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Abstract. We propose a new method for ensuring correctness of neuro-
symbolic computations. We consider important examples when checking
the data type of the network’s inputs/outputs is crucial for ensuring
that it performs correctly. We construct neuro-symbolic networks that
can recognise the type of the input/output data; they are capable of
recognising inductive and even dependent types.
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1 Introduction

Computational logic and Neurocomputing are two different paradigms that un-
derly numerous attempts to expand and refine the qualities and capacities of
automated reasoning and artificial intelligence.

Computational logic, including type theory, higher-order calculi, inter-
active higher-order theorem provers, aims at representing and automating the
logical, deductive, mathematical and constructive reasoning; and hence the main
advantages achieved here are soundness of computations, correctness of typed
and functional programs, also known as correctness-by-construction; [3, 10].

Neurocomputing aims at covering the “illogical”’ — situational, inductive
and adaptive — reasoning. The main achievements here are the networks capable
of recognising images and sounds and classifying objects into classes, [6]. Some
methods of Neurocomputing are applied in machine learning; for example, to
handle inductive logics and logic programs [4, 5] or inductive classification of
logically structured data [12, 8].

Neuro-Symbolic Integration is the area of research that endeavours to
synthesize the best of the two worlds. The area was given a start by the pioneer-
ing paper of McCulloch and Pitts [9] that showed how propositional Boolean
logic can be represented in neural networks; we will call these networks Boolean
networks. The Neuro-Symbolism has since developed different approaches to in-
ductive, probabilistic, and fuzzy logic programming; [4, 5, 14, 13]. However, it
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generally follows the methodology of McCulloch and Pitts, in that logical infor-
mation is given only by means of logical connectives and truth values; as opposed
to encoding the higher-order syntax and logical structure of sentences in neural
networks, [7, 11].

In this paper, we stretch the fundamental quest for correctness of compu-
tations from the area of Computational Logic to the area of Neuro-Symbolic
computation. In particular, we examine the question: How reliable and secure
the existing Neuro-Symbolic networks are from the logical point of view? And
how can they be made secure? Answers to these questions are decisive for the
future implementation of neuro-symbolic networks in computing.

Consider the following example. Figure 1 shows the Boolean network of Mc-
Culloch and Pitts that computes boolean function (x∨y)∧¬z. For the networks
built in this style, we have no tools to check whether the network performs cor-
rectly. In particular, such network would not be able to distinguish “logical”
data (values 0 and 1) from any other type of data, and would output the same
result both for sound inputs like x := 1, y := 1, z := 0, and for non-logical values
such as x := −100.555, y := 200.3333 . . . , z := 0. Imagine the situation when
a user monitors the outputs of a big network, and sees outputs 1, standing for
“true”, whereas in reality the network is receiving some uncontrolled, excessive
or noisy, data. Therefore, such computations do not guarantee the “correctness”
of computations. The network will perform correctly only if someone has already
tested the input data and insured that it is of the type bool. Most of existing
neuro-symbolic networks are vulnerable in this respect.
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Fig. 1. The traditional McCulloch and Pitts network computing (x ∨ y) ∧ ¬z. The
numbers 1, 2 are the thresholds, and negation is formalised by inhibitory link −◦.

A different example that indicates the same problem comes from inductive
logic. Reasoning by induction involves making general conclusions from partic-
ular examples. E.g., one can generalise from “This dog has four legs, and hence
it can run” to the statement “Everything that has four legs can run”. However,
intuitively, this generalisation does not sound convincing: we know that there
are some objects, such as chairs, that have four legs but do not move. And
hence, both in common reasoning and science, it is usual to use some kind of
implicit typing, like “All animals that have four legs can run”. This typing does
not guarantee the correctness of inductive generalisations, but it provides an
essential preliminary check for correctness. In [5], we considered inductive rela-
tional learning in neuro-symbolic networks, by taking relations father, mother,



grandparent as particular examples. However, our attempts to generalise this
approach have shown that the implicit typing has to be explicitly present in the
neuro-symbolic networks; or otherwise we sacrifice correctness.

In this paper, we propose neuro-symbolic networks that can check types of
the expressions given in a functional language. Such networks can be used to
perform the initial type recognition, e.g, for the first example above. They can
also be used as an integral part of the neuro-symbolic networks that perform
inductive learning; e.g., as in the second example above.

The paper is organised as follows. Section 2 contains background definitions.
In Section 3, we define symbol recognisers in neural networks. In Section 4,
we show how the recursive recognisers can be used to recognise expressions of
inductive and dependent types. In Section 5 we conclude the paper.

