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Abstract

This preliminary version of the paper published in the Journal of Algorithms
in Cognition, Informatics and Logic, is based on the MATLAB library im-
plementing Unification Neural Networks. It currently serves as a manual for
the library. We show that the conventional first-order algorithm of unifica-
tion can be simulated by finite artificial neural networks with one layer of
neurons. In these unification neural networks, the unification algorithm is
performed by error-correction learning. In particular, the unification neural
network is given a target, - to reach the state when the difference between
two atoms it unifies is zero. It then sees the non-empty disagreement set
as an “error” between the output and the target, and learns the computed
substitution as a change vector. It uses this vector to adapt its biases and
weights. Each time step of adaptation of the network corresponds to a single
iteration of the unification algorithm. We present this result together with
the library of learning functions and examples fully formalised in MATLAB
Neural Network Toolbox.

Key words: Unification, Neuro-Symbolic Networks, Neural Network
Learning, Error-correction learning, Connectionism

1. Introduction

Unification is a fundamental process that occurs in several fields of com-
puter science, including theorem proving, logic programming, natural lan-
guage processing, computational complexity, and computability theory. This
paper considers the problem of implementing unification in Neuro-Symbolic
(Connectionist) networks.
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Connectionism [1, 2] is a movement in the fields of artificial intelligence,
cognitive science, neuroscience, psychology and philosophy of mind, which
hopes to explain human intellectual abilities using artificial neural networks.
Connectionism relies on the assumption that artificial neural networks are
simplified models of the brain.

Neuro-symbolic integration is a particular area within Connectionism; it
investigates ways of integration of logic and formal languages in neural net-
works, in order to better understand the essence of symbolic (deductive) and
human (developing, spontaneous) reasoning, and to show interconnections
between them. The books [3, 4] and papers [5, 6, 7, 8, 9, 10, 11, 12] are good
examples of this approach.

The joint efforts of researchers in many areas have given many insights on
how logic and neuroscience can relate: Boolean (binary) networks can com-
pute logical connectives ([13, 14, 15]); binary threshold networks can simulate
Finite Automata [16], and (universal) Turing machines can be simulated by
neural networks with rational weights [17], and neural networks in their full
potential are as powerful as analog computing [17].

The natural question that arises is how neural networks can cope with log-
ical theories and calculi. There were built neural networks that can simulate
the work of the semantic operator TP for propositional and (function-free)
first-order logic programs; [8, 9] . We will call these networks TP neural net-
works. TP networks process classical truth values 0 and 1 assigned to ground
instances of formulae contained within a given logic program. These binary
values are presented to the TP networks as input vectors and emitted as out-
put vectors. Essentially, the TP networks implement Boolean networks of
McCulloch and Pitts [13] to processing the TP operator. This approach has
been very popular, and inspired research into implementations of different
kinds of semantic operators in neural networks; [18, 19, 3, 4, 12, 20, 21, 22].

Research into TP neural networks opened a graceful way to avoid the
problem of implementing unification and goal-oriented proof search in neural
networks. The TP operator does not employ any form of unification, and
deals only with ground instances of first-order formulae. Once only ground
instances are required for computations, one can easily process the truth
values 0 and 1 assigned to ground formulae, instead of processing the formulae
syntactically.

The TP networks have two major technical disadvantages. The first tech-
nical disadvantage arises from the fact that it can take an infinite number
of ground first-order atomic formulae for the TP operator to reach its fixed
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point, and in this case the TP neural networks have to have an infinite size,
which is fatal for practical implementations. This problem was tackled using
topological arguments and approximations of infinite computations by finite,
[18, 19, 12, 9, 23].

Also, TP -neural networks for classical logic programs could not learn or
perform any form of self-organisation or adaptation, which set them aside
from the learning networks traditionally studied in neurocomputing. There
were several attempts to bring learning and self-adaptation in TP neural
networks by means of generalising them to non-classical and inductive logic
programs, see, for example, [3, 24, 25, 26, 27, 28].

The theoretical disadvantage of the TP neural networks is that they did
not provide any clue to how non-ground reasoning may be handled in the
neural networks. How exactly would neural networks “reason” if sentences
are non-ground and it is impossible to assign truth values 0 and 1 to them?
For example, the sentences “If Tweety is a bird, then Tweety can fly”, “7 is
a natural number” are examples of ground sentences, hence we can assign
truth values to them. But in every-day life, in logic, or in mathematics we
can reason perfectly well about sentences containing variables, such as “If X
flies, then X is a bird”; “If a number X can be obtained from the number 0 by
adding 1 several times, then X is a natural number.” That is, we can reason
without assigning truth values. And indeed, one does not have to examine
the whole population of birds, or compute the whole infinite set of natural
numbers in order to reason about them. And this is why Logic programs
are run by the SLD-resolution that can handle non-ground sentences and
incorporates unification.

In this paper, we show how to implement the algorithm of unification
in neural networks. To do this, we have to abandon Boolean networks that
can process only 0 and 1, for we will not unify sentences by taking their
ground instances and truth values. Instead, finite neural networks that can
process integers will be sufficient for performing unification. These neural
networks will have linear activation function, and will consist of one layer of
neurons. The interesting feature of these neural networks is that they employ
an error-correction learning function in order to unify terms.

The standard error-correction learning in neural networks has the follow-
ing behaviour. A network is supplied with targets. Then, a network receives
some input, and processes it according to the processing and transfer func-
tions that are predefined and embedded into the network. As a result, the
network sends an output. This output is compared with the target. The net-
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work computes an error - the difference between the target and the output.
Then the network changes its weights or biases using this computed error, in
order to minimize the error on the next iteration. If, at the next iteration,
the error is equal to 0, the learning stops, otherwise the network goes on
learning and minimizing the error.

Surprisingly, the conventional Unification algorithm for first-order atoms
[29, 30, 31] follows a pattern similar to the error-correction. Suppose we
are given two first-order formulae A and B. And we apply the algorithm of
Unification [30]. The algorithm has its “target” - to reach the state when no
terms contained in A and B disagree: that is, the state when the difference
between A and B is equal to 0. The algorithm finds the disagreement set
containing the first two non-equal terms in A and B, and finds a substitution
for them. This computed substitution, derived from the disagreement set,
is similar to a computed “error signal” in a neural network. Then the sub-
stitution is applied to A and B, similarly to how the error signal is applied
to a bias and a weight, and the algorithm starts its new iteration, that is, it
finds a new disagreement set, and so on, until it reaches the state when the
disagreement set is empty (the “error” is 0).

In this paper, we exploit this simple analogy to its full potential. The
idea of doing unification by error-correction was first spelled out in my PhD
Thesis [26], but it took some time to refine its realisation [32, 33] and fit it
into the framework of a conventional neural network simulator, in order to
implement and test the whole idea.

