
Computational Logic and Neural Networks: a personal
perspective

Ekaterina Komendantskaya

School of Computing, University of Dundee

9 February 2011, Aberdeen

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 1 / 60

Outline

1 Introduction
Motivation
Definitions

2 Level of Abstraction 1
Boolean networks and automata

3 Level of Abstraction 2.
Main stream work
What IS wrong?

4 Mismatch?

5 Solutions
Unification and Error-Correction Learning

6 Search for both relevant and natural applications...
Type checking and neural networks

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 2 / 60

Outline

1 Introduction
Motivation
Definitions

2 Level of Abstraction 1
Boolean networks and automata

3 Level of Abstraction 2.
Main stream work
What IS wrong?

4 Mismatch?

5 Solutions
Unification and Error-Correction Learning

6 Search for both relevant and natural applications...
Type checking and neural networks

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 2 / 60

Outline

1 Introduction
Motivation
Definitions

2 Level of Abstraction 1
Boolean networks and automata

3 Level of Abstraction 2.
Main stream work
What IS wrong?

4 Mismatch?

5 Solutions
Unification and Error-Correction Learning

6 Search for both relevant and natural applications...
Type checking and neural networks

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 2 / 60

Outline

1 Introduction
Motivation
Definitions

2 Level of Abstraction 1
Boolean networks and automata

3 Level of Abstraction 2.
Main stream work
What IS wrong?

4 Mismatch?

5 Solutions
Unification and Error-Correction Learning

6 Search for both relevant and natural applications...
Type checking and neural networks

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 2 / 60

Outline

1 Introduction
Motivation
Definitions

2 Level of Abstraction 1
Boolean networks and automata

3 Level of Abstraction 2.
Main stream work
What IS wrong?

4 Mismatch?

5 Solutions
Unification and Error-Correction Learning

6 Search for both relevant and natural applications...
Type checking and neural networks

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 2 / 60

Outline

1 Introduction
Motivation
Definitions

2 Level of Abstraction 1
Boolean networks and automata

3 Level of Abstraction 2.
Main stream work
What IS wrong?

4 Mismatch?

5 Solutions
Unification and Error-Correction Learning

6 Search for both relevant and natural applications...
Type checking and neural networks

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 2 / 60

Introduction

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, gold medal for excellency).
In 2004-2007 - PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)
2007- 2008 - My first postdoc was with Yves Bertot in INRIA, France - on
guardedness of corecursive functions in Coq.
2008 - 2011 - EPSRC research fellowship CLANN first in St Andrews, later
transferred to the School of Computing in Dundee.
My research interests can be classified into four main themes:

Logic Programming (its applications in Artificial Intelligence and
Automated reasoning)

(PhD thesis)

Higher-order Interactive Theorem Provers

(Postdoc in INRIA)

Neuro-Symbolic networks

(PhD Thesis, current EPSRC fellowship)

Categorical Semantics of Computations

(in parallel to the above)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 3 / 60

Introduction

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, gold medal for excellency).
In 2004-2007 - PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)
2007- 2008 - My first postdoc was with Yves Bertot in INRIA, France - on
guardedness of corecursive functions in Coq.
2008 - 2011 - EPSRC research fellowship CLANN first in St Andrews, later
transferred to the School of Computing in Dundee.
My research interests can be classified into four main themes:

Logic Programming (its applications in Artificial Intelligence and
Automated reasoning) (PhD thesis)

Higher-order Interactive Theorem Provers

(Postdoc in INRIA)

Neuro-Symbolic networks

(PhD Thesis, current EPSRC fellowship)

Categorical Semantics of Computations

(in parallel to the above)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 3 / 60

Introduction

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, gold medal for excellency).
In 2004-2007 - PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)
2007- 2008 - My first postdoc was with Yves Bertot in INRIA, France - on
guardedness of corecursive functions in Coq.
2008 - 2011 - EPSRC research fellowship CLANN first in St Andrews, later
transferred to the School of Computing in Dundee.
My research interests can be classified into four main themes:

Logic Programming (its applications in Artificial Intelligence and
Automated reasoning) (PhD thesis)

Higher-order Interactive Theorem Provers (Postdoc in INRIA)

Neuro-Symbolic networks

(PhD Thesis, current EPSRC fellowship)

Categorical Semantics of Computations

(in parallel to the above)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 3 / 60

Introduction

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, gold medal for excellency).
In 2004-2007 - PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)
2007- 2008 - My first postdoc was with Yves Bertot in INRIA, France - on
guardedness of corecursive functions in Coq.
2008 - 2011 - EPSRC research fellowship CLANN first in St Andrews, later
transferred to the School of Computing in Dundee.
My research interests can be classified into four main themes:

Logic Programming (its applications in Artificial Intelligence and
Automated reasoning) (PhD thesis)

Higher-order Interactive Theorem Provers (Postdoc in INRIA)

Neuro-Symbolic networks (PhD Thesis, current EPSRC fellowship)

Categorical Semantics of Computations

(in parallel to the above)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 3 / 60

