First-order Deduction in Neural Networks

Ekaterina Komendantskaya

Department of Mathematics, University College Cork, Ireland

International Conference on Language and Automata Theory and Applications, 29 June – 4 April, 2007

1 Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

1 Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

2 SLD-resolution

1 Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

2 SLD-resolution

First-Order Deduction in Neural networks

Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

2 SLD-resolution

Sirst-Order Deduction in Neural networks

Symbolic Logic as Deductive System

• Axioms:
$$(A \supset (B \supset A))$$
;
 $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$;
 $(((\neg B) \supset (\neg A)) \supset$
 $(((\neg B) \supset A) \supset B))$;
 $((\forall xA) \supset S_t^xA)$;
 $\forall x(A \supset B)) \supset$
 $(A \supset \forall xB))$;
• Rules:

Rules:

$$\frac{A \supset B, A}{B}; \frac{A}{\forall xA}$$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Motivation

Symbolic Logic as Deductive System

Neural Networks

- Axioms: $(A \supset (B \supset A));$ $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C));$ $(((\neg B) \supset (\neg A)) \supset$ $(((\neg B) \supset A) \supset B));$ $((\forall xA) \supset S_t^x A);$ $\forall x(A \supset B)) \supset$ $(A \supset \forall xB)));$
- $\stackrel{\textbf{Rules:}}{\frac{A \supset B, \ A}{B}}; \ \frac{A}{\forall xA}.$

- spontaneous behavior;
- learning and adaptation

Logic Programs

• $A \leftarrow B_1, \ldots, B_n$

Logic Programs

•
$$A \leftarrow B_1, \ldots, B_n$$

•
$$T_P(I) = \{A \in B_P : A \leftarrow B_1, \dots, B_n$$

is a ground instance of a clause in P and $\{B_1, \dots, B_n\} \subseteq I\}$

Logic Programs

- $A \leftarrow B_1, \ldots, B_n$
- $T_P(I) = \{A \in B_P : A \leftarrow B_1, \dots, B_n$ is a ground instance of a clause in P and $\{B_1, \dots, B_n\} \subseteq I\}$
- lfp(T_P ↑ ω) = the least Herbrand model of P.

Logic Programs

- $A \leftarrow B_1, \ldots, B_n$
- $T_P(I) = \{A \in B_P : A \leftarrow B_1, \dots, B_n$ is a ground instance of a clause in P and $\{B_1, \dots, B_n\} \subseteq I\}$
- $lfp(T_P \uparrow \omega) = the least$ Herbrand model of *P*.

LD-resolution

An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer feedforward neural network which computes T_P .

- No learning or adaptation;
- Require infinitely long layers in the first-order case.

 Motivation
 SLD-resolution
 First-Order Deduction in Neural networks
 Conclusions and Ongoing Work

 A Simple Example
 Example
 Conclusions and Ongoing Work
 Conclusions and Ongoing Work

$$\begin{array}{l} B \leftarrow \\ A \leftarrow \\ C \leftarrow A, B \end{array}$$

$$T_P \uparrow 0 = \{B, A\}$$

$$lfp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

A Simple Example

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

A Simple Example

 $B \leftarrow$ $A \leftarrow$ $C \leftarrow A, B$ $T_P \uparrow 0 = \{B, A\}$ $Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

A Simple Example

$$B \leftarrow A \leftarrow C \leftarrow A, B$$
$$T_P \uparrow 0 = \{B, A\}$$
$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

Motivation ○○○○○○●○

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

A Simple Example

$$B \leftarrow A \leftarrow C \leftarrow A, B$$
$$T_P \uparrow 0 = \{B, A\}$$
$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

A Simple Example

$$B \leftarrow A \leftarrow C \leftarrow A, B$$
$$T_P \uparrow 0 = \{B, A\}$$
$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier for S if S is a singleton. A unifier θ for S is called a *most general unifier* (mgu) for S if, for each unifier σ of S, there exists a substitution γ such that $\sigma = \theta \gamma$.

