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Motivation

Symbolic Logic as Deductive
System

1 Axioms: (A ⊃ (B ⊃ A));
(A ⊃ (B ⊃ C )) ⊃ ((A ⊃
B) ⊃ (A ⊃ C ));
(((¬B) ⊃ (¬A)) ⊃
(((¬B) ⊃ A) ⊃ B));
((∀xA) ⊃ Sx

t A);
∀x(A ⊃ B)) ⊃
(A ⊃ ∀xB)));

2 Rules:
A ⊃ B, A

B
;

A

∀xA
.

Neural Networks

spontaneous behavior;

learning and adaptation
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Motivation

Logic Programs

A← B1, . . . ,Bn

TP(I ) = {A ∈ BP :
A← B1, . . . ,Bn

is a ground instance of a
clause in P and
{B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least
Herbrand model of P.

Artificial Neural Networks
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An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer
feedforward neural network which computes TP .

No learning or adaptation;

Require infinitely long layers in the first-order case.
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A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C
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Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier
for S if S is a singleton. A unifier θ for S is called a most general
unifier (mgu) for S if, for each unifier σ of S , there exists a
substitution γ such that σ = θγ.

Example: If S = (Q(f (x1, x2)),Q(f (a1, a2))), then
θ = {x1/a1; x2/a2} is the mgu.
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Disagreement set

Disagreement set

To find the disagreement set DS of S locate the leftmost symbol
position at which not all atoms in S have the same symbol and
extract from each atom in S the term beginning at that symbol
position. The set of all such terms is the disagreement set.

Example: For S = (Q(f (x1, x2)),Q(f (a1, a2))) we have
DS = {x1, a1}.

Ekaterina Komendantskaya Department of Mathematics, University College Cork



Motivation SLD-resolution First-Order Deduction in Neural networks Conclusions and Ongoing Work

Unification algorithm

1 Put k = 0 and σ0 = ε.

2 If Sσk is a singleton, then stop; σk is an mgu of S .
Otherwise, find the disagreement set Dk of Sσk .

3 If there exist a variable v and a term t in Dk such that v does
not occur in t, then put θk+1 = θk{v/t}, increment k and go
to 2. Otherwise, stop; S is not unifiable.

Unification theorem.
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SLD-resolution - Example

Q1(f (x1, x2)) ← Q2(x1),Q3(x2)

Q1(f (x1, x2)) ← Q4(x1)

Q2(a1) ←
Q3(a2) ←

G0 =← Q1(f1(a1, a2)). S = {Q1(f1(a1, a2)),Q1(f1(x1, x2))}.
DS = {x1, a1}. Put θ1 = x1/a1.
Sθ1 = {Q1(f1(a1, a2)),Q1(f1(a1, x2))}. DSθ = {x2, a2} and
θ2 = x2/a2. Sθ1θ2 is a singleton.

G1 =← Q2(a1),Q3(a2).

G2 =← Q3(a2)

G3 = �.
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Connectionist Neural Networks

pk(t) =
(∑nk

j=1 wkjvj(t)
)
−Θk

vk(t + ∆t) = ψ(pk(t)) =

{
1 if pk(t) > 0

0 otherwise.

v ′

&&NNNNNNN

pj wkj pk

v ′′ //WVUTPQRS

Θj

// WVUTPQRS

Θk

//

vk

v ′′′

88qqqqqq
j k
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Gödel Numbers of Formulae

Each symbol of the first-order language receives a Gödel number
as follows:

variables x1, x2, x3, . . . receive numbers (01), (011), (0111), . . .;

constants a1, a2, a3, . . . receive numbers
(21), (211), (2111), . . .;

function symbols f1, f2, f3, . . . receive numbers
(31), (311), (3111), . . .;

predicate symbols Q1,Q2,Q3, . . . receive numbers
(41), (411), (4111), . . .;

symbols (, ) and , receive numbers 5, 6 and 7 respectively.
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Operations on Gödel Numbers

Disagreement set: g1	g2;

Concatenation: g1 ⊕ g2 = g18g2;

Gödel number of substitution: s = g19g2;

Substitution: g�s;

Algorithm of unification.

