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Introduction and Motivation

Introduction

Neural Networks
Symbolic Logic as Deductive

System

@ Deduction in logic
calculi;

@ Logic programming;
o Higher-order
proof assistants...
Sound

symbolic @ spontaneous behavior;
methods

we can trust

@ learning and adaptation;

@ computational power
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Introduction and Motivation

Corner-stone Result, [Kalinke, Holldobler, 94]

For each propositional program P, there exists a 3-layer
feedforward neural network which computes Tp.

We will call such neural networks Tp-neural networks.
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Introduction and Motivation
A simple Tp-neural network

B —
A «—
C —AB

TPTO:{BuA}
Ip(Tr) = Tp 11 = {B, A, C}
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Characteristic Properties of Tp-Neural Networks

@ Require infinitely long layers in the first-order case.
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Introduction and Motivation

Characteristic Properties of Tp-Neural Networks

@ Require infinitely long layers in the first-order case.

@ First-order atoms are not represented in the neural
network directly, and only truth values 1 and 0 are
propagated.

@ No learning or adaptation.

— Impractical for Computational Logic; not interesting for
Neurocomputing audience.
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Introduction and Motivation
Example 2

Paradox:
(computability,
complexity,
proof theory)

INRIA

Ekaterina Komendantskaya



My Proposal

| propose SLD Neural networks

e They have finite architecture that does not depend on the
size of the Herbrand base Bp.

e Their effectiveness is due to several learning functions.
o Allow easy implementation of computational logic.
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My Proposal
Example 2 in SLD neural networks
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Workplan
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My Proposal

Test SLD NNs
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Timeliness and Novelty

Timeliness

e Computability Characterisation of Neural Networks;

@ A rich body of material accumulated in Connectionism
but research vacuum in the field;

e Wide range of NN simulators; numerous research centres
working on learning techniques.
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Timeliness and Novelty

Novelty

The project is novel in the aspects of

e Theory (Finite representation of Logic Deduction in
Neural Networks);

e Methodology (SLD resolution rather than semantic
operators; finite construction; the use of learning in
deduction);

e Practice (Evaluation and implementation of neural
networks in computational logic).
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Beneficiaries

Potential Beneficiaries

© Researchers in neuro-symbolic integration, Al;

@ The Computational Logic and Automated Reasoning
communities;

@ Individuals and organisations using automated theorem
provers;

© Researchers in different areas of computer science
investigating and applying learning techniques.
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Beneficiaries

Potential Beneficiaries

© Researchers in neuro-symbolic integration, Al;

@ The Computational Logic and Automated Reasoning
communities;

© Individuals and organisations using automated theorem
provers;

© Researchers in different areas of computer science
investigating and applying learning techniques.

[tems 2 - 3 = St Andrews.
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Beneficiaries

St Andrews: Available Expertise

e Computational Logic Group (Roy Dyckhoff): development
of proof assistants and theorem provers.

e Search algorithms; experimental methods in CS;
constraint satisfaction problems (lan Gent, Kevin
Hammond, lan Miguel, Tom Kelsey).

o Neural Network Research institutes in Edinburgh
(Institute for Adaptive and Neural Computation; the
Institute for Perception, Action and Behavior; the
Neuroinformatics Doctoral Training Centre).
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Beneficiaries

Thank you! J
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