## Unification by Error-Correction

Ekaterina Komendantskaya

INRIA Sophia Antipolis, France

NeSy'08 4th International Workshop on Neural-Symbolic Learning and Reasoning
21 July 2008, Patras, Greece

Motivation

Motivation

Background Definitions

- Motivation
- Background Definitions
- Unification in Neural Networks

- Motivation
- Background Definitions
- Unification in Neural Networks
- 4 Conclusions

$$B \leftarrow A \leftarrow C \leftarrow A, B$$

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$



$$B \leftarrow A \leftarrow C \leftarrow A, B$$

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$





$$B \leftarrow$$

$$A \leftarrow$$

$$C \leftarrow A, B$$

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$



$$B \leftarrow$$

$$A \leftarrow$$

$$C \leftarrow A, B$$

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$



$$B \leftarrow$$

$$A \leftarrow$$

$$C \leftarrow A, B$$

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$



$$P(a) \leftarrow Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow$$

$$T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$$

$$P(a) \leftarrow Q(x) \leftarrow P(x)$$
  
 $R(b) \leftarrow$ 

$$T_P \uparrow 0 = \{P(a), R(b)\}\$$
  
 $Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}\$ 



$$P(a) \leftarrow Q(x) \leftarrow P(x)$$
  
 $R(b) \leftarrow T_P \uparrow 0 = \{P(a), R(b)\}$   
 $Ifp(T_P) = T_P \uparrow 1 =$ 

 $\{P(a), R(b), Q(a)\}$ 



$$P(a) \leftarrow Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow$$

$$T_P \uparrow 0 = \{ P(a) \mid A = \{$$

$$T_P \uparrow 0 = \{P(a), R(b)\}\$$
  
 $Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}\$ 



$$P(a) \leftarrow Q(x) \leftarrow P(x) + P(x)$$

$$R(b) \leftarrow$$

$$T_P \uparrow 0 = \{P(a), R(b)\}$$
  
 $Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$ 



$$P(a) \leftarrow Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$$





$$P(a) \leftarrow Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$$



$$P(a) \leftarrow Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$$



$$P(a) \leftarrow Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$$



### Example 3

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$

$$T_P \uparrow 0 = \{P(0)\}$$

$$Ifp(T_P) = T_P \uparrow \omega = \{0, s(0), s(s(0)), s(s(s(0)), \ldots\}$$

## Example 3

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$

$$T_P \uparrow 0 = \{P(0)\}\$$
  
 $Ifp(T_P) = T_P \uparrow \omega = \{0, s(0), s(s(0)), s(s(s(0)), \ldots\}$ 



## Example 3

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$
 $T_P \uparrow 0 = \{P(0)\}$ 
 $Ifp(T_P) = T_P \uparrow \omega = \{0, s(0), s(s(0)), s(s(s(0))), \ldots\}$ 

Paradox:

(computability, complexity, proof theory)



## What causes the problems?

- We compute  $T_P$ -operator, which forces us to work with Herbrand base and Herbrand model;
- First-order atoms are not represented in the neural networks directly, instead truth values 0 and 1 are propagated.
- **3** 2 ⇒
  - Only ground atoms are processed; so essentially we are able to work only with propositional case.
  - Require infinitely long layers in the first-order case.
- Status of learning?

#### I wish for

A Neural Theorem Prover

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of  $T_P$ -operator),

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T<sub>P</sub>-operator),
- ...able to compute (non-guarded) substitutions,

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T<sub>P</sub>-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T<sub>P</sub>-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,
- ...expandable to higher-order logics.

#### I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T<sub>P</sub>-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,
- ...expandable to higher-order logics.

I do not wish to deal with truth values and semantic operators of any sorts.

#### I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T<sub>P</sub>-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,
- ...expandable to higher-order logics.

I do not wish to deal with truth values and semantic operators of any sorts.

#### Example

I wish to be able to distinguish/prove properties of natural numbers without listing the whole (infinite) set  $\{1, 2, 3, 4, \ldots\}$ .

### Most General Unifier

#### MGU

Let S be a finite set of atoms. A substitution  $\theta$  is called a unifier for S if S is a singleton. A unifier  $\theta$  for S is called a *most general unifier* (mgu) for S if, for each unifier  $\sigma$  of S, there exists a substitution  $\gamma$  such that  $\sigma = \theta \gamma$ .

