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Motivation 

Classical Problems of Neural- 
Symbolic Integration
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Neural-Symbolic Integration

The symbolic-subsymbolic distinction
There is an obvious tension between symbolic and subsymbolic 
representations. 

Symbolic Approaches Subsymbolic Approaches

Methods Mainly logical  and / or algebraic Mainly analytic

Strengths Productivity, recursion, compositionality Robustness, learning, parsimony, 
adaptivity

Weaknesses Consistency constraints, lower cognitive 
abilities

Opaqueness, higher cognitive 
abilities

Applications Reasoning, problem solving, planning etc. Learning, motor control, vision etc. 

Relation to Neurobiology Not biologically inspired Biologically inspired

Other Features Crisp Fuzzy
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Problems of Integration

A major problem of the modeling of predicate logic theories with
connectionist systems is the treatment of variables (variable binding 
problem).

Blue small cars: car(X), color(X,blue), size(X,small).
A neural representation needs to have a method of binding, for 
example, the color blue with the size small.

Another problem: How can values of variables be represented 
which can be changed during reasoning processes?
Etc.

There are several approaches to address the variable binding 
problem in connectionist systems.

But there is no uncontroversial solution yet. 
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Examples of Proposed 
Solutions

Examples of solving the variable binding problem:
Sign propagation: Lange & Dyer (1989), Sun & Waltz (1991)

Pre-wired static representation
Dynamical localist representations: Barnden (1989)

Hard-wired network is used to manage the array of registers (working 
memory).

Distributed representations used for resolution: Browne & Sun (1999)
The symbolic representations of pre-unification term pairs and 
unification results are transformed into distributed representations on 
the hidden layers of autoassociators.

Tensor product representations: Smolensky, 1990
Variable-value pairs are represented by the tensor product of the 
vector representing the variable and the vector representing the value.
Exponentially increasing number of elements to represent bindings.
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Examples of Proposed 
Solutions

Holographically reduced representations. 
Plate, Gayler, Levy, Kanerva, Arathorn and others. 
Avoid the exponential explosion of the vector space dimensionality. 

Modeling the semantics of logic programs with neural networks 
(“core method”)

Probably the best-known approach. 
Classical papers by Hitzler, Hölldobler, Bader, Witzel and other. 
Approximation of a model for logic programs using recurrent networks.

Applications of neural-symbolic representations for non-classical 
logics

Work by Artur D’Avila Garcez, Dov Gabbay, Ekaterina 
Komendantskaya and others. 
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Problems of Integration

More abstractly there are problems of learning 
heterogeneous data structures with connectionist 
systems. 

Due to the fact that the model-theoretic interpretation of logical 
formulas is heterogeneous, it is not obvious how to implement 
interpretation functions.

A further problem is the compositional nature of logic 
theories. 
There may be a confusion what it means to learn a 
logical theory. 

In analogy to the lively discussion of the possibility of 
language learning, learning logical theories seems to be a 
natural question. 
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Logic and Models

Some Well-Known Things
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Logic: Syntax and Semantics

The classical way of doing logic is to distinguish syntax and 
semantics of logical theories. 

Predicate logic
Syntax Semantics

Constants a, b,… [[a]] ∈

 

U
Variables x, y,… [[x]] ∈

 

U
Functions f [[f]] : U

 

×

 

… ×

 

U

 

→ U
Terms f(t1 ,…,tn ) [[f(t1 ,…,tn )]] = [[f]]([[t1 ]],…,[[tn ]])
Predicates p [[p]] ⊆

 

U

 

×

 

… ×

 

U
Atomic formulas p(t1 ,…,tn ) ([[t1 ]],…,[[tn ]]) ∈

 

[[p]]
Formulas ¬A, A∨B, A∧B [[¬A]] = true iff [[A]] = false,…

∀xA, ∃xA [[∀x A]] = true iff [[A]]x=e = true for all e ∈

 

U

Kai-Uwe Kühnberger

Universität Osnabrück

School of Computer Science, University of St. Andrews

March 18th, 2009



Logic: Syntax and Semantics

Model
A structure M = <U,[[.]]> with [[ϕ]] = true is called a model for ϕ
(M |= ϕ). 

