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Abstract. Logic programming, a class of programming languages based
on first-order logic, provides simple and efficient tools for goal-oriented
proof-search. Logic programming supports recursive computations, and
some logic programs resemble the inductive or coinductive definitions
written in functional programming languages. In this paper, we give
a coalgebraic semantics to logic programming. We show that ground
logic programs can be modelled by either PfPf -coalgebras or PfList-
coalgebras on Set. We analyse different kinds of derivation strategies
and derivation trees (proof-trees, SLD-trees, and-or parallel trees) used in
logic programming, and show how they can be modelled coalgebraically.
Key words: Logic programming, SLD-resolution, Parallel Logic pro-
gramming, Coalgebra, Coinduction.

1 Introduction

In the standard formulations of logic programming, such as in Lloyd’s book [19],
a first-order logic program consists of a finite set of clauses of the form

A← A1, . . . , An

where A and the Ai’s are atomic formulae, typically containing free variables;
and A1, . . . , An is to mean the conjunction of the Ai’s. Note that n may be 0.
The central algorithm for logic programming, called SLD-resolution, takes a goal
G = ← B1, . . . , Bn, which is also meant as a conjunction of atomic formulae
typically containing free variables, and constructs a proof for an instantiation
of G from substitution instances of the clauses in a given logic program P . The
algorithm uses Horn-clause logic, with variable substitution determined univer-
sally to make the first atom in G agree with the head of a clause in P , then
proceeding inductively.
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Despite its minimal syntax, logic programming can express recursive and
even corecursive computations; it is adaptable to natural language processing;
and it allows implicit parallel execution of programs. These features led to its
various applications in computer science, such as constraint logic programming,
DATALOG, and parallel logic programming. Logic programming has had direct
and indirect impact on various disciplines of computer science.

There have been several successful attempts to give a categorical charac-
terisation of logic programs and computations by logic programs. Among the
earliest results was the characterisation of the first-order language as a Law-
vere theory [2, 5, 6, 17], and most general unifiers (mgus) as equalisers [4] and
pullbacks [6, 2]. There were several approaches to operational semantics of logic
programming, notably, built upon the observation that logic programs resemble
transition systems or rewriting systems; [5, 7].

The coalgebraic semantics we propose will ultimately rely upon Lawvere the-
ories, mgus as equalisers and operational behavior of SLD-derivations given by
state transitions. However, our original contribution is a coalgebraic character-
isation of different derivation strategies in logic programming. As we show in
Section 3, the algebraic semantics for logic programming [2, 6, 17] fails to give
an account of the possibly infinite derivations that arise in the practice of logic
programming. The coalgebraic semantics we propose fills this gap. Among the
major advantages of this semantics is that it neatly models different strategies
for parallel execution of logic programs, as we explain in Section 5.

In order to concentrate on derivations, rather than Lawvere theories, we
ignore variables here. Ground logic programs have the advantage of yielding a
variety of parallel derivation strategies [12, 23], as opposed to the general case, for
which the algorithms of unification and SLD resolution are P-complete [27, 15].
The variable-free setting is more general than it may first appear: for some logic
programs, only finitely many “ground” substitutions are possible; the exception
being logic programs that describe potentially infinite data. Therefore, one often
can emulate an arbitrary logic program by a variable-free one.

For the rest of the paper we assume that all clauses are ground, and that
there are only finitely many predicate symbols, as is implicit in the definition
of logic program. Then an atomic formula A may be the head of one clause,
or no clause, or many clauses, but only ever finitely many. Each clause with
head A has a finite number of atomic formulae A1, . . . , An in its antecedent.
So one can see a logic program without variables as a coalgebra of the form
p : At −→ Pf (Pf (At)), where At is the set of atomic formulae: p sends each
atomic formula A to the set of the sets of atomic formulae in each antecedent of
each clause for which A is the head.

Thus we can identify a variable-free logic program with a PfPf -coalgebra
on Set. In fact, we can go further. If we let C(PfPf ) be the cofree comonad
on PfPf , then given a logic program qua PfPf -coalgebra, the corresponding
C(PfPf )-coalgebra structure describes the and-or parallel derivation trees of the
logic program yielding the basic computational construct of logic programming
in the variable-free setting. We explain this in Section 5.