Introduction

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, gold medal for excellency).
In 2004-2007 - PhD in the UCC, Ireland. (The University (and
department!) of the famous George Boole)
2007- 2008 - My first postdoc was with Yves Bertot in INRIA, France - on
guardedness of corecursive functions in Coq.
2008 - 2011 - EPSRC research fellowship CLANN first in St Andrews, later
transferred to the School of Computing in Dundee.
My research interests can be classified into four main themes:

Logic Programming (its applications in Artificial Intelligence and
Automated reasoning) (PhD thesis)

Higher-order Interactive Theorem Provers (Postdoc in INRIA)

Neuro-Symbolic networks (PhD Thesis, current EPSRC fellowship)

Categorical Semantics of Computations (in parallel to the above)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 3 / 60

Introduction

School of Computing, University of Dundee

Assistive and
healthcare
technologies;

Computational
systems (Computer
Vision; Theory of
Argumentation);

Interactive systems
design;

Space technology
centre.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 4 / 60

Introduction Motivation

Computational Logic in Neural Networks

Symbolic Logic as Deductive
System

Deduction in logic calculi;

Logic programming;

Higher-order proof
assistants...

Sound symbolic methods we can
trust

Neural Networks

spontaneous behavior;

learning and adaptation;

parallel computing.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 5 / 60

Introduction Motivation

Computational Logic in Neural Networks

Symbolic Logic as Deductive
System

Deduction in logic calculi;

Logic programming;

Higher-order proof
assistants...

Sound symbolic methods we can
trust

Neural Networks

spontaneous behavior;

learning and adaptation;

parallel computing.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 5 / 60

Introduction Motivation

Neurons AND Symbols: a long story

Many attempts have been made
to merge, integrate, unite,
etc.etc... the two.

On the picture: ”Neurons and
Symbols”, [Alexander and Mor-
ton, 1993] claims that there is
no, and should not be, divide be-
tween symbolic and neural com-
puting.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 6 / 60

Introduction Motivation

Symbolic and subsymbolic levels

Divide! [Smolensky, 2006]

Connectionism often divides the two cognitive functions of neural network:
on a subsymbolic level, we have primitive, massive and parallel neurons, on
a symbolic level, their massive and chaotic actions form a symbolic,
structured, reasoning. Analogy: atoms in physics - have one sort of
properties on micro-level, the objects we deal with on macro-level are
made of atoms, but obey different laws of physics.
Not exactly proven by experiments with the real brain neurons...

No divide! [Alexander, 1993]

The rival approach claims that the divide is artificial: both styles of
computing can be seen as variants of one computational technique - the
use of state machines. Thus Neurocomputing is totally compatible with
symbolic (or Turing) style.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 7 / 60

Introduction Definitions

Neural Network: definitions

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 8 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM

pj wkj pk

v ′′ //WVUTPQRS

bj

//WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM

pj wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj

wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj

pk

v ′′ //WVUTPQRSbj //WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj

pk

v ′′ //WVUTPQRSbj //WVUTPQRSbk
//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRSbk
//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t)− bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRSbk
//vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk , bj .

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 9 / 60

Introduction Definitions

First-order syntax

We fix the alphabet A to consist of

constant symbols a, b, c , possibly with finite subscripts;

variables x , y , z , x1 . . .;

function symbols f , g , h, f1 . . ., with arities;

predicate symbols P,Q,R,P1,P2 . . ., with arities;

Term:
t = a | x | f (t)

Atomic Formula: At = P(t1, . . . , tn), where P is a predicate symbol of
arity n and ti is a term.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 10 / 60

Level of Abstraction 1 Boolean networks and automata

Logic and networks

Among early results relating logic and neural networks were:

Boolean networks - networks receiving and emitting boolean values
and performing boolean functions. There exist networks that can
learn how to perform Boolean functions from examples.

XOR problem and perceptron.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 11 / 60

Level of Abstraction 1 Boolean networks and automata

Boolean Networks of McCullogh and Pitts, 1943.

A
''OOOOOO

B // ?>=<89:; //C

If A and B then C .
————————-

1
''NNNNNNN

1 // WVUTPQRS0.5 //1

(A = 1) or (B = 1).

1
''NNNNNNN

1 // WVUTPQRS1.5 //1

(A = 1) and (B = 1).
————————-

−1 // _^]\XYZ[−0.5 //1

Not (A = −1).

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 12 / 60

Level of Abstraction 1 Boolean networks and automata

Level of abstraction 1: NN - Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and digital
hardware are equally suitable for symbolic computations.

