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Computational Logic in Neural Networks

Symbolic Logic as Deductive
System

Deduction in logic
calculi;

Logic programming;

Higher-order proof
assistants...

Sound symbolic methods we
can trust

Neural Networks

spontaneous behavior;

learning and adaptation;

parallel computing.
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Boolean Networks of McCullogh and Pitts, 1943.

A
''OOOOOO

B // ?>=<89:; //C

If A and B then C .
————————-

1
''NNNNNNN

1 // WVUTPQRS0.5 //1

(A = 1) or (B = 1).

1
''NNNNNNN

1 // WVUTPQRS1.5 //1

(A = 1) and (B = 1).
————————-

−1 // _^]\XYZ[−0.5 //1

Not (A = −1).
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Neuro-symbolic architectures of other kinds based on the
same methodology:

The approach of McCulloch and Pitts to processing truth values
has dominated the area, and many modern neural network
architectures consciously or unconsciously follow and develop this
old method.

Core Method: massively parallel way to compute minimal
models of logic programs. [Holldobler et al, 1999 - 2009]

Markov Logic and Markov networks: statistical AI and
Machine learning implemented in NN. [Domingos et al.,
2006-2009]

Inductive Reasoning in Neural Networks [Broda, Garcez et al.
2002,2008]

Fuzzy Logic Programming in Fuzzy Networks [Zadeh at al].
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How do we know that they are correct?

(x ∨ y) ∧ ¬z

x // ?>=<89:;1

))TTTTTTTTTTTT

y

55kkkkkkkkkkk GFED@ABC1.5 //

z // ONMLHIJK−0.5

55jjjjjjjjjj

Such network would not distinguish “logical” data (values 0 and 1)
from any other type of data, and would output the same result
both for sound inputs like x := 1, y := 1, z := 0, and for
non-logical values such as x := 100.555, y := 200.3333 . . . , z := 0.
Imagine a user monitors the outputs of a big network, and sees
outputs 1, standing for “true”, whereas in reality the network is
receiving some uncontrolled data.

The network gives correct
answers on the condition that the input is well-typed.
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Relational learning



Introduction Types for Ensuring Correctness of Neural Computations Conclusions

Relational Reasoning and Learning.

In [Garcez et al, 2009], were built networks that can learn relations.
E.g., given examples Q(b, c)→ P(a, b) and Q(d , e)→ P(c , d),
they can infer a more general relation Q(y , z)→ P(x , y).

Example

Learning a relation “grandparent” by examining families.
Classification of trains according to certain characteristics.
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Problems with this method

Such relational learning works as long as input data is well-typed.

”Well-typed” means that only related people, and not any other
objects, are given to the network that learns relation
“grandparent”. And there are only trains of particular, known in
advance, configuration, that are considered by the network that
classifies trains.

This means that users have to make the preliminary classification
and filtering of data before it is given to such networks; and NNs
would not be able to warn the users if the data are ill-typed :-(.

Generally, as it turns out, typing is important for correct reasoning.

One can generalise from “This dog has four legs, and hence it can
run” to “Everything that has four legs can run”. However, we
know that there are some objects, such as chairs, that have four
legs but do not move. Hence we (often unconsciously) use typing
in such cases, e.g., apply the generalisation only to all animals.
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Solutions: K.K., K. Broda, A.Garcez

Solution

As an alternative to the manual pre-processing of
data, we propose neural networks that can do the
same automatically. We use neural networks called
type recognisers; and implement such networks to
ensure the correctness of neural computations; both
for classical cases (McCulloch & Pitts) and for the
relational reasoning and learning.

The solution involves techniques like pattern-
matching, inductive type definitions, etc. that are used
in functional programming, type theory, and interactive
theorem provers!
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The main result

First ever method of using Types for ensuring the correctness of
Neural or Neuro-Symbolic computations.

Theorem

For any type A, given an expression E presented in a form of a
numerical vector, we can construct a neural network that
recognises whether E is of type A.

Such networks are called Type recognisers, and for each given type
A, the network that recognises expressions of type A is called an
A-recogniser. This construction covers simple types, such as Bool,
as well as more complex inductive types, such as natural numbers,
lists; or even dependent inductive types, such as lists of natural
numbers.
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Some examples of inductive types

Primitive:

Inductive bool : Type := | t : bool
| f : bool.

Recursive:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Typical element of the set SSSO.

Dependent:

Inductive list nat : Set :=
| nil : list
| cons : nat -> list -> list.

Typical element of the set is O::SO::SSSO::O::nil also written
cons O cons SO cons SSSO cons O cons nil.
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“Atomic” symbol recognisers
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Inductive recogniser for bool
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Inductive recogniser for nat

x y x y

1 0 - success

= 0?

OO

= 0?

OO

0 1 - working

1 1- impossible

GFED@ABC−O
1

OO

GFED@ABC−S
1

OO

?>=<89:;?>=<89:;?>=<89:;1
ii

1

aa

1

^^]]

0 0 - failure

S

ZZ OO

S

OO

S

OO

O

OO



Introduction Types for Ensuring Correctness of Neural Computations Conclusions

Inductive recogniser for list nat
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Example with trains

Inductive shape : Type :=
| oval : shape
| triangle : shape.

Inductive direction : Set :=
| west : direction
| east : direction.
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Inductive types in Neuro-symbolic networks

Inductive types can naturally be represented in neural networks:

For finite sets, we use feed-forward networks

For infinite sets defined recursively we use recursive
connections in networks

Inductive types are closely related to recursive structures that
arise in Neural networks;

The networks can be integrated into big Neuro-symbolic
systems to type-check inputs/outputs;

The networks can be used for inductive generalisations and
analogy.
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Applications and Future work

Types and type-theoretic approach has a big future in AI: be
it inductive reasoning, learning techniques, or neuro-symbolic
integration.

Our next step is to merge the networks with learning
algorithms.

They can be used for Logic Programming and Symbolic AI

Logic programs as inductive definitions paradigm → ICANN
paper.

Inductive types should be used to ensure safety and security of
Neuro-Symbolic networks;
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Thank you!

Questions?
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