Pattern Recognition for Coinductive Proof Trees J

Katya Komendantskaya
School of Computing, University of Dundee, UK

Al4FM’11,Edinburgh
29 April 2011

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 1/20



Project CLANN = Al4FM in a radical form

_s880|

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 2 /20



Computational Logic in Neural Networks

Formal methods: Symbolic Logic,
Theorem Provers J

@ Deduction in logic calculi;

@ Logic programming;

@ Higher-order proof
assistants...

Sound symbolic methods we can
trust

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 3 /20



Computational Logic in Neural Networks

Neural Networks J

Formal methods: Symbolic Logic,
Theorem Provers

@ Deduction in logic calculi;

@ Logic programming;

@ Higher-order proof
assistants...

Sound symbolic methods we can
trust

@ spontaneous behavior
(self-organisation);
@ learning and adaptation;

@ parallel computing.

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 3 /20



Learning Heuristics while doing Formal Proofs

The

main purpose of this talk:

Share my experince in machine learning proof tactics using statistical
methods (Neural Networks).

There have been related attempts (but very often do not extend to
first-order or higher-order languages with recursion). They are
best-suited for languages with finite models. (Objects of these models
can then be statistically classified, but dealing with Syntax is
generally avoided.)

Extending these methods to higher-order proofs and recursion may
lead to solutions unnatural from machine learning perspective (also
called localistic).

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 4 /20



Recursion and Corecursion in Logic Programming

Example
nat(0) +«
nat(s(x)) <+ nat(x)
list(nil) <+
list(cons x y) < mnat(x), list(y)
Example
bit(0) <«
bit(l) <«
stream(cons (x,y)) <+ bit(x),stream(y)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 5 /20



Why is machine learning UN-suitable for Formal methods:

@ Many logic algorithms have a precise, rather than statistical nature.

Example

Two formulae 1list(x) and 1list(nil) are unifiable: x/nil. We mean
exactly this, and do not want it to be substituted by some approximate
such as nol. (Although humans would tolerate this mis-spelling had it

appeared in a written text...)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 6 /20



Why is machine learning UN-suitable for Formal methods:

@ Many logic algorithms have a precise, rather than statistical nature.

Example

Two formulae 1ist(x) and 1ist(nil) are unifiable: x/nil. We mean
exactly this, and do not want it to be substituted by some approximate
such as nol. (Although humans would tolerate this mis-spelling had it

appeared in a written text...)

@ Many important logic algorithms are sequential, e.g. unification.

Example

If | have a goal: 1list(cons(x,y)) A list(x), my proof will never
succeed — x will get substituted by some nat term, e.g. 0 or S(0), which
will make the second formula invalid. Note that the proof would have
succeed had it been concurrent. )

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 6 /20




Any Hope?

However,

@ Many proofs, especially by (co-)induction, especially using
constructors (like nil or cons), share some common structure (=
follow some patterns in machine learning terms) that can be detected
using statistical learning;

@ We have concurrent algorithms for proof search to implement - e.g.
coinductive proof trees [Komendantskaya,Power CALCO'2011].

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 7 /20



What are the coinductive trees?

@ They arose from coalgebraic semantics for derivations in logic
programs, [Komendantskaya,Power CALCO'2011].

@ They offer a proof method for recursive and corecursive logic
programs.

@ They also allow for concurrency.

@ They offer very structured approach to automated proofs, as we will
see shortly.

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 8 /20



What are the coinductive trees?

@ They arose from coalgebraic semantics for derivations in logic
programs, [Komendantskaya,Power CALCO'2011].

@ They offer a proof method for recursive and corecursive logic
programs.

@ They also allow for concurrency.

@ They offer very structured approach to automated proofs, as we will
see shortly.

Can we learn what they are from positive and negative examples? J

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 8 /20



Examples of a first-order coinductive trees:

Correct J

list(cons(x, cons(y, x)))

/\

nat(x) list(cons(y,x))

/\

nat(y) list(x)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 9 /20



Examples of a first-order coinductive trees:

Incorrect J

Correct

list(cons(x, cons(y, x)))

list(cons(x, cons(y,x))) /K
/K nat(x) list(cons(y,x))
nat(x) list(cons(y,x)) + /K
/K O nat(y) list(x)

nat(y) list(x) + +
O g

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 9 /20



Examples of first-order coinductive trees:

Correct J

list(cons(s(z), cons(s(z),s(z))))

A

nat(s(z)) list(cons(s(z),s(z)))

+ A

nat(z) nat(s(z)) 1list(s(z))

+

nat(z)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 10 / 20



Examples of first-order coinductive trees:

Incorrect J

Correct J

list(cons(s(z), cons(s(z),s(z))))
list(cons(s(z), cons(s(z),s(z)))) /K

/K nat(s(z)) list(cons(s(z),s(z)))

nat(s(z)) list(cons(s(z),s(z))) + /K

+ /K nat(z) nat(s(z)) 1list(s(z)

nat(z) nat(s(z)) list(s(z)) + +

—

+ O nat(z) O
nat(z) +
]

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 10 / 20



Examples of first-order coinductive trees:

Correct J

list(cons(s(0), cons(s(0),nil)))

A

nat(s(0)) list(cons(s(0),nil))

+ A

nat(0) mnat(s(0)) list(nil)

bt !