For example, in early versions [26, 32], the tools for numeric representa-
tions of logic formulae played an important role, whereas in the final version
we present here, we avoid this problem altogether and use just arbitrary
(ASCII) encoding provided by standard MATLAB library. In all the earlier
descriptions [26, 32, 33], the neural networks had to process lists of numbers
(“Gödel numbers”), whereas now we abandoned this idea in favour of vec-
tors, which fits nicely into the framework of neurocomputing and is definable
in the environment of a neural network simulator.

These two major modifications to the initial architecture made possi-
ble to complete the formalization of the Unification Neural Networks within
the MATLAB Neural network toolbox [34], and inspired numerous minor
changes on the way. The library [35] is one of important contributions of
this paper, and we describe it in detail here. It is the first implementation of
the Unification algorithm in neural networks; and it opens the way to further
experiments, applications and developments.

4



The structure of the paper is as follows. In Section 2, we define the first-
order language and the algorithm of first-order unification for it, following
[29, 30]. In Section 3, we define artificial neural networks following [36, 37,
34], and in particular, we describe the mechanism of error-correction learning
in neural networks.

In Section 4, we show how to construct a unification neural networks
(UNNs) for any two function-free first-order atoms; and how it can be imple-
mented in the MATLAB Neural Network Simulator (MNNS). We describe
how to simulate the UNNs. Starting with this Section, we support all our
descriptions with experiments conducted in the MNNS using the library [35].
In Section 5, we introduce the error-correction into the UNNs we build. We
explain how error-correction performs unification for atoms not containing
function symbols. In Section 6 we extend these results to the more complex
cases, when function symbols are contained in the first-order atoms, and the
terms (as well as UNNs) may grow in the process of unification. We prove
that UNNs implement the algorithm of unification in a sound way.

In Conclusions, we discuss the significance and possible future develop-
ment and implementations of the UNNs.

Appendices A, B, C contain definitions of the three major functions we
defined in [35].

2. First-order Unification

In this section, we consider standard definitions of first-order alphabet
and language. The first-order language L consists of the well-formed formulae
built from the symbols of the alphabet A.

Definition 1. We fix the alphabet A to consist of

• constant symbols a01, a02, . . . , a99,

• variables x01, x02, . . . , x99,

• function symbols f01, f02, . . . , f99,

• predicate symbols P01, P02, . . . , P99,

• connectives ¬, ∧, ∨, also called negation, conjunction and disjunction.

• quantifiers ∀,∃ and
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• punctuation symbols “(”, “, ” “)”.

Note that we have chosen to use only finitely many symbols in the alpha-
bet. This is done for convenience, and we will explain the use and impact of
this decision in the later sections. Finite alphabet does not mean we restrict
ourselves to a finite language or finite computations. An alphabet contain-
ing only one constant, one variable, one function symbol and one predicate
would be sufficient to define a logic program that can compute the whole set
of natural numbers; see Example 3. So, for the time being, we assume that
this finite version of the first-order alphabet is sufficient for our purposes.

We follow the conventional (inductive) definition of a term and a formula.
Namely, every constant symbol is a term, every variable is a term, and if fi
is a function symbol of arity n and t1, . . . , tn are terms, then fni (t1, . . . , tn) is
a term. We will sometimes write t instead of (t1, . . . , tn).

Let P n be a predicate symbol of arity n and t1, . . . , tn be terms. Then
P (t1, . . . , tn) is a formula (also called an atomic formula or an atom). If F1,
F2 are formulae and x are variables, then ¬F1, F1 ∧ F2, F1 ∨ F2, ∀xF1 and
∃xF1 are formulae.

Definition 2. The first-order language L given by the alphabet A consists
of the set of all formulae constructed from the symbols of the alphabet.

Example 1. ∀x01∀x02(P01(x01, x02)∨¬P01(x01, x02)) is a formula of the lan-
guage L.

Definition 3. A ground term is a term not containing variables. Similarly,
a ground atom is an atom not containing variables.

Next, we define the algorithm of unification as it was introduced by [30]
and [31]; see also [38].

Definition 4 (Unifier). Let S be a finite set of atoms. A substitution θ
is called a unifier for S if Sθ is a singleton. A unifier θ for S is called a
most general unifier (mgu) for S if, for each unifier σ of S, there exists a
substitution γ such that σ = θγ.

Given substitutions θ1, . . . , θn, we can compose them, and we will denote
their composition by θ1 . . . θn.
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Definition 5 (Disagreement set). Let S be a finite set of atoms. To find the
disagreement set DS of S locate the leftmost symbol position at which not
all atoms in S have the same symbol and extract from each atom in S the
subexpression beginning at that symbol position. The set of all such terms
is the disagreement set.

Unification algorithm[29, 30]:

1. Put k = 0 and θ0 = ε.

2. If Sθk is a singleton, then stop; θk is an mgu of S. Otherwise, find the
disagreement set Dk of Sθk.

3. If there exist a variable v and a term t in Dk such that v does not occur
in t, then put θk+1 = θk{v/t}, increment k and go to 2. Otherwise, stop;
S is not unifiable.

Theorem 1 (Unification Theorem [30]). Let S be a finite set of atoms. If
S is unifiable, then the unification algorithm terminates and gives an mgu
for S. If S is not unifiable, then the unification algorithm terminates and
reports this fact.

For technical convenience we refine the notion of the disagreement set as
follows.

Definition 6. Given atoms A and B, restricted disagreement set
(r-disagreement set) for A and B is a disagreement set for A and B that
contains at least one variable.

That is, the restricted disagreement set cannot consist of two constants,
or two terms starting with two different function symbols. In practice, only
r-disagreement sets contribute substitutions in the process of unification of
two given atoms. In what follows, we will use r-disagreement sets instead
of the disagreement sets whenever we unify two atoms. If we replace the
occurrences of the “disagreement set” with “r-disagreement set” in the al-
gorithm of unification, only one sentence needs to be added in item 2: “If
the r-disagreement set Dk does not exist, then stop. S is not unifiable.” The
two formulations of the unification algorithm are clearly equivalent. The
latter reformulation is restricted to sets that contain only two atoms and
it makes explicit the assumption that has been implicitly contained in the
initial algorithm.
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Example 2. We will illustrate how this algorithm works on a simple ex-
ample. Consider the set S = {P01(f01(a01, a02)), P01(f01(x01, x02))} and form
DS = {x01, a01}. Put θ1 = x01/a01.
Now Sθ1 = {P01(f01(a01, a02)), P01(f01(a01, x02))}. Find DSθ1 = {x02, a02}
and put θ2 = x02/a02. Now Sθ1θ2 is a singleton. Unification stops.

Example 3. Although here, we do not consider logic programs in any fur-
ther details, it is useful to note that the algorithm of unification would play
an important role in processing the following small logic program that can
compute the set of natural numbers:
P01(a01)←
P01(f01(x01))← P01(x01)
We think of a01 as 0, f01 as a successor, and P01 as the property that is
being defined - that is, the property of being a natural number. The goal
to find a natural number would be stated as: ← P01(x02)?. And then the
interpreter will be able to unify the goal first with P01(a01), and then - with
P01(f01((a01)), and so on...

Already this simple example would require an infinite number of neurons
if we simulate it in a TP -neural network.

