
ACL2(ml): Machine Learning for ACL2

J. Heras and E. Komendantskaya.
http://staff.computing.dundee.ac.uk/jheras/acl2ml/

January 20, 2014

Abstract

This manual describes ACL2(ml), a machine-learning extension to
the Emacs interface for ACL2. This manual is a supplementary docu-
ment to the paper “Proof-Pattern Recognition and Lemma Discovery in
ACL2” [1] presented in LPAR-19, and mainly describe how to install and
use ACL2(ml). The description of the underlying methods implemented
in ACL2(ml) can be found in [1].

Contents

1 Differences from LPAR version 1

2 Requirements 2

3 Installation 2

4 Using ACL2(ml) 3
4.1 Getting started . 3
4.2 Advancing in a proof script using ACL2(ml) 3
4.3 Clustering . 4
4.4 Similarities . 4
4.5 Generating preconditions of theorems using guards 5

5 Configuration of ACL2(ml) 6
5.1 Changing the clustering algorithm 6
5.2 Granularity menu . 8
5.3 Export Library . 8
5.4 Available libraries for clustering 9

5.4.1 Explain cluster similarities 9

1 Differences from LPAR version

The current version of ACL2(ml) is a bit different to the one presented in [1]:

1

http://staff.computing.dundee.ac.uk/jheras/acl2ml/

• ACL2(ml) can be used to find similar definitions and lemmas for any ACL2
development and stage of the proof.

• The symbolic lemma generation from LPAR-19 paper does not general-
ize easily: it currently gives nice suggestions in some cases, but no sug-
gestions in other cases [no bugs/errors though]. Nevertheless, we now
re-implemented it in Lisp (it was externally implemented in ML before).

• We have designed a weaker symbolic procedure to complement machine
learning – and that is generation of lemma pre-conditions, using ACL2
guards.

2 Requirements

Before installing ACL2(ml), you need to download, install and configure the
following software.

• ACL2.

• Emacs.

You can follow the instructions presented in http://www.cs.utexas.edu/

users/moore/publications/acl2-programming-exercises1.html.

3 Installation

Before using ACL2(ml), it is necessary to configure some variables. First of
all, open your .emacs file. This file is usually located in /home/user/.emacs
in Linux, for aquamacs this is /Library/Preferences/Aquamacs Emacs/Prefer-
ences.el. At the end of the file include the line:

(load-file "ACL2(ml)-location/main.el")

where ACL2(ml)-location must be changed with the path to the folder where
you have downloaded ACL2(ml).

Now, go to the folder where you have downloaded ACL2(ml) and open the
file main.el. Modify the following constants:

• *home-dir* : you must replace the current path assigned to this constant
with the path where you have downloaded ACL2(ml).

• *acl2-dir* : you must replace the current path assigned to this constant
with the path to your executable image of ACL2.

This finishes the installation of ACL2(ml).

2

http://www.cs.utexas.edu/users/moore/acl2/
http://www.gnu.org/software/emacs/
http://www.cs.utexas.edu/users/moore/publications/acl2-programming-exercises1.html
http://www.cs.utexas.edu/users/moore/publications/acl2-programming-exercises1.html

Figure 1: Initial screen of ACL2(ml).

4 Using ACL2(ml)

To illustrate the use of ACL2(ml), we will use the file example.lisp which can
be find in the same folder of this manual. The example example.lisp includes
the definition of several recursive and tail recursive arithmetic functions and the
proof of their equivalences.

4.1 Getting started

Open file example.lisp using Emacs (the file example.lisp contains the defi-
nition of several recursive and tail recursive arithmetic functions and the equiv-
alence among them), start ACL2(ml) using M-x start-acl2ml, this splits the
Emacs window vertically, keeping the file example.lisp on the left window
and starting ACL2 in the right screen – some ACL2 libraries are automatically
loaded. If you have installed everything properly, your Emacs screen will look
like Figure 1. As you can see, the Emacs interface includes a new menu called
ACL2(ml) and three new buttons (G, C, S) in the menu bar.

4.2 Advancing in a proof script using ACL2(ml)

You can evaluate ACL2 expressions putting the cursor before the expression
and then pressing C-c C-t – this will send the expression to ACL2. In addition,
you can evaluate all the expressions up to a concrete point using C-c C-u. The
list of all ACL2(ml) shortcuts and functions is given in Table 1.

For instance, go to the end of the example.lisp file and evaluate the expres-
sions up to that point using C-C C-u. Now, let us explain the functionality of

3

Function Shortcut Functionality
acl2ml-start - Initialises ACL2(ml).
acl2ml-evaluate-next-event C-C C-t Evaluate next event.
acl2ml-evaluate-upto-here C-C C-u Evaluate expressions from the beginning

of the buffer up to the current point.
aclml-clusters C-c C-c Show clusters of similar definitions or theorems
acl2ml-show-similarities C-c C-s Show similar definitions or theorems.
acl2ml-obtain-guards C-c C-g Compute the guards for a theorem.
acl2ml-granularity - Change the granularity.
acl2ml-algorithm - Change the clustering algorithm.
acl2ml-whysimilar - Change the option to show the correlation of features.
acl2ml-export-library C-c C-e Export the library for further use.

Table 1: Functions and shortcuts available in ACL2(ml).

ACL2(ml).

4.3 Clustering

The first functionality allows the user to show the definitions and theorems that
are similar using a machine-learning technique called clustering. Clustering
groups objects that are correlated. To use this functionality, press the C button
of the menu bar or use C-c C-c. Emacs will ask you if you want to cluster
definitions or theorems.