Example: If $S = (Q(f(x_1, x_2)), Q(f(a_1, a_2)))$, then $\theta = \{x_1/a_1; x_2/a_2\}$ is the mgu.

Disagreement set

Disagreement set

To find the *disagreement set* D_S of S locate the leftmost symbol position at which not all atoms in S have the same symbol and extract from each atom in S the term beginning at that symbol position. The set of all such terms is the disagreement set.

Example: For $S = (Q(f(x_1, x_2)), Q(f(a_1, a_2)))$ we have $D_S = \{x_1, a_1\}.$

Unification algorithm

- Put k = 0 and $\sigma_0 = \varepsilon$.
- **2** If $S\sigma_k$ is a singleton, then stop; σ_k is an mgu of S. Otherwise, find the disagreement set D_k of $S\sigma_k$.
- If there exist a variable v and a term t in D_k such that v does not occur in t, then put θ_{k+1} = θ_k{v/t}, increment k and go to 2. Otherwise, stop; S is not unifiable.

Unification algorithm

- Put k = 0 and $\sigma_0 = \varepsilon$.
- **2** If $S\sigma_k$ is a singleton, then stop; σ_k is an mgu of S. Otherwise, find the disagreement set D_k of $S\sigma_k$.
- If there exist a variable v and a term t in D_k such that v does not occur in t, then put θ_{k+1} = θ_k{v/t}, increment k and go to 2. Otherwise, stop; S is not unifiable.

Unification theorem.

$$egin{array}{rcl} Q_1(f(x_1,x_2)) &\leftarrow & Q_2(x_1), Q_3(x_2) \ Q_1(f(x_1,x_2)) &\leftarrow & Q_4(x_1) \ & Q_2(a_1) &\leftarrow \ & Q_3(a_2) &\leftarrow \end{array}$$

Conclusions and Ongoing Work

$$\begin{array}{rcl} Q_1(f(x_1, x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1, x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow \\ & Q_3(a_2) & \leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2)).$$

Conclusions and Ongoing Work

SLD-resolution - Example

$$\begin{array}{rcl} Q_1(f(x_1, x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1, x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow \\ & Q_3(a_2) & \leftarrow \end{array}$$

• $G_0 = \leftarrow Q_1(f_1(a_1, a_2))$. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.

$$\begin{array}{rcl} Q_1(f(x_1, x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1, x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow \\ & Q_3(a_2) & \leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.

$$\begin{array}{rcl} Q_1(f(x_1, x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1, x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow \\ & Q_3(a_2) & \leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.
 $S\theta_1 = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(a_1, x_2))\}$.

$$\begin{array}{rcl} Q_1(f(x_1, x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1, x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow \\ & Q_3(a_2) & \leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.
 $S\theta_1 = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(a_1, x_2))\}$. $D_{S\theta} = \{x_2, a_2\}$ and
 $\theta_2 = x_2/a_2$. $S\theta_1\theta_2$ is a singleton.

$$\begin{array}{rcl} Q_1(f(x_1,x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1,x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow \\ & Q_3(a_2) & \leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.
 $S\theta_1 = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(a_1, x_2))\}$. $D_{S\theta} = \{x_2, a_2\}$ and
 $\theta_2 = x_2/a_2$. $S\theta_1\theta_2$ is a singleton.
• $G_1 = \leftarrow Q_2(a_1), Q_3(a_2)$.

$$\begin{array}{rcl} Q_1(f(x_1, x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1, x_2)) & \leftarrow & Q_4(x_1) \\ & & Q_2(a_1) & \leftarrow \\ & & Q_3(a_2) & \leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.
 $S\theta_1 = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(a_1, x_2))\}$. $D_{S\theta} = \{x_2, a_2\}$ and
 $\theta_2 = x_2/a_2$. $S\theta_1\theta_2$ is a singleton.
• $G_1 = \leftarrow Q_2(a_1), Q_3(a_2)$.

