Selection
Crossover
Mutation
Population size
Number of Run

 Steady State(Genitor)
 1

 Rank Selection
 Cycle Crossover: rate:0.9

 Displacement Mutation:rate:0.1
100 20 10
 30 30 30

B. Experimental Results

For each algorithm, we recorded the following run data:
1) The value of the K2-CH metric (log version) in eq. (1).

We know that this score associated with the best structure, as
the score is the logarithm of a probability, and so it is
negative number. The closer to zero, the closer the
probability is to 1. This means the better is the network.

2) The number of factor evaluation (F.E.). F.E. is utilized
to evaluate the efficiency of the algorithms [32]. It is defined
as being the count of times the term (2) is accessed when
Formula (1) is used. In ChainACO algorithm, the F.E. comes
from three parts: the evaluations needed to generate initial

heuristic information ijη for node transitions rules, the

evaluations needed to calculate chain structure scores in
phase 1, and the evaluations needed in the K2 search phase
for obtaining the structure score. In ChainGA, the F.E. score
is made up of two parts: the evaluations needed in the chain
structure phase and those in the K2 search phase. In K2ACO,
the number of F.E. includes those needed for the initial

heuristic information ijη for node transitions rules and those

needed for the K2 score evaluations. In K2GA, the F.E score
is calculated solely from the K2 score evaluations needed.

3) The number of arcs found.

The results of our experiments are displayed in Tables 3-

5. We have carried out 30 runs of each algorithm for each
benchmark problem considered. The best score, F.E and
their corresponding standard deviations are averaged over 30
runs. Success rates (S.R.) are obtained through comparison

of the score of the best structure in each run with the target
score. In our experiments, to the target is the stopping
condition

0T , for example, in Asia network,
0 11150.00T = − .

The arcs which we achieved correspond to the best-ever
score obtained by each algorithm.

TABLE 3: Experimental Results for Asia (

0 11150.00T = −)

 Avg. Best Score F. E. S.R. Arcs

ChainACO -11167.33±18.89 128.0±4.54 50% 8

K2ACO -11146.22±1.85 1166.3±630.05 90% 8

ChainGA -11153.95±12.16 1133.43±197.24 57% 8

K2GA -11145.99±1.22 2468.73±15.13 100% 8

TABLE 4: Experimental Results for Car (

0 23175.00T = −)

 Avg. Best Score F. E. S.R. Arcs

ChainACO -23186.77±18.04 2083.1±263.17 30% 23

K2ACO -23163.83±4.07 2707.83±1784.1 60% 20

ChainGA -23270±126.75 964.83±198.46 25% 20

K2GA -23163.17±7.52 1774.63±468.07 100% 20

TABLE 5: Experimental Results for Alarm (

0 30110.00T =−)

 Avg. Best Score F. E. S.R. Arcs

ChainACO -29814.2±90.99 2480.07±1252 100% 54

K2ACO -30073.3±94.99 7225.07±3405.1 57% 68

ChainGA -30443.6±220.96 1235.93±205.85 10% 68

K2GA -30087.7±182.31 2596.97±497.15 53% 63

V. DISCUSSION

Tables 3, 4, and 5 display the results obtained for the Asia,
Car and Alarm networks, respectively. Table 6 displays
normalized structural differences from the original network
for each algorithm on each benchmark. This includes arcs
added (A), arcs deleted (D), and arcs inverted (I).
“Normalized” means here that, on each problem, the
absolute number of each structural difference measured is
divided by the corresponding number for ACOChain. Thus,
a normlaised value is smaller than 1.00 denotes the
corresponding approach performs better than ChainACO,
whereas a value greater than 1.00 indicates a weaker
performance than ChainACO.

With the aim of comparing overall computational
efficiency, Table 7 displays the success rates per 10000 F.E.
for each algorithm. Fig. 3, 4, and 5 plot the best scores over
all runs for each algorithm for the Asia, Car, and Alarm

networks respectively.

 TABLE 6: Normalized structural differences within four algorithms

to three benchmarks model.

 ChainACO K2ACO ChainGA K2GA

Asia

A 1.00 1.00 1.00 1.00
D 1.00 1.00 1.00 1.00
 I 1.00 0.25 0.25 0.25

Car

A 1.00 0.50 0.63 0.50

D
 I

1.00 0.50 1.00 0.50
1.00 1.00 1.00 1.25

Alarm

A 1.00 1.25 1.29 1.18
D 1.00 0.95 1.00 1.00
 I 1.00 1.67 0.67 1.00

TABLE 7: Success rates per 10,000 F.E.