In the case that you select to cluster definitions (d option), you can cluster
only the definitions of the current library, use also the libraries that you have ex-
ported (see Section 5.3), libraries that you have selected in the ACL2(ml) menu
(see Section 5.4), libraries that you have loaded using the include command of
ACL2, or directly cluster using the whole ACL2 library (this last option is a bit
slower than the rest). In this case, we select to cluster only the definitions of
the current library using c. After a few seconds, a new buffer called *display*

appears in Emacs, see Figure 2.
ACL2(ml) has found three clusters (we will see how to obtain a different

number of clusters in Section 5.2). If we focus on cluster 2, we can see that
all the auxiliary functions that are used to define tail-recursive functions are
grouped in the same cluster.

Analogously for theorems, press the C button and select to cluster theorems
(t option). Again, after a few seconds, the *display* window shows the groups
of theorems.

4.4 Similarities

The second functionality included in ACL2(ml) allows to show clusters of similar
definitions or theorems related to a concrete definition or theorem. For instance,
search the lemma fn_is_theta_fact, put the cursor at the beginning of this

4

Figure 2: Clusters for the example.lisp library. The Proof General window has
been split into two windows positioned side by side: the left one keeps the
current script, and the right one shows the families of similar lemmas.

lemma and press the S button or C-C C-s. After a few seconds, the Emacs
buffer *display* shows the lemmas that are similar, cf. Figure 4.

4.5 Generating preconditions of theorems using guards

This section describes a new functionality of ACL2(ml) that was not included
in [1]. Guards (http://www.cs.utexas.edu/~moore/acl2/current/manual/
index.html?topic=ACL2____GUARD) are a mechanism to restrict the domain of
a function. Guards can be used to generate preconditions to lemma statements
on the basis of the functions included in a theorem and this is the last function-
ality that we have included in ACL2(ml). To use this mechanism the user does
not need to define the guards of his functions, but ACL2(ml) computes some
by-default guards on the basis of the guards of the functions that are used in
the new definition.

Go to the end of the file, and include the following incomplete theorem:

(defthm helper_is_theta_fib

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j)

(* (theta_fib n) k)))

)

This lemma states the equivalence between the recursive function to compute
Fibonacci numbers and the auxiliary function of the tail-recursive version. In
this lemma, the preconditions are missed, we can ask to ACL2(ml) what are the
guards for the functions of this theorem, this guards can be used as precondition
for the theorem. To this aim, put the cursor at the beginning of the lemma and

5

http://www.cs.utexas.edu/~moore/acl2/current/manual/index.html?topic=ACL2____GUARD
http://www.cs.utexas.edu/~moore/acl2/current/manual/index.html?topic=ACL2____GUARD

Figure 3: Lemmas that are similar to fn is theta fact.

press the G button or C-c C-g. The result is shown in the *acl2* buffer, cf.
Figure 4.

If we use these conditions in the theorem:

(defthm helper_is_theta_fib

(implies (AND (INTEGERP N)

(NOT (< N 0))

(ACL2-NUMBERP J)

(ACL2-NUMBERP K)

(NOT (< (+ -1 N) 0)))

(equal (helper_fib n j k)

(+ (* (theta_fib (- n 1)) j)

(* (theta_fib n) k)))

))

ACL2 can complete the proof of the theorem.

5 Configuration of ACL2(ml)

ACL2(ml) provides several options that can be configured from the ACL2(ml)
and also from the Emacs shell.

5.1 Changing the clustering algorithm

The user can select different algorithms to obtain similar lemmas. The algo-
rithms which are available are: K-means, EM and FarthestFirst, see Figure 5.
(In our experiments, K-means usually provides the most accurate results). The
user can also change the algorithm using M-x acl2ml-algorithm, and selecting
there the concrete algorithm.

6

Figure 4: Guards for helper is theta fib.

Figure 5: The Algorithms submenu.

7

Figure 6: ACL2(ml) granularity menu.

Figure 7: Clusters for the example.lisp library using granularity 5.

5.2 Granularity menu

This option allows the user to select the granularity of the families of similar
lemmas, by selecting a value between 1 and 5, where 1 stands for a low granu-
larity (producing big and general families of similar lemmas) and 5 stands for a
high granularity (producing small and precise families of similar lemmas). The
user can configure this option from the ACL2(ml) menu (see Figure 5.2) or using
M-x acl2ml-granularity.

Figure 7 shows the similar definitions of our current file. As we can see, the
definitions of each cluster have a more clear correlation among them that in the
case of the cluster of Figure 2. Analogously for the theorems that are similar to
fn is theta fact cf. Figure 8 and 4.

5.3 Export Library

Using the Export library option of the ACl2(ml) menu (or C-c C-e), the user
can export the library for further use.

8

Figure 8: Lemmas that are similar to fn is theta fact using granularity 5.

5.4 Available libraries for clustering

This option allows the user to find families of similar lemmas across several
libraries previously exported.

5.4.1 Explain cluster similarities

If this option is activated, ACL2(ml) shows the reason because the different
lemmas are grouped in the same cluster, see Figure 9.

References

[1] J. Heras, E. Komendantskaya, M. Johansson, and E. Maclean. Proof-Pattern
Recognition and Lemma Discovery in ACL2. In 19th Logic for Programming
Artificial Intelligence and Reasoning (LPAR-19), volume 8312 of Lecture
Notes in Computer Science, pages 389–406, 2013.

9

Figure 9: Features that are used to group lemmas in a cluster.

10

	Differences from LPAR version
	Requirements
	Installation
	Using ACL2(ml)
	Getting started
	Advancing in a proof script using ACL2(ml)
	Clustering
	Similarities
	Generating preconditions of theorems using guards

	Configuration of ACL2(ml)
	Changing the clustering algorithm
	Granularity menu
	Export Library
	Available libraries for clustering
	Explain cluster similarities