A similar analysis of SLD-derivations in logic programming can be given in
terms of PfList-coalgebras. Such an analysis would be suitable for logic pro-
gramming applications that treat conjunctions ← B1, B2, . . . , Bn as lists. The
main difference between the models based on PfPf - and PfList-coalgebras, is
that they model different strategies of parallel SLD-derivations.

The paper is organised as follows. In Section 2, we discuss the operational
semantics for logic programs given by SLD-resolution. In Section 3 we anal-
yse the finite and infinite SLD derivations that arise in the practice of logic
programming, and briefly outline the existing approaches to coinductive logic
programming. In Section 4, we show how to model variable-free logic programs
as coalgebras and exhibit the role of the cofree comonad C(PfPf ); we discuss
the difference between SLD-refutations modelled by C(PfPf )- and C(PfList)-
coalgebras. In Section 5, we show that the C(PfList)-coalgebra is a sound and
complete semantics for and-or parallel SLD derivations. We prove that semantics
given by C(PfList)-coalgebra is correct with respect to the Theory of Observ-
ables [7] for logic programming. In Section 6, we conclude the paper and discuss
future work to be done.

2 Logic Programs and SLD Derivations

In this section, we recall the essential constructs of logic programming, as de-
scribed, for instance, in Lloyd’s standard text [19]. We start by describing the
syntax of logic programs, after which we outline approaches to declarative and
operational semantics of logic programs.

Definition 1. A signature Σ consists of a set of function symbols f, g, . . . each
equipped with a fixed arity. The arity of a function symbol is a natural num-
ber indicating the number of arguments it is supposed to have. Nullary (0-ary)
function symbols are allowed: these are called constants.

Given a countably infinite set V ar of variables, terms are defined as follows.

Definition 2. The set Ter(Σ) of terms over Σ is defined inductively:

– x ∈ Ter(Σ) for every x ∈ V ar.
– If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ), then
f(t1, . . . , tn) ∈ Ter(Σ).

Variables will be denoted x, y, z, sometimes with indices x1, x2, x3, . . ..

Definition 3. A substitution is a map θ : Ter(Σ)→ Ter(Σ) which satisfies

θ(f(t1, . . . , tn)) ≡ F (θ(t1), . . . , θ(tn))

for every n-ary function symbol f .



We define an alphabet to consist of a signature Σ, the set V ar, and a set
of predicate symbols P, P1, P2, . . ., each assigned an arity. Let P be a predicate
symbol of arity n and t1, . . . , tn be terms. Then P (t1, . . . , tn) is a formula (also
called an atomic formula or an atom). The first-order language L given by an
alphabet consists of the set of all formulae constructed from the symbols of the
alphabet.

Definition 4. Given a first-order language L, a logic program consists of a
finite set of clauses of the form A ← A1, . . . , An, where A,A1, . . . An( n ≥ 0)
are atoms. The atom A is called the head of a clause, and A1, . . . , An is called
its body. Clauses with empty bodies are called unit clauses.

A goal is given by ← A1, . . . An, where A1, . . . An( n ≥ 0) are atoms.

Definition 5. A term, an atom, or a clause is called ground if it contains no
variables. A term t is an instance of a term t1 if there exists a substitution σ
such that σ(t1) = t; additionally, if t is ground, it is called a ground instance of
t1; similarly for atoms and clauses.

Various implementations of logic programs require different restrictions to
the first-order signature. One possible restriction is to remove function symbols
of arity n > 0 from the signature, and the programming language based on such
syntax is called DATALOG. The advantages of DATALOG are easier imple-
mentations and a greater capacity for parallelisation [27, 15]. From the point of
view of model theory, DATALOG programs always have finite models. Another
possible restriction to the syntax of logic programs is ground logic programs,
that is, there is no restriction to the arity of function symbols, but variables are
not allowed. Such a restriction yields easier implementations, because there is
no need for unification algorithms, and such programs also can be implemented
using parallel algorithms. We will return to this discussion in Section 4.