3. Neural Networks and Error-correction Learning

In this section, we give formal definitions of neural networks. We follow
[36, 37, 34].

An artificial neural network (also called a neural network) is a directed
graph. A unit k in this graph is characterised, at time t, by its input vector
(vi1(t), . . . vin(t)), its potential pk(t), its bias bk and its value vk(t). In general,
all vi, pi, bk, as well as all other parameters of a neural network can be
represented by different types of data, the most common of which are real
numbers, rational numbers [9], fuzzy (real) numbers [21], complex numbers,
numbers with floating point, and some others, see [36] for more details. In
what follows, we will use integers.

Units are connected via a set of directed and weighted connections. If
there is a connection from unit j to unit k, then wkj denotes the weight
associated with this connection, and ik(t) = wkjvj(t) is the input received
by k from j at time t. In each update, the potential and value of a unit
are computed with respect to an input (activation) and an output (transfer)
functions respectively. The units considered here compute their potential as
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the weighted sum of their inputs plus their bias:

pk(t) =

(
nk∑
j=1

wkjvj(t)

)
+ bk.

The units are updated synchronously, time becomes t + ∆t, and the output
value for k, vk(t+ ∆t), is calculated from pk(t) by means of a given transfer
function F , that is, vk(t+ ∆t) = F (pk(t)).

For example, the transfer function used in [8] is the binary threshold
function H, that is, vk(t + ∆t) = H(pk(t)), where H(pk(t)) = 1 if pk(t) > 0
and 0 otherwise. Units of this type are called binary threshold units.

A unit is said to be a linear unit if its transfer function is the identity,
that is, vk(t + ∆t) = pk(t). In MATLAB Neural Network Simulator, it is
called purelin.

Example 4. Consider two units, j and k, having potentials pj, pk and values
vj, vk. The weight of the connection between units j and k is denoted wkj.
Then the following graph shows a simple neural network consisting of j and
k. The neural network receives input signals v′, v′′, v′′′ and sends an output
signal vk.

v′

&&MMMMMMM vj wkj vk

v′′ //WVUTPQRSbj //WVUTPQRSbk //vk

v′′′

88rrrrrr
j k

Among all the parameters of neural networks, there are two parameters
that are conventionally considered as capable of learning, training and adapt-
ing: they are the weights and biases.

We will consider networks where the units can be organised in layers.
A layer is a vector of units. An n-layer network F consists of the input
layer, n − 2 hidden layers, and the output layer, where n ≥ 2. Each unit
occurring in the i-th layer is connected to each unit occurring in the (i+ 1)-
st layer, 1 ≤ i < n. Neural networks consisting of layers are sometimes called
associative neural networks [36]. Here, we will work with one-layer networks.

Error-correction learning is a kind of supervised learning. Supervised
learning is the most popular type of learning implemented in artificial neural
networks, and we give a brief sketch of error-correction algorithm in this
subsection; see, for example, [37] for further details.
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Let dk(t) denote some desired response, or target, for unit k at time t.
Let the corresponding value of the actual response be denoted by vk(t). The
response vk(t) is produced by a stimulus (vector) vj(t) applied to the input
of the network in which the unit k is embedded. The input vector vk(t) and
desired response dk(t) for unit k constitute a particular example presented
to the network at time t. It is assumed that this example and all other
examples presented to the network are generated by an environment. We
define an error signal as the difference between the desired response dk(t)
and the actual response vk(t) by ek(t) = dk(t)− vk(t).

The error-correction learning rule is the adjustment (the change signal)
∆wkj(t) (or ∆bk(t)) made to the weight wkj or the bias bk at time n and is
given by

∆wkj(t) = ηek(t)vj(t)

∆bk(t) = ηek(t)vj(t)

where η is a positive constant that determines the rate of learning. Note that
one can train either weights, or biases, or both.

Finally, the formulae wkj(t + 1) = wkj(t) + ∆wkj(t) and bk(t + 1) =
bk(t) + ∆bk(t) are used to compute the updated values for the weight wkj(t)
and the bias bk(t).

Example 5. The neural network from Example 4 can be transformed into an
error-correction learning neural network as follows. We introduce the desired
response value dk into the unit k. The change signal ∆wkj computed using
ek must be sent to the connection between j and k to adjust wkj; similarly
for bk.

v′

%%LLLLLLL vj wkj + ∆wkj

��
v′′ //WVUTPQRSbj // _^]\XYZ[bk, dk //ek, vk

qq

yy
v′′′

99ttttttt
j wkj k bk + ∆bk

\\

In the rest of the paper, we will normally work with layers of neurons
rather than with single neurons, and hence we will manipulate with vectors
of weights, biases, targets, errors, and other parameters. In this case, we will
have to drop the subscripts and write simply w, b, t, e for vectors of weights,
biases, targets (desired responses), and errors respectively. We will call the
vector of errors e an error vector, and the vectors ∆w and ∆b - the change
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vectors. To be consistent with MATLAB notation, we will write dw and db
for ∆w and ∆b.

4. Construction of the Unification Neural Networks

In this section, we describe the structure of the neural networks that can
simulate the algorithm of unification, we will call such networks Unification
Neural Networks (UNNs). To simplify the description, we first explain how to
build networks that can unify only first-order atoms not containing function
symbols. Having achieved that, we will devote Section 6 to the additional
algorithm of completion needed for unifying atoms containing function sym-
bols. The implementation was done in MATLAB neural network simulator
(MNNS), and the library of functions and examples can be found here [35].

Construction of the unification neural network (UNN):
1. The network we build consists of 1 layer of neurons. This layer has its

bias b, the vector of input weights w and will normally receive only one input
signal - 1. After processing the input signal, it will emit an output vector.
The Figure 1 shows a network net1 that can unify two atoms P01(x12, a15)
and P01(a13, x02). The single layer of net1 contains 12 neurons, one neuron
for each symbol contained in P01(a13, x02), but the size of the layer is not
our concern at this stage. We follow the MATLAB notation and abbreviate
layers by a single box, as shown on the Figure 1 generated by MATLAB.
For various first-order atoms, only the length of this single layer will vary.
This is why in this notation, UNNs for any two first-order atoms will look
exactly the same. The reader can find this example and many more in the
file test learning.mat in [35].

Unification networks use several pre-defined in MNNS functions. For ex-
ample, we use the transfer function purelin - the linear transfer function,
also employed in the famous Perceptron. It is depicted as a diagonal line in-
side of the layer of net1 in Figure 1. Another pre-defined function we employ
here is the activation function netsum (denoted by + in Figure 1), one can
set it in MNNS by simply typing net1.layers1.netinputFcn = ’netsum’.
The function returns element-wise sum of the weighted input signal and the
bias. That is, if the input is 1, the vector w representing input weights has
the shape [n1;n2; . . . ;nr], and the bias vector b = [m1;m2; . . . ;mr], the result
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Figure 1: The Unification network net1

of application of this function will be [n1 + m1, n2 + m2, . . . nr + mr]. For
further details, see also Documentation of MNNS, [34].

