Unification by Error-Correction

Ekaterina Komendantskaya

INRIA Sophia Antipolis, France
NeSy'08 4th International Workshop on Neural-Symbolic Learning and Reasoning
21 July 2008, Patras, Greece

Outline

(1) Motivation

Outline

(1) Motivation

(2) Background Definitions

Outline

(1) Motivation

(2) Background Definitions
(3) Unification in Neural Networks

Outline

(1) Motivation

(2) Background Definitions
(3) Unification in Neural Networks
(4) Conclusions

A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

A Simple Example

```
B
A
C}\leftarrowA,
TP}\uparrow0={B,A
lfp(TP)= TP
```


A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

A Simple Example

B
$A \leftarrow$
$C \leftarrow A, B$
$T_{P} \uparrow 0=\{B, A\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow
\end{aligned}
$$

$$
T_{P} \uparrow 0=\{P(a), R(b)\}
$$

$$
\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=
$$

$$
\{P(a), R(b), Q(a)\}
$$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow
\end{aligned}
$$

$T_{P} \uparrow 0=\{P(a), R(b)\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=$ $\{P(a), R(b), Q(a)\}$

Another Example: First-Order Case

$P(a) \leftarrow$
$Q(x) \leftarrow P(x)$
$R(b) \leftarrow$
$T_{P} \uparrow 0=\{P(a), R(b)\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=$ $\{P(a), R(b), Q(a)\}$

Another Example: First-Order Case

$P(a) \leftarrow$
$Q(x) \leftarrow P(x)$
$R(b) \leftarrow$
$T_{P} \uparrow 0=\{P(a), R(b)\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=$ $\{P(a), R(b), Q(a)\}$

Another Example: First-Order Case

$P(a) \leftarrow$
$Q(x) \leftarrow P(x)$
$R(b) \leftarrow$
$T_{P} \uparrow 0=\{P(a), R(b)\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=$ $\{P(a), R(b), Q(a)\}$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow \\
& T_{P} \uparrow 0=\{P(a), R(b)\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1= \\
& \{P(a), R(b), Q(a)\}
\end{aligned}
$$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow \\
& T_{P} \uparrow 0=\{P(a), R(b)\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1= \\
& \{P(a), R(b), Q(a)\}
\end{aligned}
$$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow \\
& T_{P} \uparrow 0=\{P(a), R(b)\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1= \\
& \{P(a), R(b), Q(a)\}
\end{aligned}
$$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow \\
& T_{P} \uparrow 0=\{P(a), R(b)\} \\
& I f p\left(T_{P}\right)=T_{P} \uparrow 1= \\
& \{P(a), R(b), Q(a)\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) \\
& \\
& T_{P} \uparrow 0=\{P(0)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow \omega= \\
& \{0, s(0), s(s(0)), \\
& s(s(s(0))), \ldots\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) \\
& \\
& T_{P} \uparrow 0=\{P(0)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow \omega= \\
& \{0, s(0), s(s(0)), \\
& s(s(s(0))), \ldots\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) \\
& \\
& T_{P} \uparrow 0=\{P(0)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow \omega= \\
& \{0, s(0), s(s(0)), \\
& s(s(s(0))), \ldots\} \\
& \text { Paradox: } \\
& \text { (computability, } \\
& \text { complexity, } \\
& \text { proof theory) }
\end{aligned}
$$

What causes the problems?

(1) We compute T_{P}-operator, which forces us to work with Herbrand base and Herbrand model;
(2) First-order atoms are not represented in the neural networks directly, instead truth values 0 and 1 are propagated.
(3) \Longrightarrow

- Only ground atoms are processed; so essentially we are able to work only with propositional case.
- Require infinitely long layers in the first-order case.
(0) Status of learning?