SLD-resolution - Example

$$\begin{array}{rcccc} Q_1(f(x_1,x_2)) & \leftarrow & Q_2(x_1), Q_3(x_2) \\ Q_1(f(x_1,x_2)) & \leftarrow & Q_4(x_1) \\ & Q_2(a_1) & \leftarrow & \\ & & Q_3(a_2) & \leftarrow & \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.
 $S\theta_1 = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(a_1, x_2))\}$. $D_{S\theta} = \{x_2, a_2\}$ and
 $\theta_2 = x_2/a_2$. $S\theta_1\theta_2$ is a singleton.
• $G_1 = \leftarrow Q_2(a_1), Q_3(a_2)$.

• $G_2 = \leftarrow Q_3(a_2)$

SLD-resolution - Example

$$egin{array}{rcl} Q_1(f(x_1,x_2)) &\leftarrow & Q_2(x_1), Q_3(x_2) \ Q_1(f(x_1,x_2)) &\leftarrow & Q_4(x_1) \ & Q_2(a_1) &\leftarrow \ & Q_3(a_2) &\leftarrow \end{array}$$

•
$$G_0 = \leftarrow Q_1(f_1(a_1, a_2))$$
. $S = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(x_1, x_2))\}$.
 $D_S = \{x_1, a_1\}$. Put $\theta_1 = x_1/a_1$.
 $S\theta_1 = \{Q_1(f_1(a_1, a_2)), Q_1(f_1(a_1, x_2))\}$. $D_{S\theta} = \{x_2, a_2\}$ and
 $\theta_2 = x_2/a_2$. $S\theta_1\theta_2$ is a singleton.

•
$$G_1 = \leftarrow Q_2(a_1), Q_3(a_2).$$

• $G_2 = \leftarrow Q_3(a_2)$

•
$$G_3 = \Box$$
.

LD-resolution

Conclusions and Ongoing Work

$$egin{aligned} p_k(t) &= \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)
ight) - \Theta_k \ v_k(t+\Delta t) &= \psi(p_k(t)) = egin{cases} 1 & ext{if} & p_k(t) > 0 \ 0 & ext{otherwise.} \end{aligned}$$

LD-resolution

Conclusions and Ongoing Work

$$egin{aligned} & p_k(t) = \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)
ight) - \Theta_k \ & v_k(t+\Delta t) = \psi(p_k(t)) = egin{cases} 1 & ext{if} & p_k(t) > 0 \ 0 & ext{otherwise}. \end{aligned}$$

LD-resolution

Conclusions and Ongoing Work

LD-resolution

Conclusions and Ongoing Work

$$p_{k}(t) = \left(\sum_{j=1}^{n_{k}} w_{kj} v_{j}(t)\right) - \Theta_{k}$$

$$v_{k}(t + \Delta t) = \psi(p_{k}(t)) = \begin{cases} 1 & \text{if } p_{k}(t) > 0 \\ 0 & \text{otherwise.} \end{cases}$$

$$v' \qquad P_{j} \qquad w_{kj}$$

$$v'' \qquad \Theta_{j} \qquad K$$

LD-resolution

Conclusions and Ongoing Work

Connectionist Neural Networks

LD-resolution

Conclusions and Ongoing Work

Connectionist Neural Networks

LD-resolution

Conclusions and Ongoing Work

Connectionist Neural Networks

$$p_{k}(t) = \left(\sum_{j=1}^{n_{k}} w_{kj} v_{j}(t)\right) - \Theta_{k}$$

$$v_{k}(t + \Delta t) = \psi(p_{k}(t)) = \begin{cases} 1 & \text{if } p_{k}(t) > 0 \\ 0 & \text{otherwise.} \end{cases}$$

$$v' \qquad P_{j} \qquad w_{kj} \qquad p_{k}$$

$$v'' \qquad \Theta_{j} \qquad \Theta_{k} \rightarrow v_{k}$$

$$v''' \qquad f_{j} \qquad k$$

LD-resolution

Gödel Numbers of Formulae

Each symbol of the first-order language receives a **Gödel number** as follows:

- variables x_1, x_2, x_3, \ldots receive numbers (01), (011), (0111), ...;
- constants *a*₁, *a*₂, *a*₃, ... receive numbers (21), (211), (2111), ...;
- function symbols f₁, f₂, f₃, ... receive numbers (31), (311), (3111), ...;
- predicate symbols Q₁, Q₂, Q₃, ... receive numbers (41), (411), (4111), ...;
- symbols (,) and , receive numbers 5, 6 and 7 respectively.