The picture is
due to Alexander & Morton, 1996)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 13 / 60

Level of Abstraction 1 Boolean networks and automata

Level of abstraction 1: NN - Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and digital
hardware are equally suitable for symbolic computations. The picture is
due to Alexander & Morton, 1996)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 13 / 60

Level of Abstraction 1 Boolean networks and automata

Level of abstraction 1: NN - Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and digital
hardware are equally suitable for symbolic computations. The picture is
due to Alexander & Morton, 1996)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 13 / 60

Level of Abstraction 1 Boolean networks and automata

Logic and NNs: summary [Siegelmann]

Finite Automata → Binary threshold networks
Turing Machines → Neural networks with rational weights
Probabilistic Turing Machines → NNs with rational weights
Super-turing computations → NNs with real weights.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 14 / 60

Level of Abstraction 1 Boolean networks and automata

Early Digital and Neuro computers:

In 1946, the first useful electronic digital computer (ENIAC) is created: it
was a happy start for the programmed computing.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 15 / 60

Level of Abstraction 1 Boolean networks and automata

Early Digital and Neuro computers:

In 1946, the first useful electronic digital computer (ENIAC) is created: it
was a happy start for the programmed computing.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 15 / 60

Level of Abstraction 1 Boolean networks and automata

First Engineering insights:

Mark 1 and Mark 2 Perceptrons (1948 - 1958)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 16 / 60

Level of Abstraction 1 Boolean networks and automata

Levels of Abstraction: from 1 to 2

The results we have mentioned form the 1st, theoretical, level of
abstraction. They are general and powerful enough to claim that, given a
neural computer, we can transform hardware and software architectures of
digital computers to fit the neural hardware.
However, in 2009, unlike in 1959, the development of digital and neural
hardware do not come hand in hand. As soon as digital computers started
to take over, another level of abstraction, much less general, became
popular.

Given a Neural Network simulator, what kind of practical problems can I
solve with it? where can I apply it?
(Parallelism, classification.)
Implementations of Computational Logic in NNs...

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 17 / 60

Level of Abstraction 1 Boolean networks and automata

Levels of Abstraction: from 1 to 2

The results we have mentioned form the 1st, theoretical, level of
abstraction. They are general and powerful enough to claim that, given a
neural computer, we can transform hardware and software architectures of
digital computers to fit the neural hardware.
However, in 2009, unlike in 1959, the development of digital and neural
hardware do not come hand in hand. As soon as digital computers started
to take over, another level of abstraction, much less general, became
popular.
Given a Neural Network simulator, what kind of practical problems can I
solve with it? where can I apply it?
(Parallelism, classification.)
Implementations of Computational Logic in NNs...

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 17 / 60

Level of Abstraction 2. Main stream work

Level of abstraction-2. Capitalising on Boolean networks:

A
''OOOOOO

B // ?>=<89:; //C

If A and B then C .
————————————

1
''NNNNNNN

1 // WVUTPQRS0.5 //1

(A = 1) or (B = 1).

1
''NNNNNNN

1 // WVUTPQRS1.5 //1

(A = 1) and (B = 1).
———————————–

−1 // _^]\XYZ[−0.5 //1

Not (A = −1).

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 18 / 60

Level of Abstraction 2. Main stream work

Level of Abstraction 2. Neuro-Symbolic Networks and
Logic Programs [Holldobler & al.]

Logic Programs

A← B1, . . . ,Bn

TP(I) = {A ∈ BP : A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least Herbrand model of P.

Theorem

For each propositional program P, there exists a 3-layer feedforward neural
network that computes TP .

No learning or adaptation;

Require infinitely long layers in the first-order case.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 19 / 60

Level of Abstraction 2. Main stream work

Level of Abstraction 2. Neuro-Symbolic Networks and
Logic Programs [Holldobler & al.]

Logic Programs

A← B1, . . . ,Bn

TP(I) = {A ∈ BP : A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}

lfp(TP ↑ ω) = the least Herbrand model of P.

Theorem

For each propositional program P, there exists a 3-layer feedforward neural
network that computes TP .

No learning or adaptation;

Require infinitely long layers in the first-order case.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 19 / 60

Level of Abstraction 2. Main stream work

Level of Abstraction 2. Neuro-Symbolic Networks and
Logic Programs [Holldobler & al.]

Logic Programs

A← B1, . . . ,Bn

TP(I) = {A ∈ BP : A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least Herbrand model of P.

Theorem

For each propositional program P, there exists a 3-layer feedforward neural
network that computes TP .

No learning or adaptation;

Require infinitely long layers in the first-order case.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 19 / 60

Level of Abstraction 2. Main stream work

A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 20 / 60

Level of Abstraction 2. Main stream work

A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 20 / 60

Level of Abstraction 2. Main stream work

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

A B C

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 21 / 60

Level of Abstraction 2. Main stream work

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

A B C

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 22 / 60

Level of Abstraction 2. Main stream work

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 23 / 60

Level of Abstraction 2. Main stream work

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 24 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←

TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5

OO

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5

CC������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 25 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←

TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5

OO

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5

CC������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 25 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←

TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5

OO

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5

CC������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 25 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←

TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5

OO

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5

CC������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 25 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←

TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5

OO

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5

CC������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 25 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←
TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC−0.5

OO

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 26 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←
TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC−0.5

OO

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 27 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←
TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 28 / 60

Level of Abstraction 2. What IS wrong?

Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←
TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}

P(a) P(b) Q(a) Q(b) R(a) R(b)

GFED@ABC0.5

��

GFED@ABC0.5 GFED@ABC0.5

OO

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC0.5

OO

GFED@ABC0.5 GFED@ABC−0.5

OO

GFED@ABC0.5

BB������������ GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

P(a) P(b) Q(a) Q(b) R(a) R(b)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 29 / 60

Level of Abstraction 2. What IS wrong?