Validity
If every structure M is a model for ϕ we call ϕ valid (|= ϕ).

Satisfiability
If there exists a model M for ϕ we call ϕ satisfiable. 

Logical Consequence
A formula ϕ is a logical consequence (or a logical entailment) of 
A = {A1,...,An}, if each model for A is also a model for ϕ (A |= ϕ)

Fundamental theorem of FOL 
A |= ϕ iff A |- ϕ. 
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Abstract Models

model

ask ϕ

answer:
yes / no

symbolic
knowledge

A

if A |= ϕ

 

then answer(ask ϕ) = yes
if A |= ¬ϕ

 

then answer(ask ϕ) = no
else answer(ask ϕ) = yes or no
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Abstract Models

model

ask ϕ

answer:
yes / no

symbolic
knowledge

A

if answer(ask ϕ) = yes then not[A |= ¬ϕ]
if answer(ask ϕ) = no then not[A |= ϕ]
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∀x: C(x,x)
∀x,y: C(x,y) → C(y,x)
∀x,y: P(x,y) ↔ ∀z: (C(z,x) → C(z,y))
∀x,y: O(x,y) ↔ ∃z: (P(z,x) ∧ P(z,y))
∀x,y: DC(x,y) ↔ ¬C(x,y)
∀x,y: EC(x,y) ↔ C(x,y) ∧ ¬O(x,y)
∀x,y: PO(x,y) ↔ O(x,y) ∧ ¬P(x,y) ∧ ¬P(y,x)
∀x,y: EQ(x,y) ↔ P(x,y) ∧ P(y,x)
∀x,y: PP(x,y) ↔ P(x,y) ∧ ¬P(y,x)
∀x,y: TPP(x,y) ↔ PP(x,y) ∧ ∃z(EC(z,x) ∧ EC(z,y))
∀x,y: TPPI(x,y) ↔ PP(y,x) ∧ ∃z(EC(z,y) ∧ EC(z,x))
∀x,y: NTPP(x,y) ↔ PP(x,y) ∧ ¬∃z(EC(z,x) ∧ EC(z,y))
∀x,y: NTPPI(x,y) ↔ PP(y,x) ∧ ¬∃z(EC(z,y) ∧ EC(z,x))

What is the ‘meaning’ of these 
Axioms?

Kai-Uwe Kühnberger

Universität Osnabrück

School of Computer Science, University of St. Andrews

March 18th, 2009



∀x,y,z: NTPP(x,y) ∧ NTPP(y,z) → NTPP(x,z)

Easy to see if we look at models!

Is This a Theorem?
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Relations of Regions of the RCC-8

(a canonical model: n-dimensional closed discs)
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∀x,y,z: NTPP(x,y) ∧ NTPP(y,z) → NTPP(x,z)

Is This a Theorem?

zyx
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The Definition of a Category
A category C is defined as a 6-tuple C = <ObjC,ArC,°C,dom,codom,id>

ObjC: class of objects
ArC: class of arrows (between objects)
°C: concatenation of arrows (associative)
dom, codom: defined on arrows (domain and codomain)
id: for each object b ∈ ObjC: idb: b → b, such that for each f: a → b and 
g: b → c, it holds: idb ° f = f and g ° idb = g

aa bb

dd cc

ff

gg

gg°ff
kk°gg°ff = h= h

kk

kk°gg

idid bb
idid aa

idid ccidid dd
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The Idea of a Topos
An example of a topos is the category SET

Objects are sets, arrows are set-theoretic functions
A topos is a special type of category

It has a final object “!”
For every c ∈ ObjC there exists a unique !c: c → !
For sets the one-element set {*} is final

Products (and coproducts)
a ← a × b → b with a × b Cartesian product and the corresponding projections

Limits and colimits
In particular, the generalization of products called a pullback is important

Exponents
For all a → cb there is a unique a × b → c

A subobject classifier
true: ! → Ω where Ω is a truth value object (in SET a two-element set)
Intuition: the subobject classifier allows the characterization of subobjects by 
predicates (or characteristic functions)
Subsets in SET can be represented by characteristic functions
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Abstract Models