My Wish-List

wish for

- A Neural Theorem Prover

My Wish-List

I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T_{P}-operator),

My Wish-List

I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T_{p}-operator),
- ...able to compute (non-guarded) substitutions,

My Wish-List

I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T_{p}-operator),
- ...able to compute (non-guarded) substitutions,
- ... at least first-order,

My Wish-List

I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T_{p}-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,
- ...expandable to higher-order logics.

My Wish-List

I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T_{P}-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,
- ...expandable to higher-order logics.

I do not wish to deal with truth values and semantic operators of any sorts.

My Wish-List

I wish for

- A Neural Theorem Prover
- ...implementing a goal oriented search algorithm (as opposed to iterational method of T_{p}-operator),
- ...able to compute (non-guarded) substitutions,
- ...at least first-order,
- ...expandable to higher-order logics.

I do not wish to deal with truth values and semantic operators of any sorts.

Example

I wish to be able to distinguish/prove properties of natural numbers without listing the whole (infinite) set $\{1,2,3,4, \ldots\}$.

Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier for S if S is a singleton. A unifier θ for S is called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a substitution γ such that $\sigma=\theta \gamma$.

Example: If $S=(P(x), P(0))$, then $\theta=\{x / 0\}$ is the mgu.

Disagreement set

Disagreement set

To find the disagreement set D_{S} of S locate the leftmost symbol position at which not all atoms in S have the same symbol and extract from each atom in S the term beginning at that symbol position. The set of all such terms is the disagreement set.

Example: For $S=(Q(f(x, y)), Q(f(a, b)))$ we have $D_{S}=\{x, a\}$.

Unification algorithm

(1) Put $k=0$ and $\sigma_{0}=\varepsilon$.
(2) If $S \sigma_{k}$ is a singleton, then stop; σ_{k} is an mgu of S. Otherwise, find the disagreement set D_{k} of $S \sigma_{k}$.
(3) If there exist a variable v and a term t in D_{k} such that v does not occur in t, then put $\theta_{k+1}=\theta_{k}\{v / t\}$, increment k and go to 2 . Otherwise, stop; S is not unifiable.

Unification algorithm

(1) Put $k=0$ and $\sigma_{0}=\varepsilon$.
(2) If $S \sigma_{k}$ is a singleton, then stop; σ_{k} is an mgu of S. Otherwise, find the disagreement set D_{k} of $S \sigma_{k}$.
(3) If there exist a variable v and a term t in D_{k} such that v does not occur in t, then put $\theta_{k+1}=\theta_{k}\{v / t\}$, increment k and go to 2 . Otherwise, stop; S is not unifiable.

Unification theorem.

Functions we define and embed:

- Disagreement set: \ominus;
- Concatenation: \oplus;
- Applying the substitution: $g \odot s$.

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Error-Correction (Supervised) Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons;

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons; Error-signal: $e_{k}(t)=d_{k}(t)-v_{k}(t)$;

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons;
Error-signal: $e_{k}(t)=d_{k}(t)-v_{k}(t)$;
Error-correction learning rule: $\Delta w_{k j}(t)=\eta e_{k}(t) v_{j}(t)$.

Main Result

Theorem

Given two first-order atoms A and B, there exists a two-neuron learning neural network that performs the algorithm of unification for A and B.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{i k}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g$ is some encoding of $P(x)$;
$d_{k}\left(t_{1}\right)=h$ is some encoding of $P(0)$.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{i k}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g$ is some encoding of $P(x)$;
$d_{k}\left(t_{1}\right)=h$ is some encoding of $P(0)$.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{k i}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g$ is the number of $P(x)$;
$d_{k}\left(t_{1}\right)=h$ is the number of $P(0)$; Compute $e_{k}\left(t_{1}\right)=d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)$

- the the disagreement set for $\{P(0), P(x)\}$.

$$
v_{h}\left(t_{1}\right)^{k}=0
$$

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{k i}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g$ is the number of $P(x)$; $d_{k}\left(t_{1}\right)=h$ is the number of $P(0)$; Compute $e_{k}\left(t_{1}\right)=d_{k}\left(t_{1}\right) \ominus$ $v_{k}\left(t_{1}\right)$ - the the disagreement set for $\{P(0), P(x)\} . \quad \Delta w\left(t_{1}\right)=$ $v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right)=e_{k}\left(t_{1}\right)$.