No other special structural settings are needed to simulate the unifica-
tion networks. Note also that all these general settings (also called “object
settings” in MNNS) are defined once and for all UNNs, irrespective of the
size and shape of the first-order atoms we unify.

2. Next step will be to decide the subobject properties: size of the layer,
and values assigned to the weight (w) and bias (b) vectors. These will vary
from one UNN to another, depending on the atoms we unify. Unlike any kind
of Boolean or TP neural network, we embed the first-order atoms directly into
the UNN, via the values of w and b. It is a strict requirement that neural
networks can have only numerical signals and parameters. Therefore, we
need some numerical encoding for atoms we unify.

In general, given first-order atoms A and B, and their numerical vector
encodings vA and vB, we set the size of the layer to be equal the size of vB,
and w = vA and b = −vB. The parameters w and b are chosen to represent
the first-order atoms, because precisely these two parameters can be trained
in conventional neural networks and in MNNS.

3. Vector encoding. The vector encoding is done in two steps. First we
assign a number to each of the symbols of the alphabet A. The only natural
condition we impose on the assignment is that it should be a one-to-one map
from symbols of the alphabet to integers. In the library we develop, we simply
use ASCII encoding provided by MATLAB library. Other kinds of encoding
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may add efficiency, but our example serves to illustrate that essentially, the
way the encoding is made is unimportant for the development. The next
step is to represent a given formula or term as a vector of numbers that are
determined by the assignment.

Example 6. In MATLAB, we can type “double(P01(a01))”, and receive
the vector: [80,48,49,40,97,48,49,41]. The inverse function, char, is
also defined in MATLAB and will turn the vector back into the symbolic
shape. MATLAB also determines the size of the vector - in this case it is 8.

Let lA and lB be the sizes of vectors vA and vB. In this section, we simply
assume that lA and lB are equal. As soon as we assume that we consider
meaningful cases - that is, when predicates are the same, then the lack of
function symbols will effectively mean that lA = lB.

In general, there is a special checker (function completion) embedded
into the library, that detects non-miningful cases, and reports if two different
predicates are contained in A and B, see Figure 2. Details will follow in
Section 6.

Figure 2: Formulae containing two different predicates

4. Simulation. We are ready to simulate the network. Having set the
input signal to 1, we simply type sim(net,1), and the network outputs a
vector, out = w + b = vA − vB, that is, the difference between vA and vB.

Example 7. We simulate the network net1 from Figure 1, with the layer of
size 12. We set net1.iw1,1 = transpose(double(’P01(x12,a15)’)) and
net1.b1 = - transpose(double(’P01(a13,x02)’)).
The function transpose simply changes the horizontal vector into a vertical
vector, to fit into the MNNS settings. We type sim(net1,1) and get the
answer: [0; 0; 0; 0; 23; 0; -1; 0; -23; 1; 3; 0]. One can use graphical interface,
see Figure 3.
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Figure 3: Simulation of net1

As yet, the output bears little symbolic meaning, but it signalises that
the atoms are not the same; and also the first non-zero symbol in the vector
net1 outputs shows the exact position where the differences start. That is,
the number 23 is precisely the difference between numbers encoding x and
a. These data will be important for the learning functions we are about to
introduce.

Example 8. We return to Example 3 of a logic program computing natu-
ral numbers. We can create the network netN that can unify P01(a01) and
P01(x02) using the template given by net1. We simply have to change the
size of the layer from 12 to 8; and set
netN.iw1,1 = transpose(double(’P01(x02)’)) and
netN.b1 = - transpose(double(’P01(a01)’)).
The result of simulation will be the difference between the two vectors, which
is netN out = [0; 0; 0; 0; 23; 0; 1; 0].

These examples and many more are formalised and available in the file
test learning.mat in [35].

We summarise the construction algorithm we have described in the fol-
lowing Lemma:
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Lemma 2. Given two first-order atoms A and B of the same length and
built from the same predicates, there exists a UNN corresponding to them.
It will have a single layer of length lA = lB with the linear activation function
purelin. The UNN’s input weight vector will be computed as w = vA, and
the bias vector b = −vB. Moreover, if a signal 1 is sent to the UNN, it will
output the vector out = vA − vB.

Proof. To construct the UNN, one needs to follow the steps 1 - 3 described
in this section. The output function is computed using the standard formula
out = purelin(vinw + b). Substituting vin by 1; and values w and b as
described in Steps 1 - 3, one gets precisely the required formula out = vA−vB.
If A and B are equal, vA = vB, and so the output will be the vector of
zeros.

5. Unification by Error-correction Learning

We can now train the networks. The ultimate goal of the unification
algorithm is to make two first-order atoms equal. So, in terms of UNNs, we
wish the difference between w and b to be 0, and so we supply the UNN with
the target vector t that contains only 0’s.

MNNS contains the zero target vector as a default target for training,
and so we do not have to type the value for t when calling the function
adapt in MNNS. So, instead of typing adapt(net,in,t), we simply type
adapt(net,in), in stands for the input value.

The error e is computed using the conventional formula e = t − netout;
in our case e = −netout.

We use the standard training and adaptation functions pre-defined in
MNNS. Namely - the adaptation will be performed by the function adapt

that, given a network, an input signal, and a target, changes biases and
weights according to a learning function, and outputs the adapted network,
together with its output and its error.

Another predefined function we use is the training and adaptation func-
tion trains. This function is traditionally used inside adapt; it trains a
network with weight and bias learning rules with sequential updates. The
latter means that the sequence of inputs is presented to the network with
updates occurring after each time step. This incremental training algorithm
is commonly used for adaptive applications. To set it in MNNS, we simply
type net.adaptfcn = ’trains’.
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Now we have come to the point when we introduce the first original
function - the learning function learn disagr. It seems to be significant and
positive that at least till this point, we could develop the UNNs smoothly
using only standard settings of the conventional neural network simulator.

The new learning function will be able to process the error signal in a
more clever way than arithmetical operations do. It relies on two auxiliary
functions - disagreement1 and substitution, see also Appendices A and
B, or [35].

Disagreement detects the first non-zero element in the error vector, and,
using the values of b and w as parameters, infers two vectors D1 and D2

that encode the two terms this error originates from. For given atoms A and
B, such that vA = w and vB = b, the pair {D1, D2} is effectively numerical
representation of the r-disagreement set for A and B. That is, disagreement
also detects cases when neither of the two terms in the disagreement set is a
variable, and it reports an error in this case.

Having this data, substitution infers a substitution (change) vector
from the disagreement set {D1, D2} of vA = w and vB = −b. It also performs
the occur check; if the check fails, substitution reports an error. It is also
responsible for encoding this substitution as a vector of the same size as the
layer of neurons, otherwise the change vector will be rejected by the network.

Finally, we put substitution inside of the learning function learn disagr:
dw = substitution(w, (-e)). Additionally, learn disagr has a number
of pre-defined in the MNNS parameters and settings that make it possible
for the adaptation function adapt to recognise and use it as a well-defined
learning function.