O nat(0) O

l

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 11 /20



Examples of first-order coinductive trees:

Correct

Incorrect J

list(cons(s(0), cons(s(0),nil)))
/i\ list(cons(s(0), cons(s(0),nil)))
nat(s(0)) list(cons(s(0),nil)) /L\
+ /K nat(s(0)) 1list(cons(s(0),nil))
nat(0) nat(s(0))  list(nil) A
+ + + nat(s(0))  list(nil)

O nat(0) O +
+ nat(0)
(]

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 11 /20



Test examples: Is this a correct CPT?

nat(cons(s(0), cons(s(0),nil)))

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 12 /20



Test examples: Is this a correct CPT?

nat(cons(s(0), cons(s(0),nil)))

Yes. )

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 12 /20



Pattern-recognition in Coinductive Proof trees

Test examples: Is this a correct CPT?

list(cons(s(0), cons(s(0),nil)))

A

nat(s(0)) 1list(cons(s(0),nil))

+ A

nat(0) mnat(s(0)) list(nil)

+

nat(0)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 13 /20



Pattern-recognition in Coinductive Proof trees

Test examples: Is this a correct CPT?

list(cons(s(0), cons(s(0),nil)))

A

nat(s(0)) 1list(cons(s(0),nil))

+ A

nat(0) mnat(s(0)) list(nil)

+

nat(0)

No. )

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 13 /20



Pattern-recognition in Coinductive Proof trees

Test examples: Is this a correct CPT?

list(cons(s(nil), cons(0,nil)))

A

nat(s(nil)) 1list(cons(0,nil))

+ A

nat(nil) nat(0) list(nil)
! f
U ]

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 14 /20



Pattern-recognition in Coinductive Proof trees

Test examples: Is this a correct CPT?

list(cons(s(nil), cons(0,nil)))

A

nat(s(nil)) 1list(cons(0,nil))

+ A

nat(nil) nat(0) list(nil)
! +
U ]
Yes. )

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 14 /20



Pattern-recognition in Coinductive Proof trees

Test examples: Is this a correct CPT?

list(cons(s(0), cons(s(0),x)))

A

nat(s(0)) list(cons(s(0),x))

+ A

nat(0) nat(s(0)) list(x)

+

nat(0)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 15 / 20



Pattern-recognition in Coinductive Proof trees

Test examples: Is this a correct CPT?

list(cons(s(0), cons(s(0),x)))

A

nat(s(0)) list(cons(s(0),x))

+ A

nat(0) nat(s(0)) list(x)

+

nat(0)

No. )

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 15 / 20



MATLAB Demo

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 16 / 20



Conclusions

Our Result Versus Neural Nets result

Our results J

Training set:
Testing examples: %.

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 17 /20



Our Result Versus Neural Nets result

Neural Network J

Our results J

Training set: Training set: - roughly 82%.
Testing exar:nples: %. (in the demo - 94%)
Testing examples: - 100%.

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 17 /20



Conclusions

Different properties can be separated

We can ask questions about coinductive trees proving nat and list, and
can tune neural networks to classify the results into four classes:

@ correct-for-list
@ incorrect-for-list
@ correct-for-nat

@ incorrect-for-nat

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 18 / 20



Conclusions

Future work

@ Find an interesting application

@ Note on Finding “Why?s": my experience with Coq in INRIA was
that the experts often justify those "Why's" statistically rather than
conceptually.

@ Note on combinations of tactics, like intro, induction, simpl, and
so on in Higher-order interactive provers. Even very complicated
proofs use about 50-100 tactics only; BUT their combinations can be
very clever. Again, is there room for statistical analysis?

@ We have learned *both* from positive and negative examples, as
discussed yesterday.

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 19 /20



Conclusions

Future work

@ Find an interesting application

@ Note on Finding “Why?s": my experience with Coq in INRIA was
that the experts often justify those "Why's" statistically rather than
conceptually.

@ Note on combinations of tactics, like intro, induction, simpl, and
so on in Higher-order interactive provers. Even very complicated
proofs use about 50-100 tactics only; BUT their combinations can be
very clever. Again, is there room for statistical analysis?

@ We have learned *both* from positive and negative examples, as
discussed yesterday.

Really GOOD news

The approach is 100% natural from machine learning perspective: uses
standard nets and not localistic.

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 19 /20




Conclusions

Questions?

(Please contact me katya@computing.dundee.ac.uk if they arise later!)

Katya (AI4FM'11) Pattern Recognition for Coinductive Proof Tr Al4FM'11 20 / 20



	Introduction
	Pattern-recognition in Coinductive Proof trees
	Conclusions