 Asia Car Alarm

ChainACO
K2ACO
ChainGA
K2GA

39.06
7.72
5.03
4.05

1.44
2.22
2.59
5.64

4.03
0.79
0.81
2.04

We now make detailed observations on the results for

each benchmark problem:
 For the Asia dataset, we carried out a one way ANOVA

test using the Bonferroni correction with the four algorithms
to compare the averaged score. The results indicate that there
is a significant difference between the ChainACO approach
and the other three approaches, ()3,116 22.819, 0.05F P= < .

K2GA obtained the best structure score and the highest
success rate, however, the number of F.E. is the biggest,
almost twenty times that required by ChainACO. With
respect to the number of F.E., ChainACO is the cheapest
one; however, the success rate is the lowest. In order to show
the trade-offs between efficiency and success rate, the
success rate per 10000 function evaluations is shown across
all experiments in Table 7. We observe that ChainACO
provides the best trade-off for the Asia networks. Table 3
shows that each algorithm finds the same number of arcs.
Table 6 displays the differences only in the inverted arcs.
Comparing the Chain algorithms and K2 algorithms, we can
find that the former is cheaper in Factor evaluation; this
result is in accord with the hypothesis that a chain model is a
sufficiently good model to locate node orderings of which
good BN structure can be built [32]. The Box plots of the
best scores found for the four algorithms across all
experiments are displayed in Fig. 3.

For the Car diagnosis problem, the comparative results
shown in Table 4 are notably different from those obtained
on the Asia network. The one way ANOVA Bonferroni test
with the four algorithms to compare the averaged score show
that there is a significant difference between the K2GA

approach and the other three approaches,

()3,116 18.035, 0.05F P= < .The success rates in Table 4 also

are observably different, compared with K2GA, ChainACO
and ChainGA have very low success rates. Therefore we
might need to re-start these algorithms three and four times
respectively to get the same quality of result as K2GA. From
Table 7, it can be seen that the K2GA performs better than
the three others. ChainACO obtained the lowest rate, the
value is only 1.44. The structural arcs found in Table 4 and
Table 6 show that ChainACO has more added and deleted
arc than the other three algorithms. The results for the Car
problem are that the GA outperforms ACO in computational
effort and structure quality. Box plots of the best scores over
all runs for each algorithm are displayed in Fig. 4.

For the Alarm problem, the difference is apparent in the
Best score, F.E, success rate, and the arc found between
ChainACO and other three algorithms. ANOVA tests using
the Bonferroni correction show there is a significant
difference between the ChainACO approach and the other
three approaches, ()3,116 80.726, 0.05F P= < . From Table

6, we can find that the structural errors between ChainACO
and other three algorithms also have significant differences.
Table 7 shows that ChainACO obtained the best trade-off. It
is interesting to note that K2ACO and ChainGA have
significant differences in factor evaluation and success rates
but very similar ratios. Both of them are only one fifths of
the ChainACO’s result. The experimental results for Alarm
data also show that the K2 algorithms need more time in
factor evaluation than Chain algorithms, the number of F.E.
in K2ACO is nearly three times that for ChainACO, and in
K2GA is nearly twice to ChainGA. The best scores found for
the four algorithms are displayed in Fig. 5.

K2GAChainGAK2ACOChainACO

S
co

re

-11140.000

-11160.000

-11180.000

-11200.000

82

74

111

Fig. 3: The Box plots of the Best found Structure scores for Asia at each

run for all algorithms

K2GAChainGAK2ACO ChainACO

S
co

re

-23100.000

-23200.000

-23300.000

-23400.000

-23500.000

-23600.000

104

89

6266

90

 Fig. 4: The Box plots of the Best found Structure scores for Car at

each run for all algorithms

K2GAChainGAK2ACOChainACO

S
co

re

-29750.000

-30000.000

-30250.000

-30500.000

-30750.000

-31000.000

33
46

58

35

 Fig. 5: The Box plots of the Best found Structure scores for Alarm at

each run for all algorithms

VI. CONCLUSION

In this paper, we have proposed two new search and score
algorithms for learning BN structures. Each utilizes the ACO
metaheuristic to guide the search of node orderings.
ChainACO uses ACO evolving on chain structures. This
reduces computational expense of the search but with a
penalty on the success in retrieving structure on known
benchmarks K2ACO also searches node orderings using the
K2 algorithm directly to construct and score locally
optimized structures. K2ACO is more computationally
expensive but in general has a higher success rate in
recovering the known structures. We applied our approaches
to three different benchmark datasets of varying
complexities. We also compared our methods to two existing
approaches which also search node orderings but utilizing
genetic algorithms.