Example 3

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}

Paradox:
(computability,
complexity,
proof theory)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 30 / 60

Level of Abstraction 2. What IS wrong?

Example 3

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}

Paradox:
(computability,
complexity,
proof theory)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 30 / 60

Level of Abstraction 2. What IS wrong?

Example 3

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}
Paradox:
(computability,
complexity,
proof theory)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 30 / 60

Level of Abstraction 2. What IS wrong?

Three characteristic properties of TP-neural networks.

1 The number of neurons in the input and output layers is the number
of atoms in the Herbrand base BP .

2 Signals are binary, and this makes computation of truth value
functions ∧ and ← possible.

3 First-order atoms are not presented in the neural network directly, and
only truth values 1 and 0 are propagated.

Three main implications. The networks can’t:

1 ... deal with recursive programs, that is, programs that can have
infinitely many ground instances.

2 ... deal with non-ground reasoning, which is very common in
computational logic.

3 ... cover proof-theoretic aspect, only model-theoretic one...

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 31 / 60

Level of Abstraction 2. What IS wrong?

Three characteristic properties of TP-neural networks.

1 The number of neurons in the input and output layers is the number
of atoms in the Herbrand base BP .

2 Signals are binary, and this makes computation of truth value
functions ∧ and ← possible.

3 First-order atoms are not presented in the neural network directly, and
only truth values 1 and 0 are propagated.

Three main implications. The networks can’t:

1 ... deal with recursive programs, that is, programs that can have
infinitely many ground instances.

2 ... deal with non-ground reasoning, which is very common in
computational logic.

3 ... cover proof-theoretic aspect, only model-theoretic one...

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 31 / 60

Level of Abstraction 2. What IS wrong?

Neuro-symbolic architectures of other kinds based on the
same methodology:

The approach of McCulloch and Pitts to processing truth values has
dominated the area, and many modern neural network architectures
consciously or unconsciously follow and develop this old method.

Core Method: massively parallel way to compute minimal models of
logic programs. [Holldobler et al, 1999 - 2009]

Markov Logic and Markov networks: statistical AI and Machine
learning implemented in NN. [Domingos et al., 2006-2009]

Inductive Reasoning in Neural Networks [Broda, Garcez et al.
2002,2008]

Fuzzy Logic Programming in Fuzzy Networks [Zadeh at al].

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 32 / 60

Mismatch?

Inevitable mismatch?

From my personal experience:

It is hard to find a neuro-symbolic system that is both natural from
the point of view of neurocomputing, and is useful for logical
reasoning.

Depending on the background of researchers (Logic or
Neurocomputing) - integrated systems tend to sacrifice one set of
features or another.

In fact, there are two different subjects that merge neural networks and
symbolic logic from the two different ends:

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 33 / 60

Mismatch?

Inevitable mismatch?

From my personal experience:

It is hard to find a neuro-symbolic system that is both natural from
the point of view of neurocomputing, and is useful for logical
reasoning.

Depending on the background of researchers (Logic or
Neurocomputing) - integrated systems tend to sacrifice one set of
features or another.

In fact, there are two different subjects that merge neural networks and
symbolic logic from the two different ends:

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 33 / 60

Mismatch?

Neuro-Symbolic integration

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 34 / 60

Mismatch?

Statistical Relational Learning (featuring a disjoint set of
authors)

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 35 / 60

Mismatch?

Difference in approach: statistical relational learning

Primary goal is the learning task, e.g.

detect a face on an image (pixels are the main “data”)

classify email messages into spam/not-spam (URLs are the main data)

or analyse hyperlinked webpages?

Main method: vector representation.

Need for a “relational” data, such as:

Is the face smiling?
Is it a man, a woman, a boy, a girl?
Is it a friends’ message or a “work-related” message?

Main method: collective classification, joint probabilities. e.g. relational
Markov networks over relational data set.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 36 / 60

Mismatch?

Difference in approach: statistical relational learning

Primary goal is the learning task, e.g.

detect a face on an image (pixels are the main “data”)

classify email messages into spam/not-spam (URLs are the main data)

or analyse hyperlinked webpages?

Main method: vector representation.

Need for a “relational” data, such as:

Is the face smiling?
Is it a man, a woman, a boy, a girl?
Is it a friends’ message or a “work-related” message?

Main method: collective classification, joint probabilities. e.g. relational
Markov networks over relational data set.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 36 / 60

Mismatch?

Example of Markov nets

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 37 / 60

Mismatch?

Markov Networks have been (most impressively) applied by
[Domingos et al.]

Markov networks have been successfully applied in a variety
of areas.

A system based on them recently won a competition on
information extraction for biology. They have been
successfully applied to problems in information extraction
and integration, natural language processing, robot
mapping, social networks, computational biology, and
others, and are the basis of the open-source Alchemy
system. Applications to Web mining, activity recognition,
natural language processing, computational biology, robot
mapping and navigation, game playing and others are under
way.

P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial
Intelligence. San Rafael, CA: Morgan and Claypool, 2009.
Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 38 / 60

Mismatch?

Example of Markov nets - Any relation to logic programs?

