
CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel Rewriting in Neural Networks

Ekaterina Komendantskaya

School of Computer Science, University of St Andrews

CiE’09, Heidelberg

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Outline

1 CLANN project:
http://www.cs.st-andrews.ac.uk/~ek/CLANN/

2 Parallel rewriting

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Outline

1 CLANN project:
http://www.cs.st-andrews.ac.uk/~ek/CLANN/

2 Parallel rewriting

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neural Network: definitions

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Logic and Neurons: McCullogh and Pitts, 1943.

A
''OOOOOO

B // ?>=<89:; //C

If A and B then C .
————————————

1
''NNNNNNN

1 // WVUTPQRS0.5 //1

(A = 1) or (B = 1).

1
''NNNNNNN

1 // WVUTPQRS1.5 //1

(A = 1) and (B = 1).
———————————–

−1 // _^]\XYZ[−0.5 //1

Not (A = −1).

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Logic and Neurons - Level of abstraction 1: Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and
digital hardware are equally suitable for symbolic computations.

The picture is due to Alexander & Morton, 1996)

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Logic and Neurons - Level of abstraction 1: Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and
digital hardware are equally suitable for symbolic computations.
The picture is due to Alexander & Morton, 1996)

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Logic and Neurons - Level of abstraction 1: Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and
digital hardware are equally suitable for symbolic computations.
The picture is due to Alexander & Morton, 1996)

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Logic and NNs: summary [Siegelmann]

Finite Automata → Binary threshold networks
Turing Machines → Neural networks with rational weights
Probabilistic Turing Machines → NNs with rational weights
9-neuron network will suffice to simulate Universal Turing machine
[Siegelmann and Sontag]

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Levels of Abstraction: from 1 to 2

The results we have mentioned form the 1st, theoretical, level of
abstraction are general and powerful enough to claim that, given a
neural computer, we can transform hardware and software
architectures of digital computers to fit the neural hardware.
However, in 2009, unlike in 1959, the development of digital and
neural hardware do not come hand in hand. As soon as digital
computers started to take over, another level of abstraction, much
less general, became popular.

Given a Neural Network simulator, what kind of practical problems
can I solve with it? where can I apply it?
(Parallelism, classification.)
Implementations of Computational Logic in NNs...

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Levels of Abstraction: from 1 to 2

The results we have mentioned form the 1st, theoretical, level of
abstraction are general and powerful enough to claim that, given a
neural computer, we can transform hardware and software
architectures of digital computers to fit the neural hardware.
However, in 2009, unlike in 1959, the development of digital and
neural hardware do not come hand in hand. As soon as digital
computers started to take over, another level of abstraction, much
less general, became popular.
Given a Neural Network simulator, what kind of practical problems
can I solve with it? where can I apply it?
(Parallelism, classification.)
Implementations of Computational Logic in NNs...

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

A B C

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

A B C

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

A Simple Example

B ←
A←
C ← A,B
TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Problems with logic reasoning by boolean networks

P(0)←
P(s(x))← P(x)

Paradox:
(computability,
complexity,
proof theory,
proximity to conventional
or biological neural net-
works is illusory and de-
ceiving...)

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Problems with logic reasoning by boolean networks

P(0)←
P(s(x))← P(x)

Paradox:
(computability,
complexity,
proof theory,
proximity to conventional
or biological neural net-
works is illusory and de-
ceiving...)

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Problems with logic reasoning by boolean networks

P(0)←
P(s(x))← P(x)

Paradox:
(computability,
complexity,
proof theory,
proximity to conventional
or biological neural net-
works is illusory and de-
ceiving...)