**Example:** If S = (P(x), P(0)), then  $\theta = \{x/0\}$  is the mgu.

## Disagreement set

#### Disagreement set

To find the disagreement set  $D_S$  of S locate the leftmost symbol position at which not all atoms in S have the same symbol and extract from each atom in S the term beginning at that symbol position. The set of all such terms is the disagreement set.

**Example:** For S = (Q(f(x, y)), Q(f(a, b))) we have  $D_S = \{x, a\}$ .

# Unification algorithm

- **1** Put k = 0 and  $\sigma_0 = \varepsilon$ .
- ② If  $S\sigma_k$  is a singleton, then stop;  $\sigma_k$  is an mgu of S. Otherwise, find the disagreement set  $D_k$  of  $S\sigma_k$ .
- **1** If there exist a variable v and a term t in  $D_k$  such that v does not occur in t, then put  $\theta_{k+1} = \theta_k \{v/t\}$ , increment k and go to 2. Otherwise, stop; S is not unifiable.

# Unification algorithm

- Put k = 0 and  $\sigma_0 = \varepsilon$ .
- ② If  $S\sigma_k$  is a singleton, then stop;  $\sigma_k$  is an mgu of S. Otherwise, find the disagreement set  $D_k$  of  $S\sigma_k$ .
- **3** If there exist a variable v and a term t in  $D_k$  such that v does not occur in t, then put  $\theta_{k+1} = \theta_k \{v/t\}$ , increment k and go to 2. Otherwise, stop; S is not unifiable.

#### Unification theorem.

### Functions we define and embed:

- Disagreement set: ⊖;
- Concatenation: ⊕;
- Applying the substitution:  $g \odot s$ .

### Neurons in Connectionist Neural Networks

$$egin{aligned} & p_k(t) = \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)
ight) - \Theta_k \ & v_k(t+\Delta t) = \psi(p_k(t)) = egin{cases} 1 & ext{if } p_k(t) > 0 \ 0 & ext{otherwise.} \end{cases} \end{aligned}$$



$$egin{aligned} & 
ho_k(t) = \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)
ight) - \Theta_k \ & v_k(t+\Delta t) = \psi(
ho_k(t)) = egin{cases} 1 & ext{if } 
ho_k(t) > 0 \ 0 & ext{otherwise.} \end{cases} \end{aligned}$$



$$p_k(t) = \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)\right) - \Theta_k$$
 $v_k(t + \Delta t) = \psi(p_k(t)) = \begin{cases} 1 & \text{if } p_k(t) > 0 \\ 0 & \text{otherwise.} \end{cases}$ 
 $v' \qquad p_j \qquad \Theta_j$ 

$$p_k(t) = \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)\right) - \Theta_k$$
 $v_k(t + \Delta t) = \psi(p_k(t)) = \begin{cases} 1 & \text{if } p_k(t) > 0 \\ 0 & \text{otherwise.} \end{cases}$ 
 $v' \qquad \qquad P_j \qquad w_{kj} \qquad \qquad V'' \qquad \qquad P_j \qquad \qquad$ 

$$\begin{aligned} p_k(t) &= \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)\right) - \Theta_k \\ v_k(t+\Delta t) &= \psi(p_k(t)) = \begin{cases} 1 & \text{if } p_k(t) > 0 \\ 0 & \text{otherwise.} \end{cases} \\ v'' & P_j & w_{kj} & p_k \\ v'' & O_j & O_k & O_k \end{aligned}$$

$$p_k(t) = \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)\right) - \Theta_k$$
 $v_k(t + \Delta t) = \psi(p_k(t)) = \begin{cases} 1 & \text{if } p_k(t) > 0 \\ 0 & \text{otherwise.} \end{cases}$ 
 $v' \qquad \qquad p_j \qquad w_{kj} \qquad p_k$ 
 $v'' \qquad \qquad O_j \qquad Q_k \rightarrow v$ 



We embed a new parameter, **desired response**  $d_k$  into neurons;



We embed a new parameter, **desired response**  $d_k$  into neurons; **Error-signal**:  $e_k(t) = d_k(t) - v_k(t)$ ;



We embed a new parameter, **desired response**  $d_k$  into neurons;

Error-signal:  $e_k(t) = d_k(t) - v_k(t)$ ;

**Error-correction learning rule**:  $\Delta w_{kj}(t) = \eta e_k(t) v_j(t)$ .



#### Main Result

#### **Theorem**

Given two first-order atoms A and B, there exists a two-neuron learning neural network that performs the algorithm of unification for A and B.