Friend(x,z) ← Friend(x,y), Friend(y,z);
Smokes(x) ← Friend(x,none);
Cancer(x) ← Smokes(x);
Smokes(x) ← Friend(x,y), Smokes(y)

Friends(A,A)
'& %$! "# Smokes(A)

'& %$! "#

Cancer(A)
'& %$! "#

Smokes(B)
'& %$! "# Friends(B,B)

'& %$! "#

Friends(A,B)
'& %$! "#

Friends(B,A)
'& %$! "# Cancer(B)

'& %$! "#
����������

����������

7777777777

7777777777

7777777777

����������

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 39 / 60

Solutions

Any solutions?

In my thesis, I proposed to modify N-S nets and run proof search in them

For goal-oriented inference - one needs to implement first-order
unification in Neural networks

For ”search” - need of backtracking.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 40 / 60

Solutions

Any solutions?

In my thesis, I proposed to modify N-S nets and run proof search in them

For goal-oriented inference - one needs to implement first-order
unification in Neural networks

For ”search” - need of backtracking.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 40 / 60

Solutions

Any solutions?

In my thesis, I proposed to modify N-S nets and run proof search in them

For goal-oriented inference - one needs to implement first-order
unification in Neural networks

For ”search” - need of backtracking.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 40 / 60

Solutions Unification and Error-Correction Learning

Unifier

Definition

Let S be a finite set of atoms. A substitution θ is called a unifier for S if
Sθ is a singleton. A unifier θ for S is called a most general unifier (mgu)
for S if, for each unifier σ of S , there exists a substitution γ such that
σ = θγ.

Example: If S = (Q(f (x1, x2)),Q(f (a1, a2))), then θ = {x1/a1; x2/a2} is
the mgu.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 41 / 60

Solutions Unification and Error-Correction Learning

Disagreement set

Definition

Let S be a finite set of atoms. To find the disagreement set DS of S
locate the leftmost symbol position at which not all atoms in S have the
same symbol and extract from each atom in S the subexpression (term)
beginning at that symbol position. The set of all such expressions is the
disagreement set of S .

Example: For S = (Q(f (x1, x2)),Q(f (a1, a2))) we have DS = {x1, a1}.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 42 / 60

Solutions Unification and Error-Correction Learning

Unification algorithm

1 Let k = 0 and θ0 = ε.

2 If Sθk is a singleton, then stop; θk is an mgu of S . Otherwise, find
the disagreement set Dk of Sθk .

3 If there exist a variable v and a term t in Dk such that v does not
occur in t, then put θk+1 = θk{v/t}, increment k and go to 2.
Otherwise, stop; S is not unifiable.

Example.
Take S = (Q(f (x1, x2)),Q(f (a1, a2))) as before.

Sε is not a singleton. So, compute D1 = {x1, a1} and θ1 = {x1/a1}.
Apply Sθ1 = (Q(f (a1, x2)),Q(f (a1, a2))), it’s not a singleton. So,
compute D2 = {x2, a2} and θ2 = {x2/a2}.
Apply Sθ1θ2 = (Q(f (a1, a2)) - it’s a singleton. Stop.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 43 / 60

Solutions Unification and Error-Correction Learning

Unification algorithm

1 Let k = 0 and θ0 = ε.

2 If Sθk is a singleton, then stop; θk is an mgu of S . Otherwise, find
the disagreement set Dk of Sθk .

3 If there exist a variable v and a term t in Dk such that v does not
occur in t, then put θk+1 = θk{v/t}, increment k and go to 2.
Otherwise, stop; S is not unifiable.

Example.
Take S = (Q(f (x1, x2)),Q(f (a1, a2))) as before.

Sε is not a singleton. So, compute D1 = {x1, a1} and θ1 = {x1/a1}.

Apply Sθ1 = (Q(f (a1, x2)),Q(f (a1, a2))), it’s not a singleton. So,
compute D2 = {x2, a2} and θ2 = {x2/a2}.
Apply Sθ1θ2 = (Q(f (a1, a2)) - it’s a singleton. Stop.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 43 / 60

Solutions Unification and Error-Correction Learning

Unification algorithm

1 Let k = 0 and θ0 = ε.

2 If Sθk is a singleton, then stop; θk is an mgu of S . Otherwise, find
the disagreement set Dk of Sθk .

3 If there exist a variable v and a term t in Dk such that v does not
occur in t, then put θk+1 = θk{v/t}, increment k and go to 2.
Otherwise, stop; S is not unifiable.

Example.
Take S = (Q(f (x1, x2)),Q(f (a1, a2))) as before.

Sε is not a singleton. So, compute D1 = {x1, a1} and θ1 = {x1/a1}.
Apply Sθ1 = (Q(f (a1, x2)),Q(f (a1, a2))), it’s not a singleton. So,
compute D2 = {x2, a2} and θ2 = {x2/a2}.

Apply Sθ1θ2 = (Q(f (a1, a2)) - it’s a singleton. Stop.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 43 / 60

Solutions Unification and Error-Correction Learning

Unification algorithm

1 Let k = 0 and θ0 = ε.

2 If Sθk is a singleton, then stop; θk is an mgu of S . Otherwise, find
the disagreement set Dk of Sθk .

3 If there exist a variable v and a term t in Dk such that v does not
occur in t, then put θk+1 = θk{v/t}, increment k and go to 2.
Otherwise, stop; S is not unifiable.