Example 9. To illustrate the way of defining a learning function in MNNS,
consider the Perceptron learning rule. The MATLAB learning function for
it, learnp, contains many lines of standard definitions and settings, but the
actual computation is performed using the function dw = e*p’. The function
learn disagr will differ from learnp (or any other standard learning func-
tion), only in this single last line, namely, we have dw = substitution(w,

(-e)). Both functions use the error vector e, but then learnp uses the input
vector p, whereas we use the input weight vector w, which is another possi-
ble argument for learning functions. The major difference is that we use the
function substitution instead of multiplication.

1In the library [35], I call this function disagr5.
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Weights and biases of the network receive the change signal computed by
substitution and communicated through learn disagr, and update their
values. The weight and bias update is entirely delegated to the conventional
functions adapt and trains predefined in MNNS.

For technical convenience, in [35] we split the learning function
learn disagr into learn disagr w that learns the change vector dw for
weights, and learn disagr b that calculates a similar vector db for biases.
Then it is convenient to have two variants of substitution from Appendix
B - substitution1 and substitution2. The former takes the weight and
error vectors as arguments, the latter takes the bias and error vectors as
arguments. Then, substitution1 outputs the change vector for w, and
substitution2 - for b.

Example 10. We continue to develop Example 8. For the two atoms P01(a01)
and P01(x02), we have set w and −b of netN be their numerical encod-
ings. Figure 4 shows the change vector computed as a result of applying
learn disagr w to two vectors w = WN and e = −(WN−BN) = −(w+b).

Figure 4: The substitution vector for w in netN

The terms x02 and a01 are computed by disagreement and displayed:
they are the disagreeing terms. The answer ans is the change vector dw
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for w. Note that dw and w have the same size. Adding this vector to w
would yield precisely the encoding of P01(a01), see Figure 5. And so, only
one iteration would suffice to unify the two terms.

Figure 5: The change vector dw (= ans) applied to the weight w of netN

Calling [netN,y,e,pf] = adapt(netN,1) will automatically complete
the steps we have just done manually: it will call the learning functions
learn disagr w and learn disagr b automatically, add the change vectors
dw and db to weigh and bias vectors w and b, and update the network. And
on the next iteration, the network will output zeros - which means that the
two terms are unified. See also Figure 6.

Figure 6: Adaptation of netN

Example 11. The atoms from Example 7 are more complex that what we
have just seen in netN. Two iterations of the learning and training functions
will be needed to compute the two substitutions that are needed to unify the
two atoms. And so, we call the adaptation function 3 times, until it outputs
no new substitutions. See Figure 7. Conveniently, there is a command in
MNNS that can set the number of passes for adaptation. Setting this pa-
rameter to 3 (or any number greater than 3), would yield the same result,
but will not require re-typing; see Figure 8.
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Figure 7: Adaptation of net1

Figure 8: Adaptation of net1, in 3 passes.

To summarize, we return to the Algorithm of Unification from Section 2,
and we outline the parts of the Unification algorithm that were delegated to
the function learn disagr.

Unification algorithm[29, 30]:

1. Put k = 0 and θ0 = ε.

2. If Sθk is a singleton, then stop; θk is an mgu of S. Otherwise,
find the r-disagreement set Dk of Sθk.
If Dk does not exist, stop; S is not unifiable.

3. If there exist a variable v and a term t in Dk

such that v does not occur in t, then put θk+1 = θk{v/t}, increment k
and go to 2.
Otherwise, stop; S is not unifiable.

As one can see, the iterative part is left to be done by the error-correction
learning, while routine occur-check and the detection of the disagreement set
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were formalised by means of the embedded functions substitution and
disagreement. Function disagreement covers the underlined part of the
item 2; and the function substitution covers the underlined part of the
item 3. Notably, the application of the newly calculated substitution (θk+1 =
θk{v/t}) is again done by the UNN.

The reader can find the functions disagreement and substitution in
Appendices A and B, or in [35]. They do nothing more than simply adapt
the underlined part of the algorithm above to the settings where we process
vectors instead of lists of symbols. The two lemmas about the properties
of these two functions will follow in the next section, where we introduce
function symbols as well.

6. Processing Atoms with Function Symbols.

In this section, we extend the UNNs to process atoms containing function
symbols. We postponed introducing this case because function symbols bring
several technical complications. These are the reasons why introduction of
function symbols needs to be treated with care:

1. When atoms are allowed to contain function symbols, their length can
be different. And to be able to encode them into UNNs, we need them to
have the same length.

Example 12. Two atoms P01(x02) and P01(f01(x01)) from Example 3 have
different length. If represented by vectors, the vectors will have the length 8
and 13 respectively. So, these two vectors could not possibly be used as weight
and bias vectors in the UNN. One could complete the vector representing
P01(x02) by adding a subvector consisting of five 0s to this vector; and this
will make the length match.

Note that 0 is not a meaningful code in ASCII encoding, and it is con-
venient to use it for completion. If we demand to see the symbolic image
of 0, we receive an empty symbol: char(0) = . For convenience, we will
denote this empty symbol by throughout this section. So, we will say that
we completed P01(x02) by P01(x02) .

2. We need to make sure that the vectors w and b that bear information
about the first-order atoms were brought in the form that allows the change
vectors to be added to w and b in a meaningful way.

Example 13. Consider two atoms P01(f11(x15), x13) and P01(x13, x14). Sup-
pose they were encoded as w and b in a UNN. Suppose we simply added the
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tail of zeros to the second atom: P01(x13, x14) . Then, the change
vector db will be sent to b, but the length of the subvector vf11(x15) represent-
ing f11(x15) is larger than the length provided by vx13 , and hence the length
of the subvector vD that encodes the difference between x13 and f11(x15) will
be greater than the length of vx13 . As a result, when the change vector db is
added to b, vD will interfere with the meaningful remainder of the atom, in
our case - with “, x14)”. However, precisely this part should be left intact for
the next iterations of unification.

This means that completion must be made in a sensitive way, that is, it
should rely on the function that computes the disagreement set, and then
use the length of the terms in the disagreement set as a guide for completion.
It should detect the right place for adding zeros, too.

Example 14. In the previous Example, the disagreement set would con-
tain x13 and f11(x15). The difference in their length is 5, so a subvector
consisting of five 0s should be added immediately after vx13 in the vec-
tors vP01(f11(x15),x13) and vP01(x13,x14). So, the completion will work as fol-
lows: P01(f11(x15), x13 ), and P01(x13 , x14). Now, we should
also make the length match and complete the second term as in Step 1:
P01(x13 , x14) .

3. The last difficulty is that one completion is not enough. As terms
grow through the series of substitutions, more completions will be needed,
and in general, we cannot predict how many.

Example 15. In the previous example, we have completed P01(f11(x15), x13)
and P01(x13, x14). But then, after the first substitution, the atoms will be
transformed into P01(f11(x15), f11(x15)) and P01(f11(x15), x14) . They
again need to be completed to allow the next substitution. Namely, the latter
atom will be completed as follows: P01(f11(x15), x14 ).