Ekaterina Komendantskaya Department of Mathematics, University College Cork



Motivation SLD-resolution First-Order Deduction in Neural networks Conclusions and Ongoing Work

Operations on Gödel Numbers
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Gödel number of substitution: s = g19g2;

Substitution: g�s;

Algorithm of unification.

Ekaterina Komendantskaya Department of Mathematics, University College Cork



Motivation SLD-resolution First-Order Deduction in Neural networks Conclusions and Ongoing Work

Unification in Neural Networks

Claim 1

Unification Algorithm can be performed in finite (and very small)
neural networks with error-correction learning.
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Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;
Error-signal: ek(t) = dk(t)− vk(t);
Error-correction learning rule: ∆wkj(t) = ηek(t)vj(t).

v ′

''OOOOOOO pj wkj + ∆wkj

��

ek

v ′′ //WVUTPQRSΘj // _^]\XYZ[Θk , dk
//ek , vk

ss

v ′′′

77nnnnnn
j wkj k
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Main Lemma

Lemma

Given two first-order atoms A and B, there exists a two-neuron
learning neural network that performs the algorithm of unification
for A and B.
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Example of Unification in Neural Networks: time = t1.

1

g6

��_^]\XYZ[dk1(t1)

whk (t1)=0
DD

DD
DD

""D
DD

DD
DD

GFED@ABCh1

��
vh1(t1) = 0

wik(t1) = vi (t1) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t1) = g1 is the Gödel
number of Q1(f (x1, x2)).
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Example of Unification in Neural Networks: time = t1.

1

g6

��_^]\XYZ[dk1(t1)
NNNN

ek1(t1)

""F
FFFFFFFFFF

GFED@ABCh1

��
vh1(t1) = 0

wki (t1) = vi (t1) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t1) = g1 is the Gödel
number of Q1(f (x1, x2));
Compute ek(t1) =
s(dk(t1) 	 vk(t1)) - the
Gödel number of substitution
for the disagreement set
dk(t1)	 vk(t1).
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Example of Unification in Neural Networks: time = t1.

1

g6

��

∆w(t1)

_^]\XYZ[dk1(t1)
NNNN

ek1(t1)

  A
AA

AA
AA

AA
A

EE

GFED@ABCh1

��
vh1 = 0

wki (t1) = vk(t1) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t1) = g1 is the Gödel
number of Q1(f (x1, x2));
ek(t1) = s(dk(t1) 	 vk(t1)) -
the Gödel number of substitu-
tion for the disagreement set
dk(t1)	 vk(t1);
∆w(t1) = vi (t1)ek(t1) =
ek(t1).
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Example of Unification in Neural Networks: time = t1.

1

g6

��

∆w(t1)

_^]\XYZ[dk1(t1)
NNNN

ek1(t1)

  A
AA

AA
AA

AA
A

EE

GFED@ABCh1

��
vh1 = 0

wki (t1) = vk(t1) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t1) = g1 is the Gödel
number of Q1(f (x1, x2));
ek(t1) = s(dk(t1) 	 vk(t1)) -
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∆w(t1) = vi (t1)ek(t1);
wki (t2) = wki (t1) � ∆wki (t1)
and dk(t2) = dk(t1) �
∆wki (t1) applies substitu-
tions.
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Example of Unification in Neural Networks: time = t1−2.

1

g6

��

∆w(t1)

_^]\XYZ[dk1(t1)
NNNN

ek1(t1)

  A
AA

AA
AA

AA
A

EE

GFED@ABCh1

��
vh1 = 0

wki (t1) = vk(t1) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t1) = g1 is the Gödel
number of Q1(f (x1, x2));
ek(t1) = s(dk(t1) 	 vk(t1)) -
the Gödel number of substitu-
tion x1/a1;
∆w(t1) = vi (t1)ek(t1);
wki (t2) = wki (t1) � ∆wki (t1)
and dk(t2) = dk(t1) �

∆wki (t1) applies sub-
stitutions.

wh1k(t2) =
wh1k(t1)⊕∆wh1k(t1).
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Example of Unification in Neural Networks: time = t1−2.