We conclude that there is a high degree of problem
dependency both in the effectiveness and the efficiency of
the approaches used. Both the choice of metaheuristic and
the choice of scoring method can significantly affect
performance. We also conclude that, for some problems,

repeated restarts will be beneficial. This suggests that one
way forward is to develop hyperheuristic approaches that
adapt themselves to a particular problem as they learn. An
important aspect of this will be to understand how particular
structural features interact with particular heuristics to either
promote or inhibit learning.

REFERENCES

[1] Heckerman, D., “A tutorial on learning with Bayesian networks in
Learning in Graphical Models,” pp.301-354, MIT Press, Cambridge,
1995

[2] Cano, R., Sordo, C., & Gutiérrez, J. M., “Applications of Bayesian
networks in meteorology.” Advances in Bayesian networks
Springer-Verlag. pp. 309–327, 2004.

[3] Peter Lucas, “A model-based Approach to medicine Marking. K-P.”
Adlassnig (ed.), in Proceedings of the EUNITE workshop on
Intelligent Systems in patient Care, Vienna, pp. 73-97.2001.

[4] Galán, S.F., F. Aguado, NasoNet, “Modeling the Spread of
Nasopharyngeal Cancer with Networks of Probabilistic Events in
Discrete Time,” Artificial Intelligence in Medicine, vol. 25, 247-264.
2002.

[5] Robert W. Robinson Counting labeled acyclic digraphs. In F. Harary,
editor, New Directions in the Theory of Graphs, Academic Press, New
York. 239 -273,1973.

[6] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, 2000.

[7] Spirtes, P., Glymour, C., & Scheines, R., Causation, Prediction, and
search. The MIT Press, second edition.2000.

[8] L.M. de Campos and J.F. Huete , A new approach for learning
Bayesian networks using independence criteria. International Journal
of Approximate Reasoning. vol. 24, pp. 11–37, 2000.

[9] Gregory F.Cooper,Edward Herskovits, A Bayesian Method for the
Induction of Probabilistic Network from Data, Machine
Learning,,v.9,no.4,pp.309-347,1992.

[10] Buntine, W. Theory refinement on Bayesian networks. UAI-
17,Morgan Kaufmann,pp.52-60,1991.

[11] Schwartz, G. Estimating the dimensions of a model. Ann. Stat., 6,
461–464.1979.

[12] D. Heckerman, D. Geiger, and D. Chickering. “Learning Bayesian
networks: The combination of knowledge and statistical data,” In
KDD Workshop, pp. 85--96, 1994

[13] Ioannis Tsamardinos, Laura E. BrownConstantin F. structure learning
algorithm, Machine Learning, vol.6, no.1, pp. 31-78, 2006.

[14] Larrañaga P, Murga RH, Poza M, Kuijpers , “Structure learning of
Bayesian networks by hybrid genetic algorithms,” In: Preliminary
Papers of the Fifth International Workshop on Artificial Intelligence
and Statistics, pp. 310–316, 1995.

[15] T. Wang, J. Touchman, and G. Xue. “Applying two- level simulated
annealing on Bayesian structure learning to infer genetic networks,”
In Proceedings of the IEEE Computational Systems Bioinformatics
Conference, pp. 647– 648, 2004.

[16] L.M. de Campos, J.A. Gámez, and J.M. Puerta. Learning Bayesian
network by ant colony optimisation: Searching in two different
spaces. Mathware and Soft Computing IX (2-3), pp.251-268, 2002.

[17] L.M. de Campos, J.M. Fernández-Luna, J.A. Gámez, J.M. Puerta, Ant
colony optimization for learning Bayesian network. International
Journal of Approximate Reasoning, vol. 31, no.3, pp.291-311, 2002.

