First-order Deduction in Neural Networks

Ekaterina Komendantskaya

Department of Mathematics, University College Cork, Ireland

International Conference on Language and Automata Theory and Applications, 29 June - 4 April, 2007

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs
(2) SLD-resolution

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs
(2) SLD-resolution
(3) First-Order Deduction in Neural networks

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs
(2) SLD-resolution
(3) First-Order Deduction in Neural networks
(4) Conclusions and Ongoing Work

Motivation

Symbolic Logic as Deductive System

(1) Axioms: $(A \supset(B \supset A))$; $(A \supset(B \supset C)) \supset((A \supset$ $B) \supset(A \supset C))$; $(((\neg B) \supset(\neg A)) \supset$ $(((\neg B) \supset A) \supset B)) ;$ $\left((\forall x A) \supset S_{t}^{\times} A\right)$; $\forall x(A \supset B)) \supset$ $(A \supset \forall x B)))$;
(2) Rules:
$\frac{A \supset B, A}{B} ; \frac{A}{\forall x A}$.

Motivation

Symbolic Logic as Deductive System

Neural Networks

(1) Axioms: $(A \supset(B \supset A))$; $(A \supset(B \supset C)) \supset((A \supset$ $B) \supset(A \supset C))$; $(((\neg B) \supset(\neg A)) \supset$ $(((\neg B) \supset A) \supset B)) ;$ $\left((\forall x A) \supset S_{t}^{\times} A\right)$; $\forall x(A \supset B)) \supset$ $(A \supset \forall x B)))$;
(2) Rules:
$\frac{A \supset B, A}{B} ; \frac{A}{\forall x A}$.

- spontaneous behavior;
- learning and adaptation

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$
- $T_{P}(I)=\left\{A \in B_{P}\right.$:
$A \leftarrow B_{1}, \ldots, B_{n}$
is a ground instance of a clause in P and $\left.\left\{B_{1}, \ldots, B_{n}\right\} \subseteq I\right\}$

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$
- $T_{P}(I)=\left\{A \in B_{P}\right.$:
$A \leftarrow B_{1}, \ldots, B_{n}$
is a ground instance of a clause in P and $\left.\left\{B_{1}, \ldots, B_{n}\right\} \subseteq I\right\}$
- $\operatorname{lfp}\left(T_{P} \uparrow \omega\right)=$ the least Herbrand model of P.

Motivation

Logic Programs

Artificial Neural Networks

An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer feedforward neural network which computes T_{P}.

- No learning or adaptation;
- Require infinitely long layers in the first-order case.

A Simple Example

$B \leftarrow$
$A \leftarrow$
$C \leftarrow A, B$
$T_{P} \uparrow 0=\{B, A\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}$

A Simple Example

A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

A Simple Example

A Simple Example

A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier for S if S is a singleton. A unifier θ for S is called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a substitution γ such that $\sigma=\theta \gamma$.

Example: If $S=\left(Q\left(f\left(x_{1}, x_{2}\right)\right), Q\left(f\left(a_{1}, a_{2}\right)\right)\right)$, then $\theta=\left\{x_{1} / a_{1} ; x_{2} / a_{2}\right\}$ is the mgu.

Disagreement set

Disagreement set

To find the disagreement set D_{S} of S locate the leftmost symbol position at which not all atoms in S have the same symbol and extract from each atom in S the term beginning at that symbol position. The set of all such terms is the disagreement set.

Example: For $S=\left(Q\left(f\left(x_{1}, x_{2}\right)\right), Q\left(f\left(a_{1}, a_{2}\right)\right)\right)$ we have $D_{S}=\left\{x_{1}, a_{1}\right\}$.

Unification algorithm

(1) Put $k=0$ and $\sigma_{0}=\varepsilon$.
(2) If $S \sigma_{k}$ is a singleton, then stop; σ_{k} is an mgu of S. Otherwise, find the disagreement set D_{k} of $S \sigma_{k}$.
(3) If there exist a variable v and a term t in D_{k} such that v does not occur in t, then put $\theta_{k+1}=\theta_{k}\{v / t\}$, increment k and go to 2 . Otherwise, stop; S is not unifiable.