This means that the mechanism of completion needs to be embedded
into the training and adapting functions, so that at each iteration the neural
network could “complete” itself and thus enable the next iteration of the
unification and learning.

So, the library [35] contains the functions completion applicable to vec-
tors, and net complete applicable to networks. The latter function applies
the former to the whole network, and updates the layer’s size as well as w and
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b. After each iteration of the adaptation, net complete performs the net-
work update. Through this process, the layer of the UNN may grow, and this
resembles to the concept of the growing neural gas [39]. At each time step,
the growth is bounded by the size of the longest term in the disagreement
set, which is always finite.

Example 16. In this example, we consider the network net3 that unifies
P01(f11(x15), x13) and P01(x13, x14). In order to encode these two atoms as
a weight and a bias, we need to make an initial completion, see Figure 9.
Now, we set the layer’s size to 22 - the length of the completed terms W3C

Figure 9: Initial completion for net3

and B3C; and put w = W3C, b = B3C. The rest of the work on unification will
be done by function adapt. As in previous sections, adapt calls the learning
functions learn disagr, and depends on disagreement and substitution.
Additionally, it completes the network at each iteration. The adaptation for
net3 will have 3 meaningful steps, and then it will output empty substitu-
tions. See Figure 10.

Example 17. Our running example 3 will have a less tricky completion for
atoms P01(x02) and P01(f01(x01)). See Figure 11. Also, only initial completion
will be needed for unifying these atoms.
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Figure 10: Adaptation of net3

Figure 11: Initial completion for netN

As we have seen in Section 4 and Figure 2, completion can also serve as
an early detector for the non-unifiable cases, e.g., when atoms are constructed
from different predicates. The function completion is included as a part of
the library in [35] and can be found in Appendix C.

We are ready to formally state the properties of functions from the library
[35] and the properties of the UNNs.
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Lemma 3. Let A and B be two first-order atoms, and vA, vB be vectors
encoding them. The function disagreement computes two vectors x and y
that are numerical encodings of the two terms in the r-disagreement set D
of {A,B}, if the r-disagreement set for A and B exists. It outputs vectors
x = [000] and y = [000] if A and B are equal; and it outputs “error(Not
unifiable:explanation)” otherwise.

Proof. If A and B are equal, disagreement detects that vA = vB, and out-
puts x = [000] and y = [000]. See Appendix A. If A and B have different
length, disagreement completes the shortest vector by adding the vector of
zeros to it. After this, the error vector E = vA − vB can be computed.

The proof proceeds by induction on symbols in A and B that can disagree.
Any two atoms in the language L start with predicates symbols Pij and Pkl.
So, the indexes of the predicates is the first possible place for differences.

If A and B are built from different predicates, disagreement (“Case 1”)
detects that the difference between vA and vB is on one of the first 3 positions
in the error vector, and outputs error(’Not unifiable: predicates are

different’).
If the predicates are the same, then, the predicate symbols will be followed

by brackets, and then - by terms. The terms can disagree, and the three
following cases are possible. The terms are: 1) a variable and a constant; 2)
a variable and a function symbol; 3) a constant and a function symbol. The
third case will not contribute to the r-disagreement set. These three cases
are covered as Cases 3, 4, 5 in disagreement, Case 5 outputs an error.

Another possibility is that the disagreeing terms are two variables, two
constants, or two function symbols with different subscripts. Only the first
of the three cases will contribute to the r-disagreement set. These three
possibilities are covered in Case 2 of disagreement; the error is sent as an
output if two constants or two function symbols are detected.

All the rest disagreements will arise in case the predicates Pij and Pkl
have arities greater than 1, and all the cases we have just considered will be
repeated again.

Lemma 4. For two arbitrary first-order atoms A and B, and their vector
encodings vA and vB, the function completion transforms vA and vB into
two vectors v′A and v′B of the same length. Moreover, if the r-disagreement
set for A and B exists, and consists of a variable x and a complex term t,
then completion finds occurrences of vx in vA and vB, and adds a vector
of zeros of the length lt − lx following each occurrence of vx in vA and vB.
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The resulting vectors v′A and v′B are the shortest of all possible completions
sufficient to perform the next substitution.

Proof. We rely on Lemma 3, and assume that, if r-disagreement set D =
{x, t} for A and B exists, then disagreement finds its vector encoding for
us.

Another auxiliary function that we use, sort vect, is capable of detect-
ing places in vA and vB where vx appears, and it outputs a vector v∗A of
indexes (places) of such occurrences for vA; similarly for vB. The function
completion then starts a for loop which performs, for every i in v∗A, the fol-
lowing transformation. It cuts the vector vA into two parts - part Y contains
the first i+ 3 elements of vA, part X - the rest. Then it constructs Y and X
back together, putting the vector of lt − lx zeros between them. Similar for
vB.

At the final stage, it removes all zeros at the end of vA and vB, and then
adds zeros only to the one that is the shortest of the two.

Since we ensured that there are no excessive zeros at the end of vA and
vB, and have added zeros only at the places detected in v∗A and v∗B, we have a
guarantee that it is the shortest completion needed for the next substitution
performed by adapt.

Lemma 5. Let A and B be two first-order atoms, and vA and vB their
completed vector encodings. Let D be their r-disagreement set, and let x
and t be the variable and the term it contains. Let vx and vt be the vector
encodings of x and t, with the length lx and lt. Let Z be a vector of zeros of
the length lt − lx.

The function substitution produces two vectors:

• the vector dw that contains the subvector −(vx− vt) at those positions
where the subvector [vx;Z] appears in A, and

• the vector db that contains the subvector −(vx − vt) at those positions
where the subvector [vx;Z] appears in B.

This happens if and only if the item 3 of the Unification algorithm produces
a substitution θj for A and B.

Proof. We rely on the Lemmas 3 and 4. The item 3 of the unification
algorithm performs the occurrence check. If this check fails, the function
substitution outputs: ’Occurrence check: the variable x occurs in
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the term t. Substitution is blocked.’. The rest of the proof is triv-
ial.

Theorem 6. Let A and B be two first-order atoms, and vA and vB be their
numerical encodings. Then there exists a UNN net that unifies vA and vB
and outputs the computed substitutions θ1, . . . , θk as answers, if and only if,
the algorithm of unification succeeds and outputs θ1, . . . , θk as an answer.

Proof. We rely on Lemma 2 when defining the object and subobject prop-
erties of net, additionally, we use completion and Lemma 4 to ensure that
vectors vA and vB are of the same length. For adaptation, we use adapta-
tion function adapt that uses the learning function learn disagr based on
substitution.

Suppose the unification algorithm succeeded, with the output θ1, . . . , θk.
We use induction on number k of iterations of the algorithm. If k = 0, then
A and B were the same, but then vA = vB, and the error signal consists
of zeros, and so the network outputs zero error vector, so the adaptation is
void.