[18] Pedro C. Pinto, Andreas Nägele, Mathäus Dejori, Thomas A. Runkler,
João Miguel da Costa Sousa: Learning of Bayesian networks by a
local discovery ant colony algorithm. pp. 2741-2748, 2008.

[19] Pedro C. Pinto, Andreas Nagele, Mathaus Dejori, Thomas A. Runkler,
and Joao M. C. Sousa, “Using a Local Discovery Ant Algorithm for
Bayesian Network Structure Learning,” IEEE Transaction on
Evolutionary Comptation, VOL. 13, NO. 4, AUGUST 2009.

[20] Rónán Daly, Qiang Shen, and Stuart Aitken, Using ant colony
optimization in learning Bayesian network equivalence classes. In
Xue Z. Wang and Rui Fa Li, editors, Proceedings of the 2006 UK
Workshop on Computational Intelligence, pp.111–118, 2006.

[21] Rónán Daly and Qiang Shen. Learning Bayesian network equivalence
classes with ant colony optimization, Journal of Artificial Intelligence
Research, vol. 35, pp.391–447. 2009.

[22] M. Dorigo and G. Di Caro, The ant colony optimization meta-
heuristic. In: D. Corne, M. Dorigo and F. Glover, Editors, New Ideas
in Optimization, McGraw-Hill, pp. 11–33.1999.

[23] C.J.Eyckelhof and M.Snoek. Ant systems for a dynamic TSP. In
Marco Dorigo, Giani Di Caro, and Michael Sampels, editors, Ant
Algorithms, LNCS, pp. 88- 99, 2002.

[24] Tsai CF, Tsai CW. “A new approach for solving large traveling
salesman problem using evolution ant rules,” In: Neural Networks,
IJCNN 2002, Proc. of the 2002 Int’l Joint Conf. on, Vol 2. Honolulu:
IEEE Press, 1540-1545, 2002.

[25] Marco Dorigoa, Christian Blum. Ant colony optimization theory: A
survey. Theoretical Computer Science vol. 344, pp. 243 - 278. 2005.

[26] C. Blum, “Ant colony optimization: Introduction and recent trends,”
Phys. Life Reviews, vol. 2, pp. 353–373, 2005.

[27] M. Dorigo, L.M. Gambardella, M. Middendorf, T. Stutzle. Guest
editorial: special section on ant colony optimization. IEEE
Transactions on Evolutionary Computation 6:4, 317-319.2002.

[28] V. A. Cicirello and S. F. Smith, “Ant colony for autonomous
decentralized shop floor routing,” in Proc. 5th Int. Symp. Autonomou
Decentralized Syst. pp. 383–390.2001.

[29] S. A. Hartmann and T. A. Runkler, “Online optimization of a color
sorting assembly buffer using ant colony optimization,” in Proc.
Operations Res., pp. 415–420, 2007.

[30] L.M. de Campos and J.M. Puerta. Stochastic local search algorithms
for learning belief networks: Searching in the space of orderings.
Lecture Notes in Artificial Intelligence, 2143:228–239, 2001.

[31] I. Tsamardinos, L. F. Brown, and C. F. Aliferis, “The max-min hill
climbing BN structure learning algorithm,” Mach. Learning, vol.
65,no. 1, pp. 31–78, Oct. 2006.

[32] Ratiba Kabli, Frank Herrmann , John McCall, “A chain-model genetic
algorithm for Bayesian network structure learning, Proceedings of the
9th annual conference on Genetic and evolutionary computation,” in
IEEE World Congress on Computational Intelligence 2007, London,
England, July 07-11.

[33] P. Larrañaga, C. Kuijpers, and R. Murga. “Learning Bayesian
network structures by searching for the best ordering with genetic
algorithms.” IEEE Transactions on System, Man and Cybernetics 26:
pp. 487--493, 1996.

[34] S.L. Lauritzen and D. J. Spiegelhalter. Local computations with
probabilities on graphical structures and their application to expert
systems. Journal of the Royal Statistical Society vol.50, no.2, pp. 157-
-224, 1988.

[35] Bayesia. Bayesialab Bayesian network software.
http://www.bayesia.com/.

[36] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper.
“The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks,” Proceedings of the Second
European Conference on Artificial Intelligence in Medical Care,
Springer-Verlag, Berlin. pp. 247--256, 1989.

[37] Netica. Netica Bayesian network software from Norsys. http:
//www.norsys.com.