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Operations on Gödel Numbers

• **Disagreement set**: $g_1 \ominus g_2$;

LD-resolution

Conclusions and Ongoing Work

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2 = g_1 \mathbf{8} g_2$;

LD-resolution

Conclusions and Ongoing Work

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2 = g_1 \mathbf{8} g_2$;
- Gödel number of substitution: $s = g_1 9 g_2$;

LD-resolution

Conclusions and Ongoing Work

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2 = g_1 \mathbf{8} g_2$;
- Gödel number of substitution: $s = g_1 9 g_2$;
- Substitution: *g*⊙*s*;

LD-resolution

Conclusions and Ongoing Work

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2 = g_1 \mathbf{8} g_2$;
- Gödel number of substitution: $s = g_1 9 g_2$;
- Substitution: g⊙s;
- Algorithm of unification.

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Unification in Neural Networks

Claim 1

Unification Algorithm can be performed in finite (and very small) neural networks with error-correction learning.

SLD-resolution

Error-Correction (Supervised) Learning

We embed a new parameter, **desired response** d_k into neurons;

 Motivation
 SLD-resolution
 First-Order Deduction in Neural networks

 Error-Correction (Supervised) Learning

We embed a new parameter, **desired response** d_k into neurons; **Error-signal**: $e_k(t) = d_k(t) - v_k(t)$;

Conclusions and Ongoing Work

Error-Correction (Supervised) Learning

We embed a new parameter, **desired response** d_k into neurons; **Error-signal**: $e_k(t) = d_k(t) - v_k(t)$; **Error-correction learning rule**: $\Delta w_{kj}(t) = \eta e_k(t)v_j(t)$.

Motivation

Main Lemma

Lemma

Given two first-order atoms A and B, there exists a two-neuron learning neural network that performs the algorithm of unification for A and B.

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_1$.

 $w_{ik}(t_1) = v_i(t_1) = g_6$ is the Gödel number of $Q_1(f(a_1, a_2));$ $d_k(t_1) = g_1$ is the Gödel number of $Q_1(f(x_1, x_2)).$

Motivation

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_1$.

 $w_{ki}(t_1) = v_i(t_1) = g_6$ is the Gödel number of $Q_1(f(a_1, a_2));$ $d_k(t_1) = g_1$ is the Gödel number of $Q_1(f(x_1, x_2))$; Compute $e_k(t_1) =$ $s(d_k(t_1) \ominus v_k(t_1))$ - the Gödel number of substitution for the disagreement set $d_k(t_1) \ominus v_k(t_1).$

Motivation

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_1$.

 $e_{k_1}(t_1)$ h_1

 $w_{ki}(t_1) = v_k(t_1) = g_6$ is the Gödel number of $Q_1(f(a_1, a_2));$ $d_k(t_1) = g_1$ is the Gödel number of $Q_1(f(x_1, x_2))$; $e_k(t_1) = s(d_k(t_1) \ominus v_k(t_1))$ the Gödel number of substitution for the disagreement set $d_k(t_1) \ominus v_k(t_1);$ $\Delta w(t_1) = v_i(t_1)e_k(t_1) =$ $e_k(t_1)$.

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_1$.