Suppose, at step k, the unification algorithm stops and outputs substitu-
tions θ1, . . . , θk. This means that, at step k − 1, the variants A′ and B′ of A
and B were obtained, and their r-disagreement set D contained a variable x
and a term t, such that x did not occur in t. And D was used to obtain the
substitution θk, such that A′θk = B′θk . By inductive assumption we know
that for k−1, there exists a UNN that can adapt its weights and parameters
w = vA and b = −vB to become w = vA′ and b = −vB′ in k − 1 steps. But
then, by Lemma 3, disagreement can find the disagreement vectors D1 and
D2 for w = vA′ and −b = vB′ .

Also, by definition of adapt, at the step k − 1 the network has been
completed by complete net using the value of D1 and the length of D2 as
parameters. This means, in its turn, that the length of the layer of net will be
just the same as the length of the change vector computed by substitution

that is called by the learning function learn disagr.
Moreover, by Lemma 5, we know that substitution produces the change

vectors dw and db that soundly encode the substitution θk. And the function
adapt will add the change vectors dw and db to w(k − 1) and b(k − 1).
By Lemma 5, the only non-zero entries in dw and db are those representing
−([vx;Z] − vt), where Z contains a sufficient number of zeros to make the
length of the two vectors [vx;Z] and vt match. Moreover, these non-zero
entries in dw and db match the entries of [vx;Z] in w and b. But then, these
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non-zero entries of dw will have the following effect on the matching entries
of w: [vx;Z] + (−([vx;Z]− vt)) = vt, similarly with b.

This way, the encoding of the substitution θ is applied to vA′ and vB′ . At
step k, w(k) = vA′θk

= −b(k) = vB′θk
. But then, the network will output the

zero error vector at time step k, and will not output any further substitutions.
The opposite direction of “if and only if” is a similar argument by induc-

tion on the number of the time steps taken by the UNN to reach the zero
error signal.

7. Conclusions

We have constructed the unification neural networks that can simulate
the algorithm of first-order unification. We implemented and tested them
in the MATLAB Neural Network Simulator, and described the library of
functions we needed to employ for it.

This result is the first implementation of the unification algorithm in
artificial neural networks, and it has several theoretical and practical impli-
cations.

From the theoretical point of view, it shows one possible way of how one
of the basic and most important logic algorithms may be realised in neural
networks. And so, the UNNs contribute to the line of research that seeks to
develop efficient neuro-symbolic networks. Unlike most of the neuro-symbolic
networks we know of, the UNNs have the benefit of being finite in the first-
order case, and their size is bound by the length of terms and atoms we
choose to unify. Therefore, the UNNs are highly resource-conscious.

The UNNs is the first experiment on how non-boolean networks can be
employed in a logic algorithm. That is, we no longer rely on the truth-values
of the first-order atoms when unifying them. And this is a step towards the
proof-theoretic style of building the neuro-symbolic networks, as opposed to
the traditional, model-theoretic style.

Because the unification is the basic procedure in automated reasoning, the
UNNs can be further used for simulation of the SLD resolution for different
kinds of logic programming, or decision procedures for various sequent calculi.

The result has a significance for cognitive science, because the UNNs
demonstrate how non-ground reasoning may be implemented in neural net-
works. The UNNs are fully defined in the environment of MATLAB Neural
Network Simulator and are ready to be implemented in robotics.
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From the point of view of logic, the UNNs may prove to be useful because
the parallelism of neural networks can add the efficiency in cases when we
need to perform unifications massively and in parallel. Moreover, the UNNs
we have described here is the first step to the major goal of tackling the
second-order unification in neural networks. The outstanding computational
abilities of neural networks would be especially useful in the second order
(undecidable) case.

Only a slight technical improvement to the function disagreement is
needed to extend the UNNs to the arbitrary first-order alphabet with the
infinite number of symbols. Here, we have limited the number of symbols
contained in the alphabet, and used first-order symbols x , a , f , P
only with double digit subscripts. The reason for this restriction was expos-
itory rather than theoretical or technical. In non-restricted case, instead of
checking a symbol and the two digits after it, we could use an auxiliary func-
tion similar to the find term we have already employed in disagreement.
This function would decide when the numbers representing indexes j of the
given symbol Pj, xj, aj, or fj end, and the new term begins.
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A. Function disagreement

function [x,y] = disagreement(W, B)
% Finds r-disagreement set for vectors W and B representing two first-order
% atoms.
% Works with either vertical or horizontal vectors.

[m,n] = size(W);
if (~((m == 1) || (n == 1)) || (m == 1 && n == 1))

error(’Input must be a vector’)
end
[m2,n2] = size(B);
if (~((m2 == 1) || (n2 == 1)) || (m2 == 1 && n2 == 1))

error(’Input must be a vector’)
end

if m==1 && n>1
W = transpose(W);

end

if m2==1 && n2>1
B = transpose(B);

end

% In order to compute the error vector for $W$ and $B$, we
make the length of these vectors equal:
if m ~= m2

if m>m2
dm = m-m2;
B = [B; zeros(dm,1)];
end
if m2>m
dm = m2-m;
W = [W; zeros(dm,1)];
end

end
[m,n] = size(W);
[m2,n2] = size(B);

E = (W - B);

% Case when W = B
[rows] = find(E,1);
[m0,n0] = size(rows);
if ((m0 == 0) && (n0 == 1)) ||((n0 == 0) && (m0 == 1))

x = [0 0 0]; y = [0 0 0];

32



else

% Case 1. Predicates are different
[rowsp] = find(B == 40, 1); % double(’(’) = 40
[rowsp2] = find(W == 40, 1);

if ((rows < rowsp) || (rows < rowsp2))
error(’Not unifiable: predicates are different’)

end

% Case 2. Two variables, or two constants, or two function symbols.
% Any two variables x_jj and x_ii will differ only in the subscript part.
if ((48 < W(rows)< 58) && (48 < B(rows)< 58))
if (W(rows - 1) == 120) && (B(rows - 1) == 120)
if ((W(rows + 2) == 41) && (B(rows + 2) == 41)) ||

((W(rows + 2) == 44) && (B(rows + 2) == 44))
x = [W(rows - 1), W(rows), W(rows+1)];
y = [B(rows -1), B(rows),B(rows+1)]; % Actual computation
else error(’Unification error: Cannot infer the syntax of the term’)
end
end
if (W(rows - 1) == 97) && (B(rows - 1) == 97) %Two constants
error(’Not unifiable: Two different constants in the disagreement set’)
end
if (W(rows - 1) == 102) && (B(rows - 1) == 102) %Two function symbols
error(’Not unifiable: Two different function symbols in

the disagreement set’)
end
if ((48 < W(rows - 1)< 58) && (48 < B(rows - 1)< 58))
if (W(rows - 2) == 120) && (B(rows - 2) == 120)
x = [W(rows - 2), W(rows - 1), W(rows)];
y= [B(rows - 2), B(rows -1), B(rows)]; % Actual computation
end
if (W(rows - 2) == 97) && (B(rows - 2) == 97)
error(’Not unifiable: Two different constants in

the disagreement set’)
end
if (W(rows - 2) == 102) && (B(rows - 2) == 102)
error(’Not unifiable: Two different function symbols in

the disagreement set’)
end
end

end
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% Case 3. A variable and a constant (2 subcases)
% double(x) = 120; double(a) = 97;
if ((W(rows) == 120) && (B(rows) == 97))
x = [W(rows), W(rows+1), W(rows+2)];
y=[B(rows), B(rows+1), B(rows+2)]; % Actual computation

end

if ((B(rows) == 120) && (W(rows) == 97))
x = [B(rows), B(rows+1), B(rows+2)];
y = [W(rows), W(rows+1), W(rows+2)]; % Actual computation

end

% Case 4. A variable and a complex term (2 subcases)
% double(x) = 120; double(f) = 102;
if ((W(rows) == 120) && (B(rows) == 102))
if ((48 < W(rows + 1)< 58) && (48 < B(rows + 1)< 58) &&