2 Preliminaries

2.1 Types

The formal language we use as the “symbolic” part of the neuro-symbolic system
is a higher-order typed language, dependently-typed λ-calculus. Moreover, we use
the functional programming syntax throughout; as e.g. in [2, 10]. The higher-
order approach is relatively new to Neuro-Symbolic systems: the leading neuro-
symbolic networks are based on propositional [4, 5, 14] or first-order logics [1,
13]. The only functional approach we are aware of uses kernel methods: [12, 8].

Although this paper may be seen as a first and initial step to define a neuro-
symbolic specification language for a dependently-typed λ-calculus, this ambi-
tious goal lies far beyond the scope of this paper. Instead, we will stay very close
to the motivating examples we gave in the introduction; and will simply consider
the method of recognising, using the machinery of neural networks, whether a
given expression is of a given inductive data type.

We will therefore skip the definitions of terms and expressions that con-
ventionally open the description of dependently typed languages; we take the
base library of Coq, the reader can consult e.g., [2, 10]. We will instead proceed
straight to the definitions of inductive data types given in functional program-
ming style.

Every expression in the language we use is assumed to be typed. The func-
tional language provides a variety of base types - sets of simple, unstructured
values such as numbers, booleans and characters. Among them we will distin-
guish the atomic types and data types. Atomic types have no internal structure
as far as the type system is concerned. Examples of atomic types are Prop - the
type of propositions; Set - the type of sets; and Type.

The inductive definitions of data types always follow one syntactic pattern.
The word Inductive is a declaration that an inductive type is being defined;
it is followed by the name of the type, for example, bool; and by one or more
terms, also called constructors, c1, . . . cn, (cf. t and f in Example 1) with the
typing relation given by ci : T that assigns type T to the term ci.



Example 1. Inductive bool : Type := | t : bool | f : bool.

One can imagine defining other types in the manner similar to bool; for example,
one could define the days of the week or the months of the year by simply listing
them. If inductive definition of a type does not involve recursion, we will call
this inductive type primitive.

Consider an inductive type of natural numbers nat. Unlike the inductive
type bool, it involves recursion. We will call such data types recursive. Using
the syntax below, number 3 will be written as SSSO.

Example 2. Inductive nat : Set := | O : nat | S : nat -> nat.

Constructors used in an inductive definition provide a method for generating
elements of the inductive type. More importantly, they give a general way of
specifying and recognising a well-formed term of this type. No matter how big
or complex the term of a type T is, the computations will always follow the
pattern given by its constructors.

The last distinction we need to make is between simple and dependent types.
All the types we have considered so far were simple, in that their definitions did
not depend on other types. Consider the example of the dependent type of lists
of elements of a type nat. The definition of this type not only involves recursion,
but it is also dependent on another type - nat.

Example 3. Inductive list : Set :=
| nil : list | cons : nat -> list -> list.

Most programming languages provide a variety of ways of building compound
data structures. Types can be composed using ->: e.g, Set -> Prop is a type of
predicate symbols. The product type can be defined as follows:

Inductive prod (A B:Set) : Set :=
pair : A -> B -> prod A B.

Then the set prod A B is a cartesian product A × B of sets A and B. All the
types we consider in this paper are zero-order – or quantifier free – types.

2.2 Neural networks

An artificial neural network [6] is a directed graph with nodes (called units
or neurons), and edges (called connections). If there is a connection from unit
j to unit k, then wkj denotes the weight associated with this connection, and
ikj(t) = wkjvj(t) is the input received by k from j at time t. A neuron k is
characterised, at time t, by its activation input vector (vi1(t), . . . vin(t)), its input
potential pk(t), its bias bk and its value vk(t). In each update, the potential and
value of a unit are computed with respect to an input function and a transfer
function, respectively. The units considered here compute their potential as the
weighted sum of their inputs plus their bias: pk(t) =

(∑nk

j=1 wkjvj(t)
)

+ bk. The
units are updated synchronously, time becomes t+∆t, and the output value for
k, vk(t+∆t), is calculated from pk(t) by means of a given transfer function F ,
that is, vk(t+∆t) = F (pk(t)).



3 Type Recognition by Symbol Recognition in Networks

In this section, we show how neural symbol-recognisers can handle recognition
of primitive inductive types. We define type recognisers as follows.

Definition 1. Given a definition of an inductive data type T, we say that a
neural network N recognises T, or is a T-recogniser, if, for any given well-formed
expression E, the following holds. If a numerical encoding of E is sent to N as
an input, then there exist unique vectors vs and vf , called success and failure
vectors, such that N outputs vs if and only if E is of type T, and it outputs vf

if and only if E is not of type T .