1

g6

��

∆w(t1)

_^]\XYZ[dk1(t1)
NNNN

ek1(t1)

  A
AA

AA
AA

AA
A

EE

GFED@ABCh1

��
vh1 = 0

wki (t1) = vk(t1) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t1) = g1 is the Gödel
number of Q1(f (x1, x2));
ek(t1) = s(dk(t1) 	 vk(t1)) -
the Gödel number of substitu-
tion x1/a1;
∆w(t1) = vi (t1)ek(t1);
wki (t2) = wki (t1) � ∆wki (t1)
and dk(t2) = dk(t1) �

∆wki (t1) applies sub-
stitutions. wh1k(t2) =
wh1k(t1)⊕∆wh1k(t1).
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Example of Unification in Neural Networks: time = t1−2.

1

g6

��_^]\XYZ[dk1(t2)

wh1k1
(t2)=ek1

(t1)
DD

DD
DD

""D
DD

DD
DD

GFED@ABCh1

��
0⊕ ek1(t1)

wik1(t2) = vi (t2) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t2) = g7 is the Gödel
number of Q1(f (a1, x2)).
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Example of Unification in Neural Networks: time = t2−3.

1

g6

��_^]\XYZ[dk1(t3)

whk (t3)=ek (t1)⊕ek (t2)
KKKKKKKK

%%KKKKKKKKK

GFED@ABCh1

��
0⊕ ek(t1)⊕ ek(t2)⊕ 0

wik(t3) = vi (t3) = g6

is the Gödel number of
Q1(f (a1, a2));
dk(t3) = g6 is the Gödel
number of Q1(f (a1, a2)).
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Some conclusions

Properties of these neural networks

First-order atoms are embedded directly into a neural network
via Gödel numbers.

Neural networks are finite and give deterministic results,
comparing with infinite layers needed to perform substitutions
in [HK94].

Unification algorithm is performed as an adaptive process,
which corrects one piece of data relatively to the other piece
of data.
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Main theorem

Theorem

Let P be a definite logic program and G be a definite goal. Then
there exists a 3-layer recurrent neural network which computes the
Gödel number s of substitution θ if and only if SLD-refutation
derives θ as an answer for P ∪ {G}. (We will call these neural
networks SLD neural networks).
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Example. Time = t1.

ONMLHIJKdk1

%%

�� ��ONMLHIJKdk2

%%

�� ��ONMLHIJKdk3

$$

�� ��ONMLHIJKdk4

$$GFED@ABCh1

g2
sssssss

yysss
sss

ss
g3

||
||

|

~~||
||

|

GFED@ABCh2

~~}}
}}

}}
}}

}}
}

GFED@ABCh3
GFED@ABCh4

GFED@ABCo1 GFED@ABCo2 GFED@ABCo3

Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))← Q4(x1);
Q2(a1)←;
Q3(a2)←.
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Example. Time = t1.

1

g6��
g6

77
77

��7
7 g6
JJJ

JJJ

$$JJ
JJ g6
QQQQQQQQ

((QQQQQQ

ONMLHIJKdk1

%%

�� ��ONMLHIJKdk2

%%

�� ��ONMLHIJKdk3

$$

�� ��ONMLHIJKdk4

$$GFED@ABCh1

g2
sssssss

yysss
sss

ss
g3

||
||

|

~~||
||

|

GFED@ABCh2

~~}}
}}

}}
}}

}}
}

GFED@ABCh3
GFED@ABCh4

GFED@ABCo1 GFED@ABCo2 GFED@ABCo3

g6 = Q1(f (a1, a2)).
Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))← Q4(x1);
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Example. Time t1: signals are filtered and unification
initialized.

1

g6
��

∆w

ONMLHIJKdk1

�� ��ONMLHIJKdk2

�� ��ONMLHIJKdk3

�� ��ONMLHIJKdk4

ek1

$$

CC

GFED@ABCh1

g2
sssssss

yysss
sss

ss
g3

||
||

|

~~||
||

|

GFED@ABCh2

~~}}
}}

}}
}}

}}
}

GFED@ABCh3
GFED@ABCh4

GFED@ABCo1 GFED@ABCo2 GFED@ABCo3

g6 = Q1(f (a1, a2)).
Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))← Q4(x1);
Q2(a1)←;
Q3(a2)←
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Example. Time t2 − t4: unification.

