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General motivation

We know that...

Formal [manual or computerised] proofs follow the logic rules [rules of
inference]. They have precise, rather than statistical, nature.

... but that concerns proofs as final products.

However, Process of proving [Proof search]

...does involve statistical learning

... which needs to be studied.
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Technical Motivation

ITPs are proof assistants based on higher-order logics/type theory.

They are extensively used for purposes of verification in CS and
mathematics.

Not all proofs can be done automatically.

In bigger industrial proofs there might be thousands of lemmas and
theorems needing proofs, with about 5-20% needing programmer’s
intervention.

Can statistical machine-learning methods help us to analyse why
these fail (The models of “Why”, Cliff Jones)?

My experience with Coq was that the experts often justify the chosen
combinations of tactics statistically rather than conceptually.
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Overall feeling

These are hard questions to solve.

If solved, may change the way we look at proofs (automated and
manual)...

May enrich the methods of machine learning and proof theory.
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Lessons learnt:

I have tried to implement several logic algorithms in Neural nets

Semantic operators for first-order logic programs and many-valued
logic programs;

First-order Unification algorithm;

First-order term-rewriting;

Inductive definitions akin inductive dependent types.

Overall conclusion

It is inefficient to apply statistical methods to logic algorithms “as they
are” — because statistical methods cannot compete with logical methods
on the same grounds. Where can they compete?
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Why is machine learning UN-suitable for Formal methods:

Many logic algorithms have a precise, rather than statistical nature.

Example

Two formulae list(x) and list(nil) are unifiable: x/nil. We mean
exactly this, and do not want it to be substituted by some approximate
such as nol. (Although humans would tolerate this mis-spelling had it
appeared in a written text...)

Many important logic algorithms are sequential, e.g. unification.

Example

If I have a goal: list(cons(x,y)) ∧ list(x), my proof will never
succeed — x will get substituted by some nat term, e.g. O or S(O), which
will make the second formula invalid. Note that the proof would have
succeed had it been concurrent.
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Machine-learn patterns of sequential proofs

Example

1. nat(0)←
2. nat(s(x))← nat(x)

3. list(nil)←
4. list(cons x y)← nat(x), list(y)

Given correct and incorrect sequences of the numbers 1, 2, 3, 4, 5, 6 how
likely is it that we can train a neural network to recognise correct and
incorrect proofs?
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Example

Sequential algorithms of Unification and SLD-resolution drive the
derivations:

Well-formed

4, 1, 4, 1, 5.

list(cons(x, cons(y, x)))

nat(x), list(cons(y, x))

nat(y), list(0)

list(0)

Ill-formed

4, 1, 4, 1, 6.

list(cons(x, cons(y, x)))

nat(x), list(cons(y, x))

nat(y), list(0)

list(0)

�
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Example 2

Well-formed

4, 1, 4, 1, 5.

list(cons(x, cons(y, x)))

nat(x), list(cons(y, x))

nat(y), list(0)

list(0)

Ill-formed

4, 1, 4, 1, 5.

list(cons(x, cons(y, z)))

nat(x), list(cons(y, x))

nat(y), list(z)

list(z)

Conclusion

If the size of the training data set (= set of the examples used for
training) is big and representative, derivations with “tactics” 4, 1, 4, 1, 5
are equally likely to be correct and incorrect.
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What are the coinductive trees?

Lesson learnt

The sequence of deductive rules alone does not help; and actually
hides the structure of the proof.

We need more “structural” representation of proofs.

Coinductive trees:

They arose from coalgebraic semantics for derivations in logic
programs, [Komendantskaya,Power CALCO’11, CSL’11].

They also allow for concurrency.

They offer very structured approach to automated proofs.

Example

For examples and explanations, please come along to the poster session.
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Example: Sequential derivation versus coinductive:

Sequential SLD-tree

list(cons(x, cons(y, z)))

nat(x), list(cons(y, z))

nat(y), list(z)

list(z)

�

Coinductive tree

list(cons(x, cons(y, z)))

nat(x) list(cons(y, z))

nat(y) list(z)
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list(cons(x, cons(y, z)))
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�

Coinductive tree

list(cons(0, cons(0, nil)))

nat(0)

�

list(cons(0, nil))

nat(0)

�

list(nil)

�
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More generally, Coalgebraic methods in proofs:

- work with concurrent models of computations; e.g. Milner’s CCS
and π-calculus;

- work with possibly infinite processes/proofs/objects/. . . — and
therefore based on the idea of repeating patterns (rather than final
answers or terminating computations). E.g., the notion of
productiveness.

These have good chances of yielding statistical analysis.
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Problem definition and Results:

We use statistical pattern-recognition methods, e.g. Neural nets with
backpropagation learning (gradient descent) to learn properties of proofs
given by coinductive trees.

Based on problems arising in ITPs, there are three classes of problems we
wish to machine-learn:

Is a proof well-formed?

Accuracy up to 73%

Does a well-formed proof belong to a given family of proofs?

Accuracy up to 98-100%

Does a well-formed proof belong to the success family of proofs?

Accuracy up to 95%

Surprisingly successful.
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Conclusions:

We have tried to machine learn concurrent (coalgebraic) algorithms
— various properties of coinductive proof trees.

Coalgebraic derivations look more promising than traditional
sequential derivations from the point of view of statistical ML (offer
both concurrency and structural approach).

We have learned *both* from positive and negative examples.
(models of “Why?”)

Big ambition: move on to tactics in ITPs.
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Questions?
(Please join me for poster session
or contact me katya@computing.dundee.ac.uk if they arise
later!)
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Representation in vectors

list nat • �
cons(x, cons(y, x)) - |cons(x, cons(y, x))| 0 2 0

cons(y, x)) - |cons(y, x))| 0 2 0

x -1 -1 1 0

y -1 0 1 0

z 0 0 0 0

And then it is further flattened into a vector.
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Features of Coinductive trees represented as vectors form
an input to the neural network:

It’s a two-layer feed-forward network, with sigmoid hidden and output
neurons, that can classify vectors arbitrarily well, given enough neurons in
its hidden layer.
The network was trained with scaled conjugate gradient back-propagation.
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