We start with explaining how the problem of data recognition can be solved
using traditional methods of neurocomputing. Figure 2 shows two neural net-
works that can recognise zero and non-zero input data. That is, if one of such
networks outputs 1, the external recipient can read this as a confirmation that
the input data was of the desired format. These two networks show a “naive”,
but conventional, approach to “type” recognition in neural networks. However,
this method is not systematic, and depends on the fact that the properties yield
direct numerical checks in the neural networks. This method is not extendable
to the types that describe “symbolic”, rather than numerical, data.
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Fig. 2. “Zero” and “non-zero” recognisers. Inside of the units, we show the graphs of
the transfer functions — linear and hard-limit (or threshold) functions; see [6].

This is why we propose a systematic way of representing types in neural
networks, irrespective of the nature of the objects they describe. The useful
feature of the types that we rely on here, is that a definition of a type gives a
general skeleton for computations, and this skeleton can be used to deal with all
elements/members of this type, irrespective of their complexity.

We assume that the logical syntax has a suitable numerical encoding; cf. [7].

Definition 2. The symbol recogniser for a given symbol ‘s’, also called an s -
recogniser, is a neural network consisting of a single neuron, defined as follows.
Take the numerical encoding ns of the symbol s. The input weight is set to 1,
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Fig. 3. Left: Recognising symbol s. The input is sent to the neuron with bias −s; it
outputs 0 if the input matches s and some non-zero value otherwise. This neuron may
be connected to a zero-recogniser (in the square box) that outputs 1 whenever the
signal 0 is computed. Right: Recognising type bool with constructors t and f.

the neuron’s transfer function is linear (identity), and the neuron’s bias is set to
−ns.

Because the bias is −ns, the input weight is 1, and the transfer function is the
identity, the output will be equal to i− ns, where i is the input value. If i = ns

is sent as an input, the output will be equal to 0. This value can then be sent to
the 0-recogniser network from Figure 2, as shown in Figure 3, in case we want
output value “1”, rather than “0”, to signify “success”.

Note that this simple architecture will suffice for recognising primitive in-
ductive data types. The right-hand side of Figure 3 shows the network that can
recognise type bool given by the two constructors t and f.

Lemma 1. Given a definition Inductive X : Type := | c1 : X . . . | cn : X.

of a primitive inductive data type X, there exists an X-recogniser for X.

Construction 1 The network NX is built using n symbol recognisers, each
recognising c1, . . . , cn, with built-in networks working as zero-recognisers, as
shown in Figure 3. Moreover, the output signals from each of these ci-recognisers
are collected in the upper neuron, as shown in Figure 3. The upper neuron com-
putes its potential as defined in Subsection 2.2, and has a linear activation func-
tion. The output success vector vs is [1]; and the failure vector vf is [0].

The networks we have described would be applicable when one works with
finite sets (e.g, finitely many truth values or days of the week). For some pur-
poses of inductive and relational reasoning, such finite sets may well suffice; [5].
However, we will extend this to potentially infinite structures; and in the next
section, we will use the symbol recognisers to identify “base cases” of inductive
definitions.



4 Recognition of Recursive and Dependent Types

For inductive types that require recursion, we propose to use the recursive con-
nections in neural networks. We will first consider the inductive definitions of
simple inductive types; our running example is nat.

Definition 3. Given a definition of a simple inductive type X, and its con-
structor C of type X → X, the recursive recogniser for C is a one layer network,
consisting of n > 1 neurons with the following properties. The length n of the
layer is the length of the input vector that the network will process. Each neuron
has one input connection, with the weight 1. The biases of all but the first neuron
are set to 0; the bias of the first neuron is set to −nC , where nC is a numerical
representation of C. The first neuron has an output connection that can be re-
ceived by an external user. The outputs of the 2nd – nth neurons, called recursive
outputs, are connected to the same layer, as follows: the output connection of
the kth neuron (k ∈ 2, . . . , n) is sent as an input to the k − 1 neuron.

Note that the first neuron of such network is the symbol recogniser for the
constructor C. The other n − 1 neurons in the layer are designed to recursively
process the remaining n− 1 elements of the input vector. That is, for processing
the number 3, written as SSS0, one will need a layer of four neurons to build
the recursive recogniser; see Figure 4. The recursive connections are set in such
a way, that, once the numerical signal standing for SSSO is sent as an input to
this layer, the network will process each of the symbols recursively.

We assume here that the type recognisers are built for the purposes of check-
ing whether a given expression of specified length belongs to a given type. In
case one wishes to apply the same method to some data of unspecified size - e.g.
streams - one can remove the neurons 2 – n from the recursive layer of length
n, and use the symbol recognisers instead of recursive recognisers, while sending
the input stream not as a vector, but in element-by-element fashion.

Lemma 2. Given a definition Inductive X : Type := | c1 : X . . . |ck: X

| ck+1 : X -> X . . . | cn : X -> X. of a simple recursive inductive data type
X, there exists an X-recogniser for X.