Remark 1. There are different approaches to the meaning of goals and bodies
given by A,A1, . . . An. One approach arises from first-order logic semantics, and
treats them as finite conjunctions, in which case the order of atoms is not im-
portant, and repetitions of atoms are not considered. Another — practical —
approach is to treat bodies as sequences of atoms, in which case repetitions and
order can play a role in computations. In Section 4, we show that both approaches
are equally sound in case of ground logic programs, however, the first-order case
requires the use of lists; and the majority of PROLOG interpreters treat the
goals as lists.

One of our running examples will be the following program.

Example 1. Let GC (for graph connectivity) denote the logic program

connected(x,x)←
connected(x,y)← edge(x,z), connected(z,y).



Here, we used predicates “connected” and “edge”, to make the intended mean-
ing of the program clear. Additionally, there may be clauses that describe the
data base, in our case the edges of a particular graph, e.g. edge(a,b) ← ,
edge(b,c) ← . The latter two clauses are ground, and the atoms in them
are ground instances of the atom edge(x,z). A typical goal would be ←
connected(a,x).

Traditionally, logic programming has been given least fixed point seman-
tics [19]. Given a logic program P , one lets BP (also called a Herbrand base)
denote the set of atomic ground formulae generated by the syntax of P , and one
defines the TP operator on 2BP by sending I to the set {A ∈ BP : A← A1, ..., An
is a ground instance of a clause in P with {A1, ..., An} ⊆ I}. The least fixed point
of TP is called the least Herbrand model of P and duly satisfies model-theoretic
properties that justify that expression [19]. A non-ground alternative to the
ground fixed point semantics has been given in [9]; and further developed in
terms of categorical logic [2, 6].

The fact that logic programs can be naturally represented via fixed point
semantics has led to the development of logic programs as inductive definitions,
[22, 14], as opposed to the view of logic programs as first-order logic.

Operational semantics for logic programs is given by SLD-resolution, a goal-
oriented proof-search procedure.

Given a substitution θ as in Definition 3, and an atom A, we write Aθ for
the atom given by applying the substitution θ to the variables appearing in
A. Moreover, given a substitution θ and a list of atoms (A1, ...Ak), we write
(A1, ..., Ak)θ for the simultaneous substitution of θ in each Am.

Definition 6. Let S be a finite set of atoms. A substitution θ is called a unifier
for S if, for any pair of atoms A1 and A2 in S, applying the substitution θ yields
A1θ = A2θ. A unifier θ for S is called a most general unifier (mgu) for S if, for
each unifier σ of S, there exists a substitution γ such that σ = θγ.

Definition 7. Let a goal G be ← A1, . . . , Am, . . . , Ak and a clause C be A ←
B1, . . . , Bq. Then G′ is derived from G and C using mgu θ if the following
conditions hold:
• Am is an atom, called the selected atom, in G.
• θ is an mgu of Am and A.
• G′ is the goal ← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ.

A clause C∗i is a variant of the corresponding clause Ci, if C∗i = Ciθ, with
θ being a variable renaming substitution, such that variables in C∗i do not ap-
pear in the derivation up to Gi−1. This process of renaming variables is called
standardising the variables apart.

Definition 8. An SLD-derivation of P ∪ {G} consists of a sequence of goals
G = G0, G1, . . . called resolvents, a sequence C1, C2, . . . of variants of program
clauses of P and a sequence θ1, θ2, . . . of mgus such that each Gi+1 is derived
from Gi and Ci+1 using θi+1. An SLD-refutation of P ∪ {G} is a finite SLD-
derivation of P ∪ {G} which has the empty clause 2 as its last goal. If Gn = 2,
we say that the refutation has length n.



Operationally, SLD-derivations can be characterised by two kinds of trees
— called SLD-trees and proof-trees, the latter called proof-trees for their close
relation to proof-trees in e.g. sequent calculus.

