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Abstract. It has been one of the great challenges of neuro-symbolic
integration to represent recursive logic programs using neural networks
of finite size. In this paper, we propose to implement neural networks
that can process recursive programs viewed as inductive definitions.
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1 Introduction

Neuro-symbolic integration is the area of research that endeavours to synthesize
the best of two worlds: neurocomputing and symbolic logic. The area was given
a start in 1943 by the pioneering paper of McCulloch and Pitts that showed
how Boolean logic can be represented in neural networks; we will call these
Boolean networks. Neuro-symbolism has since developed different approaches to
inductive, probabilistic and fuzzy logic programming [2, 3, 11].

Various neuro-symbolic approaches that use logic programs run over finite
domains have been shown effective as a hybrid machine learning system [3].
However, when it comes to recursive logic programs that describe infinite sets,
Boolean networks become problematic, for they may require networks of infinite
size. Some approaches to solve this problem use finite approximations of such
networks, [1, 5], but the approximations may be difficult to obtain automatically.

In this paper, we propose to take a new look at recursive logic programs, that
is, to approach them not from the point of view of first-order logic, but from
the point of view of functional programming [9]. As an example, consider how a
formal grammar generates the strings of a language. Grammars are inductive def-
initions, i.e. rules that generate a set. In [7], we have introduced neuro-symbolic
networks that can process inductive definitions given in a functional language,
and applied these networks to data type recognition. In this paper, we show how
this neuro-symbolic construction can be applied to processing recursive logic
programs. The idea is that inductive definitions can be used as set generators or
term recognisers. The former can generate elements of a set from the inductive
definition, the latter can recognise whether an element satisfies the inductive
definition, and hence belongs to the defined set.
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2 Neural Networks as Inductive Generators

In the standard formulations of logic programming [8], a logic program consists
of a finite set of clauses (or rules) of the form A ← A1, . . . , An where A and
the Ai’s are atomic formulae, typically containing free variables; and A1, . . . , An

denotes the conjunction of the Ai’s. Note that n may be 0, such clauses are called
facts. We assume that the logical syntax has a numerical encoding suitable for
neural networks, cf. [6]. Let us start with an example.

Example 1. The program below corresponds to the inductive definition of the set
of natural numbers in functional languages, where S(n)=n+1. Using the syntax
below, number 3 will be given by a term S(S(S(O))).
nat(O) <- // zero is a natural number
nat(S(n)) <- nat(n) // if n is a natural number, so is S(n)

Recursive clauses require the predicate (e.g. nat) appearing on the left-hand
side (called the head) of a clause to appear also on the right-hand side (called the
body) of the clause, and variables (e.g. n) appearing in the head to appear in the
body within the same predicate. The head must contain a function symbol (e.g.
O or S); such functions play the role of constructors in the inductive definitions
of functional languages. Certain inductive definitions do not contain recursion
of any kind. Such programs inductively define finite sets.

Example 2. Logic program defining the set of boolean values:
bool(t) <- // true is a boolean
bool(f) <- // false is a boolean

The last distinction we need to make is between simple and dependent def-
initions. All the inductive definitions we have considered so far were simple, in
that they did not depend on other inductive definitions. Consider the example of
the dependent inductive definition of lists of elements of a certain type, e.g. nat.
The definition of this type not only involves recursion, but it is also dependent
on another inductive definition: nat. See [7].

There are two common uses for inductive definitions: they can be used to
generate the elements of a set - if they are read from right to left; and they can
be used for type-checking expressions - if they are read from left to right. Both
implementations require finite and terminating computations. Figure 1 shows
some network architectures for generating and recognising expressions.

3 Neural Networks as Recursive Recognisers

We now turn to networks that can process recursive logic programs viewed as
inductive definitions, see [7] for the full formal analysis of these networks. It has
been shown in [7] that there exists a general method that allows to construct
the networks from the specification of an inductive definition.

Given a recursive clause X(C(y))← X(y), the recursive recogniser for C is a
one layer network, consisting of n > 1 neurons with the following properties. The
length n of the single layer is the length of the input vector that the network will
process. Each neuron has one input connection, with weight 1. The biases of all
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Fig. 1. Left: Generating elements of set nat. The input 1 is sent to the two neurons
with zero biases and with activation functions f(x) = x ∗O and f(x) = x ∗S, where O
and S are the numerical encodings of O and S. The recursive weight is set to 1

S
. At time

1, the network outputs O and S standing for natural numbers 0 and 1, at time 2, it will
generate another S, which will stand for S(S(0)) - or natural number 2. In the diagram
- it is time 3, and the term S(S(S(O))) is formed. Centre: Recognising symbol s. The
input is sent to the neuron with bias −s; it outputs 0 if the input matches s and some
non-zero value otherwise. This neuron may be connected to a zero-recogniser (in the
square box) that outputs 1 whenever the signal 0 is computed. Right: Recognising
expressions satisfying inductive definition bool from Example 2.

but the first neuron are set to 0; the bias of the first neuron is set to −nC , where
nC is a numerical representation of C. The first neuron has an output connection
that can be received by an external user. The outputs of the 2nd to nth neurons,
called recursive outputs, are connected to the same layer, as follows: the output
connection of the kth neuron (k ∈ 2, . . . , n) is sent as an input to the k − 1
neuron. Note that the first neuron of such network is the symbol recogniser for
the function C. The other n− 1 neurons in the layer are designed to recursively
process the remaining n− 1 elements of the input vector, see 2.

It is possible to connect vectors of neurons in a cascade in order to recognise
dependent types. For example, to recognise a symbolic term of type list(nat),
composed of nested cons in the standard way, we can use two layers of neurons.
The lower layer is used to recognise the list structure, and the upper layer to
recognise nat structure, see [7].

4 Conclusions and Future Work

In this paper, we have applied the general method [7] to recursive logic programs.
We have explained two neuro-symbolic methods that work with inductive def-
initions: inductive generators and recursive recognisers. The methods can be
applied to logic programs with infinite Herbrand bases for which the traditional
model-theoretic methods cannot be applied directly.

Taking on board the “logic programs as inductive definitions” idea, we wish
to revise the traditional methods of building neuro-symbolic networks. The goal
is to compare results with the traditional implementations of semantic operators
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Fig. 2. This network decides whether an expression S(S(S(O))) satisfies the inductive
definition of nat. Such network receives an input vector i, given by numerical encoding
of the term - S(S(S(O))). The dotted arrows show the initial input to the network; the
solid arrows show the connections with weight 1. The network has two components:
O-recogniser, and recursive S-recogniser: the recursive outputs from neurons in the S-
recogniser layer are sent to the same layer.

and proof systems, resolution and unification. The hope is that the functional
approach would be more natural to integrate with neural networks [4, 10].
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