Unification algorithm

(1) Put $k=0$ and $\sigma_{0}=\varepsilon$.
(2) If $S \sigma_{k}$ is a singleton, then stop; σ_{k} is an mgu of S. Otherwise, find the disagreement set D_{k} of $S \sigma_{k}$.
(3) If there exist a variable v and a term t in D_{k} such that v does not occur in t, then put $\theta_{k+1}=\theta_{k}\{v / t\}$, increment k and go to 2 . Otherwise, stop; S is not unifiable.

Unification theorem.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right)$.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$. $D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.
$D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.
$S \theta_{1}=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(a_{1}, x_{2}\right)\right)\right\}$.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.
$D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.
$S \theta_{1}=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(a_{1}, x_{2}\right)\right)\right\} . D_{S \theta}=\left\{x_{2}, a_{2}\right\}$ and $\theta_{2}=x_{2} / a_{2} . S \theta_{1} \theta_{2}$ is a singleton.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.
$D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.
$S \theta_{1}=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(a_{1}, x_{2}\right)\right)\right\} . D_{S \theta}=\left\{x_{2}, a_{2}\right\}$ and $\theta_{2}=x_{2} / a_{2} . S \theta_{1} \theta_{2}$ is a singleton.
- $G_{1}=\leftarrow Q_{2}\left(a_{1}\right), Q_{3}\left(a_{2}\right)$.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.
$D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.
$S \theta_{1}=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(a_{1}, x_{2}\right)\right)\right\} . D_{S \theta}=\left\{x_{2}, a_{2}\right\}$ and $\theta_{2}=x_{2} / a_{2} . S \theta_{1} \theta_{2}$ is a singleton.
- $G_{1}=\leftarrow Q_{2}\left(a_{1}\right), Q_{3}\left(a_{2}\right)$.

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.
$D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.
$S \theta_{1}=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(a_{1}, x_{2}\right)\right)\right\} . D_{S \theta}=\left\{x_{2}, a_{2}\right\}$ and $\theta_{2}=x_{2} / a_{2} . S \theta_{1} \theta_{2}$ is a singleton.
- $G_{1}=\leftarrow Q_{2}\left(a_{1}\right), Q_{3}\left(a_{2}\right)$.
- $G_{2}=\leftarrow Q_{3}\left(a_{2}\right)$

SLD-resolution - Example

$$
\begin{aligned}
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) \\
Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) & \leftarrow Q_{4}\left(x_{1}\right) \\
Q_{2}\left(a_{1}\right) & \leftarrow \\
Q_{3}\left(a_{2}\right) & \leftarrow
\end{aligned}
$$

- $G_{0}=\leftarrow Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right) . S=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(x_{1}, x_{2}\right)\right)\right\}$.
$D_{S}=\left\{x_{1}, a_{1}\right\}$. Put $\theta_{1}=x_{1} / a_{1}$.
$S \theta_{1}=\left\{Q_{1}\left(f_{1}\left(a_{1}, a_{2}\right)\right), Q_{1}\left(f_{1}\left(a_{1}, x_{2}\right)\right)\right\} . D_{S \theta}=\left\{x_{2}, a_{2}\right\}$ and $\theta_{2}=x_{2} / a_{2} . S \theta_{1} \theta_{2}$ is a singleton.
- $G_{1}=\leftarrow Q_{2}\left(a_{1}\right), Q_{3}\left(a_{2}\right)$.
- $G_{2}=\leftarrow Q_{3}\left(a_{2}\right)$
- $G_{3}=\square$.