Definition 9. Let P be a logic program and G be a goal. An SLD-tree for P ∪
{G} is a tree T satisfying the following:
1. Each node of the tree is a (possibly empty) goal.
2. The root node is G.
3. If ← A1, . . . , Am, m > 0 is a node in T ; and it has n children, then there

exists Ak ∈ A1, . . . , Am such that Ak is unifiable with exactly n distinct
clauses C1 = A1 ← B1

1 , . . . , B
1
q , ..., Cn = An ← Bn1 , . . . , B

n
r in P via mgus

θ1, . . . θn, and, for every i ∈ {1, . . . n}, the ith child node is given by the goal

← (A1, . . . , Ak−1, B
i
1, . . . , B

i
q, Ak+1, . . . , Am)θi

4. Nodes which are the empty clause have no children.

Each SLD-derivation, or, equivalently, each branch of an SLD-tree, can be
represented by a proof-tree, defined as follows.

Definition 10. Let P be a logic program and G =← A be an atomic goal. A
proof-tree for A is a possibly infinite tree T such that
– Each node in T is an atom.
– A is the root of T .
– For every node A′ occurring in T , if A′ has children C1, . . . , Cm, then there

exists a clause B ← B1, . . . , Bm in P such that B and A′ are unifiable with
mgu θ, and B1θ = C1, ... ,Bmθ = Cm.

As pointed out in [26], the relationship between proof-trees and SLD-trees
is the relationship between deterministic and nondeterministic computations.
Whether the complexity classes defined via proof-trees are equivalent to com-
plexity classes defined via search trees is a reformulation of the classic P=NP
problem in terms of logic programming. We will illustrate the two kinds of trees
in the following example.

Example 2. Consider the following simple ground logic program.

q(b,a)←
s(a,b)←
p(a)← q(b,a), s(a,b)

q(b,a)← s(a,b)

Figure 1 shows a proof-tree and an SLD-tree for this program. The proof-tree
corresponds to the left-hand side branch of the SLD-tree.

SLD-resolution is sound and complete with respect to the least fixed point
semantics. The classical theorems of soundness and completeness of this opera-
tional semantics [19, 9] show that every atom in the set computed by the least
fixed point of TP has a finite SLD-refutation, and vice versa.



← p(a)

← q(b, a)

2

← s(a, b)

2

← p(a)

← q(b, a), s(a, b)

← s(a, b)

2

← s(a, b), s(a, b)

← s(a, b)

2

Fig. 1. A proof tree (left) and an SLD-tree (right) for a logic program of Example 2.

3 Finite and Infinite Computations by Logic Programs

The analysis afforded by least fixed point operators focuses solely on finite SLD
derivations. But infinite SLD derivations are nonetheless common in the practice
of programming. Two kinds of infinite SLD derivations are possible: computing
finite or infinite objects.

Example 3. Consider the logic program from Example 1. It is easy to facilitate
infinite SLD-derivations, by simply adding a clause that makes the graph cyclic:
edge(c,a) ← . Taking a query ← connected(a,z) as a goal would lead to an
infinite SLD-derivation corresponding to an infinite path starting from a in the
cycle. However, the object that is described by this program, the cyclic graph
with three nodes, is finite.

Unlike the derivations above, some derivations compute infinite objects.

Example 4. The following program stream defines the infinite stream of binary
bits:

bit(0)←
bit(1)←

stream(cons (x,y))← bit(x), stream(y)

Programs like stream can be given declarative semantics via the greatest
fixed point of the semantic operator TP . However the fixed point semantics is
incomplete in general [19]: it fails for some infinite derivations.

Example 5. The program below will be characterised by the greatest fixed point
of the TP operator, which contains R(fω(a)); whereas no infinite term will be
computed via SLD-resolution.

R(x)← R(f(x))



There have been numerous attempts to resolve the mismatch between infinite
derivations and greatest fixed point semantics, [14, 19, 22, 24]. But, the infinite
SLD derivations of both finite and infinite objects have not yet received a uniform
semantics, see Figure 2.

In [17, 18] we described algebraic fibrational semantics and proved soundness
and completeness result for it with respect to finite SLD-refutations, see Figure
2. Alternative algebraic semantics for logic programming were given in [2, 6].
In this paper, we give a coalgebraic treatment of both finite and infinite SLD
derivations, and prove soundness and completeness of this semantics for ground
logic programs.
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Fig. 2. Alternative declarative semantics for finite and infinite SLD-derivations. The
solid arrows ↔ show the semantics that are both sound and complete, and the solid
arrow → indicates sound incomplete semantics, and the dotted arrow indicates the
sound and complete semantics for ground logic programs we propose here.