$$
v_{h} \stackrel{\vee}{=} 0
$$

Example of Unification in Neural Networks: time $=t_{1-2}$.

$$
v_{h}\left(t_{1}\right)^{K}=0
$$

$w_{k i}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g$ is the number of $P(x)$;
$d_{k}\left(t_{1}\right)=h$ is the number of $P(0)$;
Compute $e_{k}\left(t_{1}\right)=d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)$

- the the disagreement set for $\{P(0), P(x)\}$.
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right)=e_{k}\left(t_{1}\right)$.
Substitutions are applied:
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$.

Example of Unification in Neural Networks: time $=t_{2}$.

Example of Unification in Neural Networks: time $=t_{2}$.

$$
\begin{aligned}
& w_{h k}\left(t_{2}\right)=w_{h k}\left(t_{1}\right) \oplus e_{k}\left(t_{1}\right) \\
& w_{i k}\left(t_{2}\right)=v_{i}\left(t_{2}\right)=g \text { is the num- } \\
& \text { ber of } P(0) \\
& d_{k}\left(t_{2}\right)=g \text { is the number of } P(0)
\end{aligned}
$$

Example of Unification in Neural Networks: time $=t_{2}$.

$$
\begin{aligned}
& w_{h k}\left(t_{2}\right)=w_{h k}\left(t_{1}\right) \oplus e_{k}\left(t_{1}\right) . \\
& w_{i k}\left(t_{2}\right)=v_{i}\left(t_{2}\right)=g \text { is the num- } \\
& \text { ber of } P(0) ; \\
& d_{k}\left(t_{2}\right)=g \text { is the number of } P(0) . \\
& v_{i}\left(t_{2}\right) \ominus d_{k}\left(t_{2}\right)=\emptyset . \text { This means } \\
& \text { that we set } e_{k}\left(t_{2}\right)=0 .
\end{aligned}
$$

Example of Unification in Neural Networks: time $=t_{3}$.

$$
\begin{aligned}
& w_{h k}\left(t_{3}\right)=w_{h k}\left(t_{2}\right) \oplus 0 ; \\
& v_{h}\left(t_{3}\right)=w_{h k}\left(t_{3}\right) .
\end{aligned}
$$

When v_{h} starts and ends with 0 , computation stops.

Conclusions

Properties of these neural networks

- First-order atoms are embedded directly into a neural network.
- Neural networks are finite and give deterministic results, comparing with infinite layers needed to perform substitutions in T_{P}-neural networks.
- Unification algorithm is performed as an adaptive process, which corrects one piece of data relatively to the other piece of data.

Conclusions

Discussion

- Does the main theorem really define a connectionist neural network?
- Does the network really learn?
- Can we use these networks for massively parallel computations?
- What is the significance of these neural networks?

Future Work

- Practical implementations of SLD neural networks.

Future Work

- Practical implementations of SLD neural networks.
- Theoretical development:
- SLD neural networks allow higher-order generalisations.
- ...can therefore be extended to higher-order Horn logics, hereditary Harrop logics...
- ...can be extended to non-classical logic programs: linear, many-valued, etc...
- Inductive logic and SLD neural networks.
- Try proof methods such as sequent calculus and tableaux instead of SLD-resolution...

My Super-Wish-List

I wish...

- ...to use parallelism of NNs in implementations of SLD-resolution, and thus to show that these Neural networks bring computational advantage to proof theory.
* Undecidability of second-order unification would be a target...

My Super-Wish-List

I wish...

- ...to use parallelism of NNs in implementations of SLD-resolution, and thus to show that these Neural networks bring computational advantage to proof theory.
* Undecidability of second-order unification would be a target...
- ...to show that learning laws bring advantages to computational logic...

Thank you!