Example.
Take S = (Q(f (x1, x2)),Q(f (a1, a2))) as before.

Sε is not a singleton. So, compute D1 = {x1, a1} and θ1 = {x1/a1}.
Apply Sθ1 = (Q(f (a1, x2)),Q(f (a1, a2))), it’s not a singleton. So,
compute D2 = {x2, a2} and θ2 = {x2/a2}.
Apply Sθ1θ2 = (Q(f (a1, a2)) - it’s a singleton. Stop.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 43 / 60

Solutions Unification and Error-Correction Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;
Error-signal: ek(t) = dk(t)− vk(t);
Error-correction learning rule: ∆wkj(t) = F (ek(t), vj(t)), very often,
∆wkj(t) = ηek(t)vj(t).

v ′

''OOOOOOO pj wkj + ∆wkj

��

ek

v ′′ //WVUTPQRSbj // _^]\XYZ[bk , dk
//ek , vk

ss

v ′′′

77oooooo
j wkj k

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 44 / 60

Solutions Unification and Error-Correction Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;

Error-signal: ek(t) = dk(t)− vk(t);
Error-correction learning rule: ∆wkj(t) = F (ek(t), vj(t)), very often,
∆wkj(t) = ηek(t)vj(t).

v ′

''OOOOOOO pj wkj + ∆wkj

��

ek

v ′′ //WVUTPQRSbj // _^]\XYZ[bk , dk
//ek , vk

ss

v ′′′

77oooooo
j wkj k

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 44 / 60

Solutions Unification and Error-Correction Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;
Error-signal: ek(t) = dk(t)− vk(t);

Error-correction learning rule: ∆wkj(t) = F (ek(t), vj(t)), very often,
∆wkj(t) = ηek(t)vj(t).

v ′

''OOOOOOO pj wkj + ∆wkj

��

ek

v ′′ //WVUTPQRSbj // _^]\XYZ[bk , dk
//ek , vk

ss

v ′′′

77oooooo
j wkj k

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 44 / 60

Solutions Unification and Error-Correction Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;
Error-signal: ek(t) = dk(t)− vk(t);
Error-correction learning rule: ∆wkj(t) = F (ek(t), vj(t)), very often,
∆wkj(t) = ηek(t)vj(t).

v ′

''OOOOOOO pj wkj + ∆wkj

��

ek

v ′′ //WVUTPQRSbj // _^]\XYZ[bk , dk
//ek , vk

ss

v ′′′

77oooooo
j wkj k

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 44 / 60

Solutions Unification and Error-Correction Learning

Unification by Error-Correction: Example 1

Consider two atoms P(x) and P(a),

encoded numerically using function | |.

Target (desired response) vector is 0; 0; 0; 0.

WVUTPQRS−|P| //0

∆w
rr

ONMLHIJK−|(| //0

1 |x | //
|(|ooooo

77oo
|P|

������

??����

|)|
OOOOO

''OO

ONMLHIJK−|a| //|x | − |a|

ONMLHIJK−|)| //0

∆wll

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 45 / 60

Solutions Unification and Error-Correction Learning

Example 1 - ctnd

Target vector is 0; 0; 0; 0.

WVUTPQRS−|P| //0

rr

ONMLHIJK−|(| //0

1 |a| //
|(|ooooo

77oo
|P|

������

??����

|)|
OOOOO

''OO

ONMLHIJK−|a| //0

ONMLHIJK−|)| //0

ll

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 46 / 60

Solutions Unification and Error-Correction Learning

Capacity for Parallelisation: Example 2.

ONMLHIJK−|P| //0

∆wss

ONMLHIJK−|(| //0

ONMLHIJK−|a| //|a| − |x |

ONMLHIJK−|, | //0

1 |y | //
|,|mmmmm

66mm
|x|zzzzz

==zzz|(|
�������

BB�����|P|
���������

FF�������

|,|
RRRRR

((RR
|z|

DDDDD

""DDD
|)|

8888888

��88888

ONMLHIJK−|b| //|b| − |y |

ONMLHIJK−|, | //0

ONMLHIJK−|c | //|c | − |z |

ONMLHIJK−|)| //0

∆w
kk

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 47 / 60

Solutions Unification and Error-Correction Learning

Main Theorems (Journal of Algorithms in Cognition,
Informatics and Logic)

A Theorem for Logicians

For some restricted cases of unification - such as term matching -
error-correction in neural networks can perform parallel unification. For the
general case of unification, one redefines the learning function. This new
learning function is defined and implemented in MATLAB neural Network
Toolbox.

A Theorem for Neurocomputing

Error-correction implemented in neural networks of certain kinds does
unification (term-matching) known in Logic. Namely, the neural networks
that do this are one layer networks; and, with the vector of weights w , the
vector of biases b, and the vector of targets set to 0, the given layer
performs parallel term-matching for w and b.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 48 / 60

Solutions Unification and Error-Correction Learning

Logically sound. And natural???

Example shown above can be implemented in conventional neural
nets, and conventional error-correction learning.