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neuro-symbolic architectures of other kinds:

This problem of processing truth values instead of the syntax,
causes the same problem in most of the existing Neuro-Symbolic
systems, e.g.:

The “core” method of computing semantic operators for logic
programs [Holldobler et al, 1994- 2009]

Markov Logic and Markov networks [Domingos 2006-2009]

Inductive and Modal logics in Neural Networks [Broda, Garcez
et al. 2002,2008]

Fuzzy Logic Programming in Fuzzy Networks.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Methods we suggest:

1 Logic terms can be processed directly, without processing
their truth values; one can use a one-to-one numerical
encoding, if necessary.

2 Although only scalar numbers are allowed to be processed by
a single neuron, a layer of neurons processes vectors of
symbols, and a network of several layers processes matrices of
signals. One can use vectors as representatives of strings; and
matrices - as representatives of trees.

3 Parallel algorithms can be easily applied in neural networks.
4 Many techniques of computational logic - such as unification

or term-rewriting naturally arise - in non-symbolic forms - in
conventional learning algorithms of neurocomputing.

5 Learning Functions one uses in Neuro-Symbolic networks can
be arbitrary, not necessarily the conventional functions of
neurocomputing.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM

pj wkj pk

v ′′ //WVUTPQRS

bj

//WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM

pj wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj

wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj

pk

v ′′ //WVUTPQRSbj //WVUTPQRS

bk

//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj

pk

v ′′ //WVUTPQRSbj //WVUTPQRSbk
//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRSbk
//

vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Neurons

pk(t) =
(∑nk

j=1 wkjvj(t) + bk

)
vk(t + ∆t) = ψ(pk(t))

v ′

&&MMMMMMM pj wkj pk

v ′′ //WVUTPQRSbj //WVUTPQRSbk
//vk

v ′′′

88qqqqqq
j k

The following parameters can be trained: weights wkj , biases bk ,
bj .

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Hebbian (Unsupervised) Learning

Unsupervised learning rule: ∆wkj(t) = F (vk(t), vj(t)), where F
is some function. Very often, it is ∆wkj(t) = ηvk(t)vj(t), for some
constant η, called the rate of learning.

v ′

''OOOOOOO pj wkj + ∆wkj

��
v ′′ //WVUTPQRSbj //WVUTPQRSbk

//vk

ss

v ′′′

77oooooo
j wkj k

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Example 1. Parallel Rewriting

Consider a string [1:2:3:1:2:3:3:1:2:3:1:2] and rewriting rules -
ground instantiations of x → 3x for 1, 2, 3

The parallel rewriting step will give us
[3 : 6 : 9 : 3 : 6 : 9 : 9 : 3 : 6 : 9 : 3 : 6].

This can be done in unsupervised learning network net: the rate of
learning η = 2; ∆w = ηyx = 2w; wnew = w + ∆w = 3w.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Example 1. Parallel Rewriting

Consider a string [1:2:3:1:2:3:3:1:2:3:1:2] and rewriting rules -
ground instantiations of x → 3x for 1, 2, 3

The parallel rewriting step will give us
[3 : 6 : 9 : 3 : 6 : 9 : 9 : 3 : 6 : 9 : 3 : 6].

This can be done in unsupervised learning network net: the rate of
learning η = 2; ∆w = ηyx = 2w; wnew = w + ∆w = 3w.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel rewriting on strings - a closer look:

∆w =?>=<89:; //1
η=2

{{
2?>=<89:; //2 wnew = 4?>=<89:; //3 wold 6?>=<89:; //1 + 2?>=<89:; //2 ∆w 4

1 3 //2lll
66ll1zzzz

<<zzz3�����

BB����2������

EE�����1�������

GG������

3
RRR

((RR
1

DDDD

""DDD
2

99999

��9999
3

222222

��22222
1

.......

��......
2

,,,,,,,,,

��,,,,,,,,

?>=<89:; //3 6?>=<89:; //3 6?>=<89:; //1 2?>=<89:; //2 4?>=<89:; //3 6?>=<89:; //1 2?>=<89:; //2
η=2

cc 4

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel rewriting on strings - a closer look:

∆w =?>=<89:; //1
η=2

{{
2?>=<89:; //2 wnew = 4?>=<89:; //3 wold 6?>=<89:; //1 + 2?>=<89:; //2 ∆w 4

1 3 //2lll
66ll1zzzz

<<zzz3�����

BB����2������

EE�����1�������

GG������

3
RRR

((RR
1

DDDD

""DDD
2

99999

��9999
3

222222

��22222
1

.......