 $\Delta w(t_1)$ $d_{k_1}(t_1)$ $\hat{e}_{k_1}(t_1)$ h_1 $v_{h_1} = 0$

$$\begin{split} w_{ki}(t_1) &= v_k(t_1) = g_6\\ \text{is the Gödel number of}\\ Q_1(f(a_1,a_2));\\ d_k(t_1) &= g_1 \text{ is the Gödel}\\ \text{number of } Q_1(f(x_1,x_2));\\ e_k(t_1) &= s(d_k(t_1) \ominus v_k(t_1)) \text{ -}\\ \text{the Gödel number of substitu-}\\ \text{tion } x_1/a_1;\\ \Delta w(t_1) &= v_i(t_1)e_k(t_1);\\ w_{ki}(t_2) &= w_{ki}(t_1) \odot \Delta w_{ki}(t_1)\\ \text{and } d_k(t_2) &= d_k(t_1) \odot\\ \Delta w_{ki}(t_1) \text{ applies substitu-}\\ \text{tions.} \end{split}$$

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_{1-2}$.

 $\Delta w(t_1)$ $d_{k_1}(t_1)$ $\hat{e}_{k_1}(t_1)$ h_1 $v_{h_1} = 0$

$$w_{ki}(t_1) = v_k(t_1) = g_6$$

is the Gödel number of
 $Q_1(f(a_1, a_2))$;
 $d_k(t_1) = g_1$ is the Gödel
number of $Q_1(f(x_1, x_2))$;
 $e_k(t_1) = s(d_k(t_1) \ominus v_k(t_1))$ -
the Gödel number of substitu-
tion x_1/a_1 ;
 $\Delta w(t_1) = v_i(t_1)e_k(t_1)$;
 $w_{ki}(t_2) = w_{ki}(t_1) \odot \Delta w_{ki}(t_1)$
and $d_k(t_2) = d_k(t_1) \odot$
 $\Delta w_{ki}(t_1)$ applies sub-
stitutions.

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_{1-2}$.

 $\Delta w_{f}(t_1)$ $d_{k_1}(t_1)$ $\hat{e}_{k_1}(t_1)$ h_1 $v_{h_1} = 0$

$$\begin{split} w_{ki}(t_1) &= v_k(t_1) = g_6\\ \text{is the Gödel number of}\\ Q_1(f(a_1,a_2));\\ d_k(t_1) &= g_1 \text{ is the Gödel}\\ \text{number of } Q_1(f(x_1,x_2));\\ e_k(t_1) &= s(d_k(t_1) \ominus v_k(t_1)) \text{ -}\\ \text{the Gödel number of substitu-}\\ \text{tion } x_1/a_1;\\ \Delta w(t_1) &= v_i(t_1)e_k(t_1);\\ w_{ki}(t_2) &= w_{ki}(t_1) \odot \Delta w_{ki}(t_1)\\ \text{and } d_k(t_2) &= d_k(t_1) \odot \\ \Delta w_{ki}(t_1) \text{ applies sub-}\\ \text{stitutions.} \qquad w_{h_1k}(t_2) &= \\ w_{h_1k}(t_1) \oplus \Delta w_{h_1k}(t_1). \end{split}$$

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_{1-2}$.

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example of Unification in Neural Networks: time $= t_{2-3}$.

Some conclusions

Properties of these neural networks

- First-order atoms are embedded directly into a neural network via Gödel numbers.
- Neural networks are finite and give deterministic results, comparing with infinite layers needed to perform substitutions in [HK94].
- Unification algorithm is performed as an adaptive process, which corrects one piece of data relatively to the other piece of data.

Main theorem

Theorem

Let P be a definite logic program and G be a definite goal. Then there exists a 3-layer recurrent neural network which computes the Gödel number s of substitution θ if and only if SLD-refutation derives θ as an answer for $P \cup \{G\}$. (We will call these neural networks SLD neural networks).

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example. Time = t_1 .

$$egin{aligned} Q_1(f(x_1,x_2)) \leftarrow & \ Q_2(x_1), Q_3(x_2); & \ Q_1(f(x_1,x_2)) \leftarrow & Q_4(x_1); & \ Q_2(a_1) \leftarrow; & \ Q_3(a_2) \leftarrow. & \end{aligned}$$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example. Time = t_1 .