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise }\end{cases} \\
& v^{\prime \prime}
\end{aligned}
$$

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise }\end{cases} \\
& v^{\prime \prime \prime}
\end{aligned}
$$

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v^{\prime \prime \prime}
\end{aligned}
$$

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}^{\prime}
\end{aligned}
$$

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}
\end{aligned}
$$

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}
\end{aligned}
$$

Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}
\end{aligned}
$$

Gödel Numbers of Formulae

Each symbol of the first-order language receives a Gödel number as follows:

- variables $x_{1}, x_{2}, x_{3}, \ldots$ receive numbers (01), (011), (0111), ...;
- constants $a_{1}, a_{2}, a_{3}, \ldots$ receive numbers (21), (211), (2111), ...;
- function symbols $f_{1}, f_{2}, f_{3}, \ldots$ receive numbers (31), (311), (3111), ...;
- predicate symbols $Q_{1}, Q_{2}, Q_{3}, \ldots$ receive numbers (41), (411), (4111), ...;
- symbols (,) and, receive numbers 5, 6 and 7 respectively.

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}=g_{1} 8 g_{2}$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}=g_{1} \mathbf{8} g_{2}$;
- Gödel number of substitution: $s=g_{1} \mathbf{9} g_{2}$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}=g_{1} \mathbf{8} g_{2}$;
- Gödel number of substitution: $s=g_{1} \mathbf{9} g_{2}$;
- Substitution: $g \odot s$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}=g_{1} \mathbf{8} g_{2}$;
- Gödel number of substitution: $s=g_{1} \mathbf{9} g_{2}$;
- Substitution: $g \odot s$;
- Algorithm of unification.

Unification in Neural Networks

Claim 1

Unification Algorithm can be performed in finite (and very small) neural networks with error-correction learning.

Error-Correction (Supervised) Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons;

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons; Error-signal: $e_{k}(t)=d_{k}(t)-v_{k}(t)$;

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons;
Error-signal: $e_{k}(t)=d_{k}(t)-v_{k}(t)$;
Error-correction learning rule: $\Delta w_{k j}(t)=\eta e_{k}(t) v_{j}(t)$.

Main Lemma

Lemma

Given two first-order atoms A and B, there exists a two-neuron learning neural network that performs the algorithm of unification for A and B.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{i k}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g_{6}$ is the Gödel number of $Q_{1}\left(f\left(a_{1}, a_{2}\right)\right) ;$
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $Q_{1}\left(f\left(x_{1}, x_{2}\right)\right)$.

Example of Unification in Neural Networks: time $=t_{1}$.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$
is the Gödel number of $Q_{1}\left(f\left(a_{1}, a_{2}\right)\right)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $Q_{1}\left(f\left(x_{1}, x_{2}\right)\right)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution for the disagreement set $d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)$;
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right)=$ $e_{k}\left(t_{1}\right)$.
$v_{h_{1}}=0$

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$
is the Gödel number of
$Q_{1}\left(f\left(a_{1}, a_{2}\right)\right)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $Q_{1}\left(f\left(x_{1}, x_{2}\right)\right)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution x_{1} / a_{1};
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right) ;$
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w_{k i}\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right) \odot$
$\Delta w_{k i}\left(t_{1}\right)$ applies substitutions.

Example of Unification in Neural Networks: time $=t_{1-2}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$
is the Gödel number of
$Q_{1}\left(f\left(a_{1}, a_{2}\right)\right)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $Q_{1}\left(f\left(x_{1}, x_{2}\right)\right)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution x_{1} / a_{1};
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right) ;$
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w_{k i}\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right)$

$$
\Delta w_{k i}\left(t_{1}\right) \quad \text { applies sub- }
$$

stitutions.

Example of Unification in Neural Networks: time $=t_{1-2}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$
is the Gödel number of
$Q_{1}\left(f\left(a_{1}, a_{2}\right)\right)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $Q_{1}\left(f\left(x_{1}, x_{2}\right)\right)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$
the Gödel number of substitution x_{1} / a_{1};
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right) ;$
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w_{k i}\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right) \odot$

$$
\Delta w_{k i}\left(t_{1}\right) \quad \text { applies sub- }
$$

stitutions. $\quad w_{h_{1} k}\left(t_{2}\right)=$
$w_{h_{1} k}\left(t_{1}\right) \oplus \Delta w_{h_{1} k}\left(t_{1}\right)$.