Construction 2 For every ci, i ∈ {1 . . . k}, build a symbol recogniser, as in
Definition 2; and join all such symbol recognisers into one network, as shown in
Construction 1. For every ci, i ∈ {k + 1 . . . n}, build a recursive recogniser, as
in Definition 3; and join all the recursive recognisers by sending their outputs to
one neuron with linear activation function; similarly to Construction 1. Thus,
the network has two outputs — OB and OI — read by the external user; they
come from two neurons: one neuron collects signals from base cases recognisers,
and another — from inductive case recognisers. The numerical vector encoding
the expression E that we need to check for being of type X will be sent as an input
to each of the subnetworks, as shown in Figure 4. The success vector vs is [1; 0],
the failure vector vf is [0; 0]; while computing, the network must output [0; 1].
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Fig. 4. This network decides whether an expression S(S(S(O))) is of type nat.
Such network receives an input vector i, given by numerical encoding of the term -
S(S(S(O))). The dotted arrows show the initial input to the network; the solid arrows
show the connections with weight 1. The network has two components: O-recogniser,
and recursive S-recogniser: the recursive outputs from neurons in the S-recogniser layer
are sent to the same layer. The success vector is [1; 0], signifying that the first sym-
bol in the input vector is ’O’. In case the first symbol is neither O nor S, the failure
output will be [0; 0]. The output [0; 1] signifies that the expression is being processed
recursively.

Note that in Lemma 2 and Construction 2, we used only inductive constructors of
type X -> X, but types can be composed, and in case we need to give an account
to compound types, we build up more layers, and connect them recursively, as
we will illustrate in Figure 5.

Next, we extend these results to dependent types.

Theorem 1. For any zero-order inductive data type X, there exists an X-
recogniser.

Construction 3 We use Lemmas and Constructions 1 and 2. Additionally, for
dependent types like list nat (cf. Example 3), that is, when a type X1 being
defined depends on a type X2, the types should be build in a cascade, as follows.
The input vector is first sent to the X1-recogniser. The X1-recogniser is connected
to the X2-recogniser at each time step, as shown in Figure 5. Each of X1- and
X2- recognisers has two outputs - one for base cases (OB) and the other for
inductive cases (OI) of inductive definitions, as described in Construction 2.
The X2-recogniser has two sets of recursive output connections (cf. Figure 5):
one set of recursive connections sends its output back to the X2-recogniser, and
it is active as long as the recursive recognition of X2 continues, that is, while X2OB

outputs 0, and X2OI
outputs 1. The second set of recursive output connections

goes to the X1-recogniser; these connections become active as soon as the recursive
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Fig. 5. This network structure can recognise a list of natural numbers. This is more
complex since it has to be able to recognise a list structured input, as well as check the
individual elements are of the type nat. It therefore consists of two recursive recognisers.
At time step 1, either nil is recognised, and computation stops; or cons is recognised,
in this case the rest of the input vector is transferred to the nat recogniser, which
recognises the second element of the input vector at time step 2. Then the nat recogniser
works using recursive output connections −− >, until O is recognised, and then switches
to the recursive output connections ... > that activate the list-recogniser again; and
the process repeats. If at some time t, there is a symbol in the input vector that does
not have the form of the constructors, the network comes to the error state [0; 0; 0; 0].

recognition of X2 is finished and X2OB
outputs 1. For X1OB

, X1OI
, X2OB

, X2OI
,

the success and failure vectors are vs = [1; 0; 0; 0] and vf = [0; 0; 0; 0]. One
of the three output vectors is acceptable as indicating “computing in progress”:
[0; 1; 0; 0], [0; 0; 0; 1], [0; 0; 1; 0]. If the type being defined depends on more than one
type, or constructors take more than one argument of type X2, the type recognisers
are connected according to the dependencies.

5 Conclusions and Future Work

We have proposed a general neural architecture that can recognise and check
the type of a given expression written in a functional language. To the best of
our knowledge, this is the first paper to show how inductive data types can be



recognised using the machinery of neural networks; and used to insure correct-
ness of neuro-symbolic computations. We have used symbol recognisers to deal
with the base cases of inductive definitions, recurrent connections in the neural
networks to implement recursive computation, and cascading of neural layers to
implement dependency. Composition of types can nicely be reflected by compo-
sition of layers in networks. Given such building blocks, one is free to define new
type recognisers, and use them for training or inductive learning.

We believe that the typed networks may offer a good initial architecture for
network learning, as done normally by the use of background knowledge (or
inductive bias) in symbolic machine learning. We also believe that the proposed
model can serve as a cognitive model of massively-parallel symbolic computation,
especially useful when one considers such data types as trees.

Further developments of the networks we have proposed will include the study
of first-order or higher-order types and practical experiments on both reasoning
and learning capabilities.
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