4 Coalgebraic Semantics for Ground Logic Programs

In this section, we consider a coalgebraic semantics for ground logic programs.
This semantics is intended to give meaning to both finite and infinite SLD-
derivations.

Example 6. A ground logic program equivalent to the program from Example 1
can be obtained by taking all ground instances of non-ground clauses, such as,
for example

connected(a, a)←
connected(b, b)←

...
connected(a, b)← edge(a, c), connected(c, b)
connected(a, c)← edge(a, b), connected(b, c)

...



When a non-ground program contains no function symbols (cf. Example 1),
there always exists a finite ground program equivalent to it, such as the one
in the example above. In this section, we will work only with finite ground
logic programs. Finite ground logic programs can still give rise to infinite SLD-
derivations. If the graph described by a logic program above is cyclic, it can give
rise to infinite SLD-derivations, see Example 3.

Variable-free logic programs and SLD derivations over such programs bear a
strong resemblance to finitely branching transition systems (see also [5, 7]): atoms
play the role of states, and the implication arrow ← used to define clauses plays
the role of the transition relation. The main difference between logic programs
and transition systems is that each atom is sent to the subset of subsets of atoms
appearing in the program, and thus the finite powerset functor Pf is iterated
twice.

Proposition 1. For any set At, there is a bijection between the set of variable-
free logic programs over the set of atoms At and the set of PfPf -coalgebra struc-
tures on At.

Proof. Given a variable-free logic program P , let At be the set of all atoms
appearing in P . Then P can be identified with a PfPf -coalgebra (At, p), where
p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of those clauses in
P with head A, each body being viewed as the set of atoms that appear in it.

Remark 2. One can alternatively view the bodies of clauses as lists of atoms.
In this case, Proposition 1 can alternatively be given by PfList-coalgebra. That
is, a ground logic program P can be identified with a PfList-coalgebra (At, p),
where p : At −→ Pf (List(At)) sends an atom A to the set of bodies of those
clauses in P with head A, viewed as lists of atoms.

This coalgebraic representation of a logic program affords not only a repre-
sentation of the program itself, but also of derivation trees for the program. As we
now show, one can use the cofree comonad C(PfPf ) on PfPf and the C(PfPf )-
coalgebra determined by the PfPf -coalgebra to give an account of derivation
trees for the atoms appearing in a given logic program. This bears comparison
with the greatest fixed point semantics for logic programs, see e.g. [19], but we
do not pursue that here. The following theorem uses the construction given in
[16, 28].

Theorem 1. Given an endofunctor H : Set −→ Set with a rank, the forgetful
functor U : H-Coalg −→ Set has a right adjoint R.

Proof. R is constructed as follows. Given Y ∈ Set, we define a transfinite se-
quence of objects as follows. Put Y0 = Y , and Yα+1 = Y × H(Yα). We define
δα : Yn+1 −→ Yn inductively by

Yα+1 = Y ×HYα
Y×Hδα−1−→ Y ×HYα−1 = Yα,



with the case of α = 0 given by the map Y1 = Y × HY
π1−→ Y . For a limit

ordinal, let Yα = limβ<α(Yβ), determined by the sequence

Yβ+1
δβ−→ Yβ .

If H has a rank, there exists α such that Yα is isomorphic to Y ×HYα. This Yα
forms the cofree coalgebra on Y .

Corollary 1. If H has a rank, U has a right adjoint R and putting G = RU ,
G possesses a canonical comonad structure and there is a coherent isomorphism
of categories

G-Coalg ∼= H-Coalg,

where G-Coalg is the category of G-coalgebras for the comonad G.

It will be helpful to make the correspondence between H-coalgebras and G-
coalgebras more explicit. Given an H-coalgebra p : Y −→ HY , we construct
maps pα : Y −→ Yα for each ordinal α as follows. The map p0 : Y −→ Y is the
identity, and for a successor ordinal, pα+1 = 〈id,Hpα ◦ p〉 : Y −→ Y ×HYα. For
limit ordinals, pα is given by the appropriate limit. By definition, the object GY
is given by Yα for some α, and the corresponding pα is the required G-coalgebra.