However, for the general case of unification, allowing growth of terms
or their shortening, a lot of control is given to new learning functions
that adjust network size, do occurrence check, and generally take care
of all the subtleties of logical reasoning.

Example

Constant c can be substituted for variable x , but not the other way
around...

Similar results: ICNC’2009

Certain cases of Term-rewriting naturally occur in Unsupervised (Hebbian)
learning.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 49 / 60

Search for both relevant and natural applications...

Search for both relevant and natural applications...

Type-checking for neural networks.

Higher-order unification in Hopfield networks.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 50 / 60

Search for both relevant and natural applications... Type checking and neural networks

Boolean networks: How do we know that they are correct?

(x ∨ y) ∧ ¬z

x // ?>=<89:;1

))SSSSSSSSSSS

y

55lllllllllll GFED@ABC1.5 //

z ′ // GFED@ABC0.5

55kkkkkkkkkk

Such network would not be able to distinguish “logical” data (values 0 and
1) from any other type of data, and would output the same result both for
sound inputs like x := 1, y := 1, z := 0, and for non-logical values such as
x := 100.555, y := 200.3333 . . . , z := 0. Imagine a user monitors the
outputs of a big network, and sees outputs 1, standing for “true”, whereas
in reality the network is receiving some uncontrolled or excessive data.

The network gives correct answers on the condition that the input is
well-typed.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 51 / 60

Search for both relevant and natural applications... Type checking and neural networks

Boolean networks: How do we know that they are correct?

(x ∨ y) ∧ ¬z

x // ?>=<89:;1

))SSSSSSSSSSS

y

55lllllllllll GFED@ABC1.5 //

z ′ // GFED@ABC0.5

55kkkkkkkkkk

Such network would not be able to distinguish “logical” data (values 0 and
1) from any other type of data, and would output the same result both for
sound inputs like x := 1, y := 1, z := 0, and for non-logical values such as
x := 100.555, y := 200.3333 . . . , z := 0. Imagine a user monitors the
outputs of a big network, and sees outputs 1, standing for “true”, whereas
in reality the network is receiving some uncontrolled or excessive data.
The network gives correct answers on the condition that the input is
well-typed.
Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 51 / 60

Search for both relevant and natural applications... Type checking and neural networks

Relational Reasoning and Learning.

In [Garcez et al, 2009], were built networks that can learn relations. E.g.,
given examples Q(b, c)→ P(a, b) and Q(d , e)→ P(c , d), they can infer a
more general relation Q(y , z)→ P(x , y).

Example

Learning a relation “grandparent” by examining families. Classification of
trains according to certain characteristics.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 52 / 60

Search for both relevant and natural applications... Type checking and neural networks

Relational Reasoning and Learning.

In [Garcez et al, 2009], were built networks that can learn relations. E.g.,
given examples Q(b, c)→ P(a, b) and Q(d , e)→ P(c , d), they can infer a
more general relation Q(y , z)→ P(x , y).

Example

Learning a relation “grandparent” by examining families. Classification of
trains according to certain characteristics.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 52 / 60

Search for both relevant and natural applications... Type checking and neural networks

Problems with this method

Such relational learning can be applied as long as input data is well-typed.

Well-typed, in our previous examples, means that only related people, and
not any other objects, are given to the network that learns relation
“grandparent”. And there are only trains of particular, known in advance,
configuration, that are considered by the network that classifies trains.

This means that users have to make the preliminary classification and
filtering of data before it is given to such networks; and NNs would not be
able to warn the users if the data are ill-typed :-(.

Generally, as it turns out, typing is important for correct reasoning.

E.g., one can generalise from “This dog has four legs, and hence it can
run” to the statement “Everything that has four legs can run”. However,
we know that there are some objects, such as chairs, that have four legs
but do not move. Hence we (often unconsciously) use typing in such
cases, e.g., apply the generalisation only to all animals.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 53 / 60

Search for both relevant and natural applications... Type checking and neural networks

Problems with this method

Such relational learning can be applied as long as input data is well-typed.

Well-typed, in our previous examples, means that only related people, and
not any other objects, are given to the network that learns relation
“grandparent”. And there are only trains of particular, known in advance,
configuration, that are considered by the network that classifies trains.

This means that users have to make the preliminary classification and
filtering of data before it is given to such networks; and NNs would not be
able to warn the users if the data are ill-typed :-(.

Generally, as it turns out, typing is important for correct reasoning.

E.g., one can generalise from “This dog has four legs, and hence it can
run” to the statement “Everything that has four legs can run”. However,
we know that there are some objects, such as chairs, that have four legs
but do not move. Hence we (often unconsciously) use typing in such
cases, e.g., apply the generalisation only to all animals.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 53 / 60

Search for both relevant and natural applications... Type checking and neural networks

Solutions: K.K., K. Broda, A.Garcez [CiE’2010, ICANN
2010]

Solution

As an alternative to the manual pre-processing of data, we
propose neural networks that can do the same
automatically. We use neural networks called type
recognisers; and implement such networks to ensure the
correctness of neural computations; both for classical cases
(McCulloch & Pitts) and for the relational reasoning and
learning.