 $\begin{array}{l} Q_1(f(x_1, x_2)) \leftarrow \\ Q_2(x_1), Q_3(x_2); \\ Q_1(f(x_1, x_2)) \leftarrow Q_4(x_1); \\ Q_2(a_1) \leftarrow; \\ Q_3(a_2) \leftarrow. \end{array}$

LD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example. Time = t_1 .

$$egin{aligned} Q_1(f(x_1,x_2)) \leftarrow & \ Q_2(x_1), Q_3(x_2); & \ Q_1(f(x_1,x_2)) \leftarrow & Q_4(x_1); & \ Q_2(a_1) \leftarrow; & \ Q_3(a_2) \leftarrow. & \end{aligned}$$

LD-resolution

Conclusions and Ongoing Work

Example. Time = t_1 .

$$g_{6} = Q_{1}(f(a_{1}, a_{2})).$$

$$Q_{1}(f(x_{1}, x_{2})) \leftarrow$$

$$Q_{2}(x_{1}), Q_{3}(x_{2});$$

$$Q_{1}(f(x_{1}, x_{2})) \leftarrow Q_{4}(x_{1});$$

$$Q_{2}(a_{1}) \leftarrow;$$

$$Q_{3}(a_{2}) \leftarrow.$$

Example. Time t_1 : signals are filtered and unification initialized.

$$\begin{array}{l} g_6 = Q_1(f(a_1,a_2)).\\ Q_1(f(x_1,x_2)) \leftarrow \\ Q_2(x_1), Q_3(x_2);\\ Q_1(f(x_1,x_2)) \leftarrow Q_4(x_1);\\ Q_2(a_1) \leftarrow;\\ Q_3(a_2) \leftarrow \end{array}$$

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example. Time $t_2 - t_4$: unification.

 $\begin{array}{l} g_6 = Q_1(f(a_1, a_2)).\\ Q_1(f(x_1, x_2)) \leftarrow \\ Q_2(x_1), Q_3(x_2);\\ Q_1(f(x_1, x_2)) \leftarrow Q_4(x_1);\\ Q_2(a_1) \leftarrow;\\ Q_3(a_2) \leftarrow \end{array}$

SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Ongoing Work

Example. Time = t_5 : values at layer *o* are computed:

$$\begin{array}{l} g_6 = Q_1(f(a_1,a_2)).\\ Q_1(f(x_1,x_2)) \leftarrow \\ Q_2(x_1), Q_3(x_2);\\ Q_1(f(x_1,x_2)) \leftarrow Q_4(x_1);\\ Q_2(a_1) \leftarrow;\\ Q_3(a_2) \leftarrow \end{array}$$

Example. Time = t_6 : new iterations starts, excessive signals are filtered, and unification initialized:

$$egin{aligned} g_6 &= Q_1(f(a_1,a_2)). \ Q_1(f(x_1,x_2)) \leftarrow \ Q_2(x_1), Q_3(x_2); \ Q_1(f(x_1,x_2)) \leftarrow \ Q_4(x_1); \ Q_2(a_1) \leftarrow; \ Q_3(a_2) \leftarrow \end{aligned}$$

Example. Time = t_7 : unification is performed, answers are sent as an output:

Conclusions

- SLD neural networks have finite architecture, but their effectiveness is due to several learning functions.
- Unification is performed as adaptive process.
- Atoms and substitutions are represented in SLD neural networks directly, via Gödel numbers, and hence allow easier machine implementations.

Future Work

• Practical implementations of SLD neural networks.

Future Work

- Practical implementations of SLD neural networks.
- Theoretical development:
 - SLD neural networks allow higher-order generalizations.
 - ...can therefore be extended to higher-order Horn logics, hereditary Harrop logics...
 - ...can be extended to non-classical logic programs: linear, many-valued, etc...

Motivation	SLD-resolution	First-Order Deduction in Neural networks	Conclusions and Ongoing Work

Thank you!