We can apply the general results given by the proof of Theorem 1 and Corol-
lary 1 to extend our analysis of logic programs viewed as PfPf -coalgebras.

Construction 1 Taking p : At −→ PfPf (At), by the proof of Theorem 1, the
corresponding C(PfPf )-coalgebra where C(PfPf ) is the cofree comonad on PfPf
is given as follows: C(PfPf )(At) is given by a limit of the form

. . . −→ At× PfPf (At× PfPf (At)) −→ At× PfPf (At) −→ At.

This chain has length ω. As above, we inductively define the objects At0 = At
and Atn+1 = At× PfPfAtn, and the cone

p0 = id : At −→ At(= At0)
pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At× PfPfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C(PfPf )(At).

Construction 2 Note that by Remark 2, a similar construction for PfList-
coalgebras can be used to give semantics to SLD derivations for logic programs
whose bodies are treated as lists of atoms: one just has to use PfList instead of
PfPf in construction 1.

Construction 1 describes a structure that resembles the derivation trees used
in logic programming, but as we show in the next example, these are not the
traditional proof-trees or SLD-trees from Definitions 10 and 9.



Example 7. Consider the logic program from Example 2.
The program has three atoms, namely q(b,a), s(a,b) and p(a). So

At = {q(b,a), s(a,b), p(a)}. And the program can be identified with the
PfPf -coalgebra structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Consider the C(PfPf )-coalgebra corresponding to p. It sends p(a) to the
parallel refutation of p(a) depicted on the left side of Figure 3. Note that the
nodes of the tree alternate between those labelled by atoms and those labelled
by bullets (•). The set of children of each bullet represents a goal, made up of
the conjunction of the atoms in the labels. An atom with multiple children is
the head of multiple clauses in the program: its children represent these clauses.
We use the traditional notation 2 to denote {}.

Where an atom has a single •-child, we can elide that node without losing
any information; the result of applying this transformation to our example is
shown on the right in Figure 3. As we shall shortly explain, the resulting tree
is precisely the parallel and-or derivation tree for the atomic goal ← p(a); see
Definition 11.

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

Fig. 3. The action of p : At −→ C(PfPf )(At) on p(a), and the corresponding and-or
derivation tree.

In contrast, considering the program as a PfList-coalgebra, we would have:
p(q(b,a)) = {nil, [s(a,b)]}, i.e., the set of two lists, with nil being the empty
list.
p(s(a,b)) = {nil}.
p(p(a)) = {[q(b,a) :: s(a,b)]}, i.e, the set containing one list
[q(b,a) :: s(a,b)].



The action of the corresponding C(PfList)-coalgebra on p(a) can be depicted
similarly to Fig. 3, subject to a mildly modified understanding of the picture.
In replacing Pf by List, the order of atoms in a goal is vital, and an atom may
occur more than once. So to account for List, we must regard the diagram as
a tree with a given embedding of the children of each •-node in the plane, and
allow several children of the same •-node to be labelled by the same atom. Thus
the children of a •-node are understood as a list, corresponding to their relative
locations in the plane, and the same atom may appear more than once among
them. On the other hand, the •-nodes are not ordered, so the children of the
atom-nodes are not embedded in the plane.

5 Coalgebraic semantics and parallel execution of logic
programs

The tree shown in Example 7 differs from the SLD-tree (cf. Definition 9) and the
proof-tree (cf. Definition 10) constructed for the same logic program in Example
2. The reason is that the derivations modelled by the G-coalgebras have strong
relation to parallel logic programming, [27, 15], while both proof-trees and SLD-
trees describe sequential derivation strategies.

One of the distinguishing features of logic programming languages is that
they allow implicit parallel execution of programs. The three main types of
parallelism used in implementations of logic programs are and-parallelism and
or-parallelism, and their combination; see [12, 23] for an excellent analysis of
parallelism in logic programming.