The solution involves techniques like pattern-matching, in-
ductive type definitions, etc. that are used in functional pro-
gramming, type theory, and interactive theorem provers!

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 54 / 60

Search for both relevant and natural applications... Type checking and neural networks

Solutions: K.K., K. Broda, A.Garcez [CiE’2010, ICANN
2010]

Solution

As an alternative to the manual pre-processing of data, we
propose neural networks that can do the same
automatically. We use neural networks called type
recognisers; and implement such networks to ensure the
correctness of neural computations; both for classical cases
(McCulloch & Pitts) and for the relational reasoning and
learning.

The solution involves techniques like pattern-matching, in-
ductive type definitions, etc. that are used in functional pro-
gramming, type theory, and interactive theorem provers!

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 54 / 60

Search for both relevant and natural applications... Type checking and neural networks

The main result

A method of using Types for ensuring the correctness of Neural or
Neuro-Symbolic computations.

Theorem

For any a type A, given an expression E presented in a form of a numerical
vector, we can construct a neural network that recognises whether E is of
type A.

Such networks are called Type recognisers, and for each given type A, the
network that recognises A is called an A-recogniser. This construction
covers simple types, such as Bool, as well as more complex inductive
types, such as natural numbers, lists; or even dependent inductive types,
such as lists of natural numbers.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 55 / 60

Search for both relevant and natural applications... Type checking and neural networks

Example: Inductive recogniser for bool

1/0

1/0 GFED@ABC�

OO

= 0?

1

OO

= 0?

1
BB�����

= 0?
1

\\:::::

GFED@ABC−s

1
OO

GFED@ABC−t
1

OO

GFED@ABC−f
1

OO

x

1
OO

x

1 ??�����
1__?????

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 56 / 60

Search for both relevant and natural applications... Type checking and neural networks

Example: Inductive recogniser for nat

x y x y

1 0 - success

= 0?

OO

= 0?

OO

0 1 - working

1 1- impossible

GFED@ABC−O

1

OO

GFED@ABC−S

1

OO

?>=<89:;?>=<89:;?>=<89:; 1

ii

1

aa

1

^^]]

0 0 - failure

S

ZZ OO

S

OO

S

OO

O

OO

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 57 / 60

Search for both relevant and natural applications... Type checking and neural networks

Conclusions

Neuro-symbolic integration (or, else, statistical relational learning) is
an exciting field;

It is both new and has a long history, - depending at which level of
abstraction you come to it;

It is still waiting for its Eureka moment, when Proof-theoretical and
Neurocomputing methods will merge both elegantly and with good
practical applications...

E.g., there are two research project currently running in the UK (AI4FM:
Newcastle, Edinburgh, Heriot-Watt, Southampton) and Netherlands
(Radboud University Nijmegen) that apply neural nets to learning proof
strategies.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 58 / 60

Search for both relevant and natural applications... Type checking and neural networks

Literature: Level of Abstraction 1.

I. Alexander and H. Morton.
Neurons and Symbols.
Chapman&Hall, 1993.

S.C. Kleene.
Neural Nets and Automata.
Automata Studies, pp. 3 – 43, 1956, Princeton University Press.

W.S. McCulloch and W. Pitts.
A logical calculus of the ideas immanent in nervous activity.
Bulletin of Math. Bio., Vol. 5, pp. 115-133, 1943.

M. Minsky.
Finite and Infinite Machines.
Prentice-Hall, 1969.

H. Siegelmann.
Neural Networks and Analog Computation: Beyond the Turing Limit.
Birkhauser, 1999.

J. Von Neumann.
The Computer and The Brain.
1958, Yale University Press.

Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 59 / 60

Search for both relevant and natural applications... Type checking and neural networks

Literature. Level of Abstraction 2

M. Richardson and P. Domingos.
Markov Logic Networks.
Machine Learning, 62, 107-136, 2006.

A. Garcez, K.B. Broda and D.M. Gabbay.
Neural-Symbolic Learning Systems: Foundations and Applications,
Springer-Verlag, 2002.

A. Garcez, L.C. Lamb and D.M. Gabbay.
Neural-Symbolic Cognitive Reasoning,
Cognitive Technologies, Springer-Verlag, 2008.

B. Hammer and P. Hitzler.
Perspectives on Neural-Symbolic Integration.
Studies in Computational Intelligence, Springer Verlag, 2007.

S. Hölldobler, Y. Kalinke and H.P. Storr.
Approximating the Semantics of Logic Programs by Recurrent Neural Networks.
Applied Intelligence, 11, 1999, pp. 45–58.

Introduction to Statistical Relational Learning.
MIT Press, 2007.

P. Smolensky and G. Legendre.
The Harmonic Mind.
MIT Press, 2006.Ekaterina Komendantskaya (Dundee) Computational Logic and Neural Networks: a personal perspectiveAberdeen CS seminar series 60 / 60

	Introduction
	Motivation
	Definitions

	Level of Abstraction 1
	Boolean networks and automata

	Level of Abstraction 2.
	Main stream work
	What IS wrong?

	Mismatch?
	Solutions
	Unification and Error-Correction Learning

	Search for both relevant and natural applications...
	Type checking and neural networks