(48 < W(rows + 2)< 58) && (48 < B(rows + 2)< 58))
B2 = B(rows:end);
z = find_term(B2); %the function find_term finds the index of
%the last bracket contained in the term starting with f...
x = [W(rows), W(rows+1), W(rows+2)];
y = transpose(B(rows : (rows + z-1))); % Actual computation
else
error(’indexes are not double-digit.’)

end
end

if ((B(rows) == 120) && (W(rows) == 102))
if ((48 < W(rows + 1)< 58) && (48 < B(rows + 1)< 58) &&

(48 < W(rows + 2)< 58) && (48 < B(rows + 2)< 58))
W2 = W(rows:end);
z = find_term(W2);
x = [B(rows), B(rows+1), B(rows+2)];
y = transpose(W(rows: (rows + z -1))); % Actual computation
else
error(’indexes are not double-digit.’)
end

end

% Case 5. A constant and a complex term.
% double(a) = 97; double(f) = 102;
if ((W(rows) == 97) && (B(rows) == 102))
error(’Not unifiable: a constant and a function symbol in

the disagreement set’)
end
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if ((B(rows) == 97) && (W(rows) == 102))
error(’Not unifiable: a constant and a function symbol in

the disagreement set’)
end

end
end

B. Function substitution

function [y,z] = substitution(W, E)
%SUBSTITUTION takes the vectors W and E: W is representing a first-order atom,
% E is a difference between W and the vector that represents another
% first-order atom.
% It relies on D - the r-disagreement set given by D = disagreement(W, (W-E)),
% and outputs two vectors: (y = dw) - a substitution vector for the first
% atom, and (z = db) - a subsitution vector for the second atom.
% In the network, dw will be the change vector for weights, and db will be the
% change vector for biases.
%

[m,n] = size(W);
if (~((m == 1) || (n == 1)) || (m == 1 && n == 1))

error(’Input must be a vector’)
end
[m2,n2] = size(E);
if (~((m2 == 1) || (n2 == 1)) || (m2 == 1 && n2 == 1))

error(’Input must be a vector’)
end

B = W - E;

%r-disagreement set:
[D1,D2] = disagr5(W,B);
disp(char(D1));
disp(char(D2));
%D1 and D2 are horizontal vectors

[p,q] = size(D1);
[p1,q1] = size(D2);

if (q1-q)>0
qn = q1-q;
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D1 = [D1, zeros(1,qn)];
end

% These are needed to form dw.

Z1 = zeros(m,1);
Z2 = zeros(m2,1);

if ~ (D1(1) == 0 && D1(2) == 0 && D1(3) == 0)

%Find occurences of the variable x_ij in the r-disagreement set D1 in W and B:
INDw = sortvect(W,D1(1),D1(2),D1(3));
INDb = sortvect(B,D1(1),D1(2),D1(3));

[m3,n3] = size(INDw);
[m4,n4] = size(INDb);

if ~ isempty(sortvect(D2,D1(1),D1(2),D1(3)))
error(’Occur

it is going to be substituted with. Substitution is blocked.’)
end

D3 = -(D1 - D2);

if ((m3 > 0) && (n3 > 0))
for s = INDw
for l=0:(q1-1)

Z1(s+l,:) = D3(l+1);
end
end

Z1;
end

if ((m4 > 0) || (n4 > 0))
for t = INDb

for l=0:(q1-1)
Z2(t+l,:) = D3(l+1);
end

end
Z2;
end
y = Z1;
z = Z2;

else
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y = Z1;
z = Z2;

end
end

C. Function completion

function [x, y] = completion(A, B)
%Given two vectors A and B, encoding two first-order formulae,
%the function compares the vectors and completes the shortest of them to
%have the same length as the longest.
%Additionally, if v and t are the variable and the term in the
% r-disagreement set, it adds
% the subvector of zeros after each occurrence of v in A and B,
% to enable substitution for the term t.

[m,n] = size(A);
if (~((m == 1) || (n == 1)) || (m == 1 && n == 1))

error(’Input must be a vector’)
end
[m2,n2] = size(B);
if (~((m2 == 1) || (n2 == 1)) || (m2 == 1 && n2 == 1))

error(’Input must be a vector’)
end

if n==1 && m>1
A = transpose(A);

end

if n2==1 && m2>1
B = transpose(B);

end

% Step 1. Complete variables:

% Step 1.2. Disagreement set:
[D1,D2] = disagr5(transpose(A),transpose(B));

[p,q] = size(D1);
[p1,q1] = size(D2);

q2 = q1-q;
if q2 > 0
Z = zeros(1,q2);
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else Z = []
end

[ZA] = sortvect(A,D1(1),D1(2),D1(3));
% sortvect finds places where the variable D1 occurs
[ZB] = sortvect(B,D1(1),D1(2),D1(3));

% Step 1.3 Actual completion
if isempty(ZA)

A1 = A;
else
for s=ZA

X = A(s+3:end);
A(:,s+3: end) = [];
A1 = [A, Z, X];

end
end

if isempty(ZB)
B1 = B;

else
for r=ZB

Y = B(r+3:end);
B(:,r+3: end) = [];
B1 = [B, Z, Y];

end
end

%Step 2. Addining zeroes at the end of the shortest list.

[c,d] = size(A1);
[c1,d1] = size(B1);

fd = find(A1,1,’last’);
fd1 = find(B1,1,’last’);

% Step 2.1. First we remove excessive 0’s at the ends
% of both lists, and then compare meaningful parts.

if fd ~= d
A1 = A1(1:fd);

end

if fd1 ~= d1
B1 = B1(1:fd1);
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end

%Step 2.2 Add zeros to the shortest vector.
[c,d] = size(A1);
[c1,d1] = size(B1);

if d == d1
A2 = A1;
B2 = B1;

else
if d>d1
d2 = d-d1;
A2 = A1;
B2 = [B1, zeros(1,d2)];

end

if d1>d
d3 = d1-d;
A2 = [A1, zeros(1,d3)];
B2 = B1;

end
end

x = transpose(A2);
y = transpose(B2);

end
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