 $w_{ik}(t_1) = v_i(t_1) = g$  is some encoding of P(x);  $d_k(t_1) = h$  is some encoding of P(0).



 $w_{ik}(t_1) = v_i(t_1) = g$  is some encoding of P(x);  $d_k(t_1) = h$  is some encoding of P(0).



 $w_{ki}(t_1) = v_i(t_1) = g$  is the number of P(x);  $d_k(t_1) = h$  is the number of P(0); Compute  $e_k(t_1) = d_k(t_1) \ominus v_k(t_1)$  - the disagreement set for  $\{P(0), P(x)\}$ .



```
w_{ki}(t_1) = v_i(t_1) = g is the number of P(x); d_k(t_1) = h is the number of P(0); Compute e_k(t_1) = d_k(t_1) \ominus v_k(t_1) - the the disagreement set for \{P(0), P(x)\}. \Delta w(t_1) = v_i(t_1)e_k(t_1) = e_k(t_1).
```



```
w_{ki}(t_1) = v_i(t_1) = g is the
number of P(x):
d_k(t_1) = h is the number of P(0);
Compute e_k(t_1) = d_k(t_1) \oplus v_k(t_1)
- the the disagreement set for
\{P(0), P(x)\}.
\Delta w(t_1) = v_i(t_1)e_k(t_1) = e_k(t_1).
Substitutions are applied:
w_{ki}(t_2) = w_{ki}(t_1) \odot \Delta w(t_1)
and d_k(t_2) = d_k(t_1) \odot \Delta w(t_1).
```



$$w_{hk}(t_2) = w_{hk}(t_1) \oplus e_k(t_1).$$



```
w_{hk}(t_2) = w_{hk}(t_1) \oplus e_k(t_1).

w_{ik}(t_2) = v_i(t_2) = g is the number of P(0);

d_k(t_2) = g is the number of P(0).
```



```
w_{hk}(t_2) = w_{hk}(t_1) \oplus e_k(t_1).

w_{ik}(t_2) = v_i(t_2) = g is the number of P(0);

d_k(t_2) = g is the number of P(0).

v_i(t_2) \ominus d_k(t_2) = \emptyset. This means that we set e_k(t_2) = 0.
```



$$w_{hk}(t_3) = w_{hk}(t_2) \oplus 0;$$
  
 $v_h(t_3) = w_{hk}(t_3).$   
When  $v_h$  starts and ends with 0, computation stops.

#### **Conclusions**

#### Properties of these neural networks

- First-order atoms are embedded directly into a neural network.
- Neural networks are finite and give deterministic results, comparing with infinite layers needed to perform substitutions in T<sub>P</sub>-neural networks.
- Unification algorithm is performed as an adaptive process, which corrects one piece of data relatively to the other piece of data.

#### Conclusions

#### Discussion

- Does the main theorem really define a connectionist neural network?
- Does the network really learn?
- Can we use these networks for massively parallel computations?
- What is the significance of these neural networks?

#### Future Work

• Practical implementations of SLD neural networks.

#### Future Work

- Practical implementations of SLD neural networks.
- Theoretical development:
  - SLD neural networks allow higher-order generalisations.
  - ...can therefore be extended to higher-order Horn logics, hereditary Harrop logics...
  - ...can be extended to non-classical logic programs: linear, many-valued, etc...
  - Inductive logic and SLD neural networks.
  - Try proof methods such as sequent calculus and tableaux instead of SLD-resolution...

# My Super-Wish-List

#### I wish..

- ...to use parallelism of NNs in implementations of SLD-resolution, and thus to show that these Neural networks bring computational advantage to proof theory.
  - \* Undecidability of second-order unification would be a target...

# My Super-Wish-List

#### I wish..

- ...to use parallelism of NNs in implementations of SLD-resolution, and thus to show that these Neural networks bring computational advantage to proof theory.
  - \* Undecidability of second-order unification would be a target...
- ...to show that learning laws bring advantages to computational logic...

Conclusions

Thank you!