What do we need for an interpretation?
A universe U (if we have a sorted logic, a universe for every sort) 
Constants c : 0-arity functions

[[c]] : U 0 → U
Function symbols f : Products of the universe + functions

[[f]] : Un → U
Relation symbols p : 

Subsets of (products of) the universe
Truth-values: Ω = {0,1}
Functions from products of the universe to truth-values

[[p(x1,…,xn)]] : Un → Ω
[[true]], [[false]]: U0 → Ω
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Abstract Models
Extensions of predicates / generalization of the subset concept

! := U0 

ΩUn

[[ϕ(x1 , ..., xn )]]
= char(ext(ϕ))

extension(ϕ)

trueone-to-one
correspondence

(the one and only
possible function) 

ext(ϕ)
For each monic arrow 
ext(ϕ) there is a unique
arrow char(ext(ϕ)) 
such that the diagram 
is a pullback. 

characteristic function
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Abstract Models
What do we need for an interpretation (cont.)

Quantifiers (Q ∈{∀,∃}):
A method for handling variables: currying
Qy1,...,yk: ϕ(x1,...,xn,y1,..., yk) = ψ(x1,...,xn) 

[[ϕ(x1,...,xn,y1,..., yk)]]: Un+k →Ω

[[Q y1,...,yk: ϕ(x1,...,xn,y1,...,yk)]]: Un →Ω

(There is a one-to-one mapping)

[[Qy1,...,yk ]] :ΩU n+k

→ΩU n

U n →Ω⇔U 0 = {()} = !→ΩU n
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Abstract Models

What do we get:
All interpretations of expressions or terms are functions between sets.

We never refer to the inner structure of functions and sets (i.e. we never refer 
to elements).

The only operation we use on functions is composition.

The properties of the functions and sets we use are expressed by equations 
of the form f o g = h

We assume that there are 
Products (of sets; including the empty product), 

Exponents (of sets), 

The possibility of expressing subsets by characteristic functions

(Probably a bit more)
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Logic and Topoi

A structure defined by exactly these properties is (simplified) know as a Topos:
A category of objects and arrows with

Products

Coproducts

Exponents

A subobject classifier

From the category theory point of view objects and arrows
are atomic 

and are specified only by their behavior relative to other objects and arrows 
expressed by equations.

To evaluate an expression all that is needed is the composition operation.

Most of the necessary constructions can be found in (Goldblatt, 1979).
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Logic and Topoi
Universal closure:
if ∀x : ϕ(x) is an axiom then the following diagram commutes

! 

Ωa ϕ(x)

a

trueid

!a

!a

This is a very restricted version of universal quantification, a general one is possible, but 
involves exponents and pullbacks

∀ϕ(x) = true ⇔ ϕ(x) = !a 
o true
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Logic and Topoi
What do we need for an interpretation (cont.)

Logical connectives: functions from truth-values to truth-values
[[∧]], [[∨]], [[→]] : Ω × Ω → Ω [[¬]] : Ω → Ω

Complex formulas:
[[¬ϕ]] = [[¬]] o [[ϕ]] 

[[ϕ(x1,...,xn) op ψ(x1,...,xn)]] = [[op]] o [[ϕ]] × [[ψ]]

Here [[ϕ]] × [[ψ]] refers to the product function:

For logical operators it is possible
to specify commuting diagrams
determining their Topos
interpretations. 

Ω×Ω

[[ϕ]] 

Un

Ω

Ω

[[ψ]] 

[[ϕ]] × [[ψ]]
Ω

[[op]] 
π1

π2
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A Simple Example

The theory consists of the following rules
Facts 

Socrates is human
The robot is not human

Rules
All humans are mortal
All mortal beings ascend to heaven
All beings in heaven are angels

We want to deduce that Socrates is an angel
What about the robot? And what about an object something
(where nothing is known about object something)?
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Abstract Models

The Socrates example:
∀x : human(x) → mortal(x) ⇒ -> o (human x mortal) = true o!
human(sorates) ⇒ human o socrates = true

!

U

Ω

Ω

Ω

human

mortal

socrates
→

true

true

!