Example of Unification in Neural Networks: time $=t_{1-2}$.

$w_{i k_{1}}\left(t_{2}\right)=v_{i}\left(t_{2}\right)=g_{6}$ is the Gödel number of $Q_{1}\left(f\left(a_{1}, a_{2}\right)\right) ;$
$d_{k}\left(t_{2}\right)=g_{7}$ is the Gödel number of $Q_{1}\left(f\left(a_{1}, x_{2}\right)\right)$.

Example of Unification in Neural Networks: time $=t_{2-3}$.

Some conclusions

Properties of these neural networks

- First-order atoms are embedded directly into a neural network via Gödel numbers.
- Neural networks are finite and give deterministic results, comparing with infinite layers needed to perform substitutions in [HK94].
- Unification algorithm is performed as an adaptive process, which corrects one piece of data relatively to the other piece of data.

Main theorem

Theorem

Let P be a definite logic program and G be a definite goal. Then there exists a 3-layer recurrent neural network which computes the Gödel number s of substitution θ if and only if SLD-refutation derives θ as an answer for $P \cup\{G\}$. (We will call these neural networks SLD neural networks).

Example. Time $=t_{1}$.

Example. Time $=t_{1}$.

Example. Time $=t_{1}$.

Example. Time $=t_{1}$.

Example. Time t_{1} : signals are filtered and unification initialized.

$$
\begin{aligned}
& g_{6}=Q_{1}\left(f\left(a_{1}, a_{2}\right)\right) . \\
& Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) \leftarrow \\
& Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) ; \\
& Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) \leftarrow Q_{4}\left(x_{1}\right) ; \\
& Q_{2}\left(a_{1}\right) \leftarrow ; \\
& Q_{3}\left(a_{2}\right) \leftarrow
\end{aligned}
$$

Example. Time $t_{2}-t_{4}$: unification.

Example. Time $=t_{5}:$ values at layer o are computed:

Example. Time $=t_{6}$: new iterations starts, excessive

 signals are filtered, and unification initialized:

$$
\begin{aligned}
& g_{6}=Q_{1}\left(f\left(a_{1}, a_{2}\right)\right) . \\
& Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) \leftarrow \\
& Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) ; \\
& Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) \leftarrow Q_{4}\left(x_{1}\right) ; \\
& Q_{2}\left(a_{1}\right) \leftarrow ; \\
& Q_{3}\left(a_{2}\right) \leftarrow
\end{aligned}
$$

Example. Time $=t_{7}$: unification is performed, answers are

 sent as an output:

$$
\begin{aligned}
& g_{6}=Q_{1}\left(f\left(a_{1}, a_{2}\right)\right) . \\
& Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) \leftarrow \\
& Q_{2}\left(x_{1}\right), Q_{3}\left(x_{2}\right) ; \\
& Q_{1}\left(f\left(x_{1}, x_{2}\right)\right) \leftarrow \\
& Q_{4}\left(x_{1}\right) ; \\
& Q_{2}\left(a_{1}\right) \leftarrow ; \\
& Q_{3}\left(a_{2}\right) \leftarrow
\end{aligned}
$$

Conclusions

- SLD neural networks have finite architecture, but their effectiveness is due to several learning functions.
- Unification is performed as adaptive process.
- Atoms and substitutions are represented in SLD neural networks directly, via Gödel numbers, and hence allow easier machine implementations.

Future Work

- Practical implementations of SLD neural networks.

Future Work

- Practical implementations of SLD neural networks.
- Theoretical development:
- SLD neural networks allow higher-order generalizations.
- ...can therefore be extended to higher-order Horn logics, hereditary Harrop logics...
- ...can be extended to non-classical logic programs: linear, many-valued, etc...

Thank you!