1

g6
��

∆w

ONMLHIJKdk1
JJJ
ONMLHIJKdk2

ONMLHIJKdk3
ONMLHIJKdk4

ek1

%%KKKKKKKKKKK

CC

GFED@ABCh1

g2
rrr

rrr
rr

yyrrrrrrrr g3
{{

{{
{

}}{{
{{

{{

��

GFED@ABCh2
GFED@ABCh3

GFED@ABCh4

GFED@ABCo1 GFED@ABCo2 GFED@ABCo3

vh1(t4)

g6 = Q1(f (a1, a2)).
Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))← Q4(x1);
Q2(a1)←;
Q3(a2)←
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Example. Time = t5: values at layer o are computed:

1

g6��
g6

77
77

��7
7 g6
JJJ

JJJ

$$JJ
JJ g6
QQQQQQQQ

((QQQQQQ

ONMLHIJKdk1

%%KKKKKKKKKKKKKKKK
ONMLHIJKdk2

ONMLHIJKdk3
ONMLHIJKdk4

GFED@ABCh1

g2
sssssss

yysss
sss

ss
g3

||
||

|

~~||
||

|

GFED@ABCh2
GFED@ABCh3

GFED@ABCh4

GFED@ABCo1

OO DD

g9����������

FF����������

BB

GFED@ABCo2

UUSS KK

g10

JJ

GFED@ABCo3

g6 = Q1(f (a1, a2)).
Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))← Q4(x1);
Q2(a1)←;
Q3(a2)←
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Example. Time = t6: new iterations starts, excessive
signals are filtered, and unification initialized:

ONMLHIJKdk1

�� ��ONMLHIJKdk2

$$IIIIIIIIIIIIIIII

�� ��ONMLHIJKdk3

NNNNNNNNN

�� ��ONMLHIJKdk4

MMMMMMMM

ek3

��
yy

ek4

��
ww GFED@ABCh1

GFED@ABCh2
GFED@ABCh3

GFED@ABCh4

GFED@ABCo1

g9����������

GG����������

GFED@ABCo2

g10

JJ

GFED@ABCo3

g6 = Q1(f (a1, a2)).
Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))← Q4(x1);
Q2(a1)←;
Q3(a2)←
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Example. Time = t7: unification is performed, answers are
sent as an output:

ONMLHIJKdk1

%%KKKKKKKKKKKKKKKK

�� ��ONMLHIJKdk2

%%KKKKKKKKKKKKKKKKK

�� ��ONMLHIJKdk3

ek3

%%KKKKKKKKKKKKKKKKK

�� ��ONMLHIJKdk4

ek4

%%LLLLLLLLLLLLLLLLL

GFED@ABCh1

g2
rrr

rrr
rr

yyrrrrrrrr g3
{{

{{
{

}}{{
{{

{{

��

GFED@ABCh2

}}{{
{{

{{
{{

{{
{{

GFED@ABCh3

��

GFED@ABCh4

��
GFED@ABCo1 GFED@ABCo2 GFED@ABCo3

vh1(t4) vh3(t7) vh4(t7)

g6 = Q1(f (a1, a2)).
Q1(f (x1, x2))←
Q2(x1),Q3(x2);
Q1(f (x1, x2))←
Q4(x1);
Q2(a1)←;
Q3(a2)←
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Conclusions

SLD neural networks have finite architecture, but their
effectiveness is due to several learning functions.

Unification is performed as adaptive process.

Atoms and substitutions are represented in SLD neural
networks directly, via Gödel numbers, and hence allow easier
machine implementations.
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Future Work

Practical implementations of SLD neural networks.

Theoretical development:

SLD neural networks allow higher-order generalizations.
...can therefore be extended to higher-order Horn logics,
hereditary Harrop logics...
...can be extended to non-classical logic programs: linear,
many-valued, etc...
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...can be extended to non-classical logic programs: linear,
many-valued, etc...
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Thank you!
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