��......
2

,,,,,,,,,

��,,,,,,,,

?>=<89:; //3 6?>=<89:; //3 6?>=<89:; //1 2?>=<89:; //2 4?>=<89:; //3 6?>=<89:; //1 2?>=<89:; //2
η=2

cc 4

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel rewriting on strings - a closer look:

?>=<89:; //3
η=2

{{

?>=<89:; //6?>=<89:; //9?>=<89:; //3?>=<89:; //6

1 9 //6mmm
66mm3zzzz

==zzz9�����

CC����6������

FF�����3��������

HH�������

9
QQQ

((QQ
3

DDDD

!!DDD
6

88888

��8888
9

222222

��22222
3

........

��.......
6

,,,,,,,,,

��,,,,,,,,

?>=<89:; //9?>=<89:; //9?>=<89:; //3?>=<89:; //6?>=<89:; //9?>=<89:; //3?>=<89:; //6
η=2

cc

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel (Term) Rewriting.

An abstract rewriting system (ARS)

is a structure A = (A, {→α |α ∈ I}) consisting of a set A and a
set of binary relations →α on A, indexed by a set I .

A term rewriting system (TRS)

is a pair R = (Σ,R) of a first-order signature Σ and a set of
rewriting rules R for Σ, (subject to certain restrictions).

Parallel rewriting step

Let a term t contain some disjoint redexes s1, s2, . . . , sn; that is,
suppose we have t ≡ C [s1, s2, . . . , sn], for some context C . If their
contracta are respectively s ′1, s

′
2, . . . , s

′
n, in n steps the reduct

t ′ ≡ C [s ′1, s
′
2, . . . , s

′
n] can be reached. These n steps together are

called a parallel step.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel Term rewriting

We assume here, that symbols f , a, (,) and b are encoded as
numbers |f |, |a|, |(|, |)| and |b|. The rewriting rule is a→ b.

∆w =
?>=<89:; //f

∆w
{{

0?>=<89:; //(0

1 a //
(mmm

66mmfzzzz

==zzz

,QQQQ
((QQ

a
DDDD

!!DDD
)

88888

��8888

?>=<89:; //a |b| − |a|
?>=<89:; //, 0?>=<89:; //a |b| − |a|
?>=<89:; //)

∆w

cc 0

wnew = wold + ∆w that is,
[|f |; |(|; |a|; |)|] + [0; 0; |b| − |a|; 0] = [|f |; |(|; |b|; |)|].

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel Term rewriting

We assume here, that symbols f , a, (,) and b are encoded as
numbers |f |, |a|, |(|, |)| and |b|. The rewriting rule is a→ b.

∆w =
?>=<89:; //f

∆w
{{

0?>=<89:; //(0

1 a //
(mmm

66mmfzzzz

==zzz

,QQQQ
((QQ

a
DDDD

!!DDD
)

88888

��8888

?>=<89:; //a |b| − |a|
?>=<89:; //, 0?>=<89:; //a |b| − |a|
?>=<89:; //)

∆w

cc 0

wnew = wold + ∆w that is,
[|f |; |(|; |a|; |)|] + [0; 0; |b| − |a|; 0] = [|f |; |(|; |b|; |)|].

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Parallel Term rewriting

?>=<89:; //f
∆w

{{

?>=<89:; //(

1 b //
(mmm

66mmfzzzz

==zzz

,QQQQ
((QQ

b
DDDD

!!DDD
)

88888

��8888

?>=<89:; //b?>=<89:; //,

?>=<89:; //b?>=<89:; //)
∆w

cc

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Complications

The learning rule and change vectors may or may not be
describable by a continuous function (or a function that is
conventionally used in Neurocomputing). In the first example,
we used the conventional learning function
(∆w = ηyx = 2w)... But not in the second.