Or-parallelism arises when more than one clause unifies with the goal atom —
the corresponding bodies can be executed in Or-parallel fashion. Or-parallelism is
thus a way of efficiently searching for solutions to a goal, by exploring alternative
solutions in parallel. It corresponds to the parallel execution of the branches of
an SLD-tree, cf. Definition 9 and Example 2. Or-parallelism has successfully been
exploited in Prolog in the Aurora [20] and the Muse [1] systems both of which
have shown very good speed-up results over a considerable range of applications.

(Independent) And-parallelism arises when more than one atom is present
in the goal, and the atoms do not share variables. In this section, we consider
only ground logic programs, and so the latter condition is satisfied trivially.
That is, given a goal G = ← B1, . . . Bn, an And-parallel algorithm of SLD
resolution looks for SLD derivations for each of Bi simultaneously. Independent
And-parallelism is thus a way of splitting up a goal into subgoals, and corre-
sponds to the parallel computation of all branches in a proof-tree, see Definition
10 and Example 2. Independent And-parallelism has been successfully exploited
in the &-Prolog System [13].

The comonad we have constructed in the previous section models a synthetic
form of parallelism: And-Or parallelism. The most common way to express And-
Or parallelism in logic programs is through and-or trees [12], which consist of
or-nodes and and-nodes. Or-nodes represent multiple clause heads unifying with
a goal atom, while and-nodes represent multiple subgoals in the body of a clause



being executed in and-parallel. And-Or parallel PROLOG was first implemented
in the Andorra system [8], with many more implementations following it [12].

Definition 11. Let P be a logic program and G =← A be an atomic goal. The
parallel and-or derivation tree for A is the possibly infinite tree T satisfying the
following properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node.
– Each or-node is given by •.
– Each and-node is an atom.
– For every node A′ occurring in T , if A′ is unifiable with only one clause
B ← B1, . . . , Bn in P with mgu θ, then A′ has n children given by and-
nodes B1θ, . . . Bnθ.

– For every node A′ occurring in T , if A′ is unifiable with exactly m > 1
distinct clauses C1, . . . , Cm in P via mgus θ1, . . . , θm, then A′ has ex-
actly m children given by or-nodes, such that, for every i ∈ m, if Ci =
Bi ← Bi1, . . . , B

i
n, then the ith or-node has n children given by and-nodes

Bi1θi, . . . , B
i
nθi.

There are non-trivial choices about when to regard two trees as equivalent:
one possibility is when they are equivalent in the plane, another is when they are
combinatorially equivalent, a third is a hybrid. These correspond to character-
isations as C(ListList)-coalgebras, as C(PfPf )-coalgebras, and as C(PfList)-
coalgebras respectively, yielding three theorems, the second of which is as follows.

Theorem 2 (Soundness and completeness). Let P be a variable-free logic
program, At the set of all atoms appearing in P , and p̄ : At −→ C(PfPf )(At)
the C(PfPf )-coalgebra generated by P . (Recall that p̄ is constructed as a limit
of a cone pn over an ω-chain.) Then, for any atom A, p̄(A) expresses precisely
the same information as that given by the parallel and-or derivation tree for A,
that is, the following holds:

– For a derivation step n of the parallel and-or tree for A, pn(A) is isomorphic
to the and-or parallel tree for A of depth n.

– The and-or tree for A is of finite size and has the depth n iff p̄(A) = pn(A).
– The and-or tree for A is infinite iff p̄(A) is given by the element of the limit

limω(pn)(At) of an infinite chain given by Construction 1.

Proof. We use Constructions 1 and 2 and put, for every A ∈ At:

– p0(A) = A,
– p1(A) = (A, {bodies of clauses in P with the head A});
– p2(A) = (A, {bodies of clauses in P with the head A, together with,

for each formula Aij in the body of each clause with the head A,
{ bodies of clauses in P with the head Aij}} );

– etc.



The limit of the sequence is precisely the structure described by Construction 1,
moreover, for each A in At, p0(A) corresponds to the root of the and-or parallel
tree, and each pn(A) corresponds to the nth parallel derivation step for A.