Terms may grow at each substitution: e.g., the term f (b) may
well be transformed into f (g(a)), which will require more
neurons.

This is why, the learning functions we use need to be more clever
than just arithmetic operations...

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Solutions

We widen the range of available learning functions, expressing
some of them algorithmically. E.g, the learning function for
the 2nd example would need to be formulated (roughly) as
follows: for a rewriting rule a→ b, find |a| in the
vector w , and form the vector
∆w = [0; 0; |b| − |a|; 0; |b| − |a|; 0].

We define an algorithm for adding neurons to the layer, which
roughly follows the idea of “growing neural gas” [Fritzke,94].
Having a set of rewriting rules, one extends the layer of
neurons after each parallel rewriting step to allow terms to
grow as rewriting proceeds.

We extend this to several rewriting rules.

This set of new functions is formalised in MATLAB neural network
simulator, and the library is ready to use. The networks perform
parallel rewriting for an arbitrary term-rewriting system.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Conclusions

1 The change in style: The networks work directly with terms,
and not truth values.

2 Now the burden to do symbolic computations is taken by
learning functions, and not by architectures of the networks; -
this gives control & flexibility.

3 Because we exploit the conventional rewriting abilities of
neural networks, for certain number of cases purely neural
approach will suffice. For more general cases of
term-rewriting, all we need to do is to switch a new learning
function, which may be rather “symbolic” (=algorithmic).

4 This kind of networks can be further implemented in hybrid
(neuro-symbolic) systems.

5 Generally, there is always a trade-off between the amount of
symbolism we allow in neuro-symbolic networks and the level
of generality of logical problems they can solve.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Literature: Level of Abstraction 1.

I. Alexander and H. Morton.
Neurons and Symbols.
Chapman&Hall, 1993.

S.C. Kleene.
Neural Nets and Automata.
Automata Studies, pp. 3 – 43, 1956, Princeton University Press.

W.S. McCulloch and W. Pitts.
A logical calculus of the ideas immanent in nervous activity.
Bulletin of Math. Bio., Vol. 5, pp. 115-133, 1943.

M. Minsky.
Finite and Infinite Machines.
Prentice-Hall, 1969.

H. Siegelmann.
Neural Networks and Analog Computation: Beyond the Turing Limit.
Birkhauser, 1999.

J. Von Neumann.
The Computer and The Brain.
1958, Yale University Press.

Ekaterina Komendantskaya St Andrews

CLANN project: http://www.cs.st-andrews.ac.uk/~ek/CLANN/ Parallel rewriting

Literature. Level of Abstration 2

M. Richardson and P. Domingos.
Markov Logic Networks.
Machine Learning. To appear.

A. Garcez, K.B. Broda and D.M. Gabbay.
Neural-Symbolic Learning Systems: Foundations and Applications,
Springer-Verlag, 2002.

A. Garcez, L.C. Lamb and D.M. Gabbay.
Neural-Symbolic Cognitive Reasoning,
Cognitive Technologies, Springer-Verlag, 2008.

B. Hammer and P. Hitzler.
Perspectives on Neural-Symbolic Integration.
Studies in Computational Intelligence, Springer Verlag, 2007.

S. Hölldobler, Y. Kalinke and H.P. Storr.
Approximating the Semantics of Logic Programs by Recurrent Neural Networks.
Applied Intelligence, 11, 1999, pp. 45–58.

P. Smolensky and G. Legendre.
The Harmonic Mind.
MIT Press, 2006.

Ekaterina Komendantskaya St Andrews

	CLANN project: http://www.cs.st-andrews.ac.uk/˜ek/CLANN/
	Parallel rewriting