Note that the result above relates to the Theory of Observables for logic
programming developed in [7]. According to this theory, traditional character-
isation of logic programs in terms of input/output behaviour is not sufficient
for the purposes of program analysis and optimisation. Therefore, it is useful to
have complete information about the SLD-derivation, e.g., the sequences of goals,
most general unifiers, and variants of clauses. The following four observables are
the most important for the theory [10, 7].

– Partial answers are the substitutions associated to a resolvent in any SLD-
derivation; correct partial answers are substitutions associated to a resolvent
in any SLD-refutation.

– Call patterns are atoms selected in any SLD-derivation; correct call patterns
are atoms selected in any SLD-refutation.

– Computed answers are the substitutions associated to an SLD-refutation.
– A successful derivation is observation of successful termination.

As argued in [10, 7], one of the main purposes of giving a semantics to logic
programs is its ability to observe equal behaviors of logic programs and dis-
tinguish logic programs with different computational behavior. Therefore, the
choice of observables and semantic models is closely related to the choice of
equivalence relation defined over logic programs; [10].

Definition 12. Let P1 and P2 be ground logic programs. Then we define P1 ≈
P2 if and only if, for any (not necessarily ground) goal G, the following four
conditions hold:

1. G has a refutation in P1 if and only if G has a refutation in P2;
2. G has the same set of computed answers in P1 and P2.
3. G has the same set of (correct) partial answers in P1 and P2.
4. G has the same set of call patterns in P1 and P2.

Following the terminology of [10, 7], we can state the following correctness
result.

Theorem 3. For ground logic programs P1 and P2, if the parallel and-or tree
for P1 is equal to the parallel and-or tree for P2, then P1 ≈ P2.

The converse of Theorem 3 does not hold. That is, there can be observation-
ally equivalent programs that have different and-or parallel trees.

Example 8. Consider two logic programs, P1 and P2, whose clauses are
exactly the same, with the exception of one clause: P1 contains A ←
B1, . . . , Bi, false, . . . , Bn; and P2 contains the clause A← B1, . . . Bi, false in-
stead. The atoms in the clauses are such that B1, . . . , Bi have refutation in P1

and P2, and false is an atom that has no refutation in the programs. In this
case, all derivations that involve the two clauses in P1 and P2 will always fail on
false, and P1 will be observationally equivalent to P2. However, their and-or
parallel trees will give an account to all the atoms in the clause.



6 Conclusions

In this paper, we have modelled the derivation strategies of logic programming
by coalgebra, with the bulk of our work devoted to modelling variable-free pro-
grams. We plan to extend the coalgebraic analysis to non-ground logic pro-
grams. In general, and-or parallelism characterised here by PfPf -coalgebras and
PfList-coalgebras is not sound for first-order derivations. In practice of logic
programming, a more sophisticated parallel derivations are used, in order to co-
ordinate substitutions computed in parallel. For example, composition (and-or
parallel) trees were introduced in [12] as a way to simplify the implementation
of the traditional and-or trees, which required synchronisation of substitutions
in the branches of parallel derivation trees. In the coalgebraic semantics of first-
order logic programs, PfList-coalgebras will play a more prominent role than
PfPf -coalgebras, and their relation to composition trees will become important.

The other topic for future investigations will be to explore how different
approaches to bisimilarity, as e.g. analysed in [25], relate to the observational
semantics [7] and observational equivalence of logic programs. In Theorem 3, we
used the equality of parallel and-or trees to characterise observational equiva-
lence of programs, but one could consider bisimilarity of C(PfList)-coalgebras
instead. The choice of bismilarity relation will determine a particular kind of the
observational equivalence characterised by the semantics. This line of reserach
will become more prominent in case of non-ground logic programs.

The situation regarding higher-order logic programming languages such as
λ-PROLOG [21] is more subtle. Despite their higher-order nature, such logic
programming languages typically make fundamental use of sequents. So it may
well be fruitful to consider modelling them in terms of coalgebra too, albeit
probably on a sophisticated base category such as a category of Heyting algebras.

Another area of research would be to investigate the operational meaning of
coinductive logic programming [3, 11, 24] which requires a slight modification to
the algorithm of SLD-resolution we have considered in this paper.
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