Ω × Ω

U

π1

π2

id

! 
+ all the other equations
in the diagram
(every triangle corresponds
to an equation)

+ universality of the product:
(human o socrates)

x (mortal o socrates) =
(human x mortal) o socrates

mortal o socrates 
= true ?
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A Programming Language LT

LT Intended Interpretation
! terminal object ! = U0

$$ truth-value object Ω
u universe U

F :: X ---> Y definition of an arrow F
t,f :: ! ---> $$ truth-values true and false

X ×

 

Y product object/arrow of X and Y
X o Y composition of arrows X and Y

! :: _ ---> ! terminal arrows
X :: X ---> X Identities

X = Y equation between arrows X and Y
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Architecture

The account has the following general architectureThe account has the following general architecture

LogicLogic

Classical Classical 
logical logical 
languagelanguage

ToposTopos

Objects   Objects   
and arrowsand arrows

Equations in Equations in 
normal form normal form 
f f °°

 

g = hg = h

Identifying Identifying 
arrows in arrows in 
the the topostopos

Neural Neural 
networknetwork

LearningLearning

Prolog Prolog 
programprogram

The logic Input is The logic Input is 
translated into a translated into a 

variablevariable--free free 
representation.representation.

In the learning phase, the generated In the learning phase, the generated 
equations are used to train the neural equations are used to train the neural 
network.network.

A PROLOG program A PROLOG program 
generates equations generates equations 

(induced by the (induced by the 
TOPOS).TOPOS).
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Neural Learning

In order to enable the neural network to learn, some objects and arrows 
have (fixed) representations:

true  ~ (1.0,0.0,0.0,.....)
false  ~ (0.0,1.0,0.0,.....)

The truth values true and false are considered to be distinct.
All other objects and arrows are initialized with random values.

The input of the network represents two arrows:
Domain of the first arrow
Representation of the first arrow
Codomain of the first arrow
Representation of the second arrow
Codomain of the second arrow

The network is a feedforward network learning by backpropagation. 

Kai-Uwe Kühnberger

Universität Osnabrück

School of Computer Science, University of St. Andrews

March 18th, 2009



The Network

Objects: points in [0,1]Objects: points in [0,1]n

Arrows: points in Arrows: points in [0,1][0,1]n +

domain and domain and codomaincodomain

Computing: a2 o a1 = bComputing: a2 o a1 = b

The input is represented The input is represented 
by weights from the by weights from the 
initial node with initial node with 
activation 1activation 1
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Example Code

“Background”

!. # the terminal object
$$. # the truth value object
u. # the universe
static t:: ! ---> $$. # true
static f:: ! ---> $$. # false
not::      $$ ---> $$. # negation
->::   $$ x $$ ---> $$. # implication
not o t = f. 
not o f = t.
-> o t x t = t.
-> o t x f = f.
-> o f x t = t.
-> o f x f = t.
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Example Code

# predicates of the theory
human, mortal, heaven, angel:: u ---> $$.
define X ==> Y:: -> o X x Y o d u = t o !.
human ==> mortal.
mortal ==> heaven.
heaven ==> angel.
#individuals
distinctive
socrates, robot, something:: ! ---> u.
human o socrates = t.
human o robot = f.

# test the learned theory
mortal o something = t,
mortal o something = f,
mortal o robot = t,
mortal o robot = f,
mortal o socrates = t,
mortal o socrates = f,
heaven o something = t,
heaven o something = f,
heaven o socrates = t,
heaven o socrates = f,
heaven o robot = t,
heaven o robot = f,
angel o something = t,
angel o something = f,
angel o socrates = t,
angel o socrates = f,
angel o robot = t,
angel o robot = f.

The Socrates example

(generates ~100 equations)
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The Socrates Example
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heaven. 

Something is 
in heaven. 

Maximal 
error. 

Socrates is 
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Conclusions

Consequences for Cognitive Science

Solving inference task without an inference system 
Cognitive psychology often claims that humans are no inference 
machines but reason in models 
Connectionist learning of logic learns models of a theory but does not 
deduce anything

Time critical decisions
A nice property of a trained neural network is the fact that it needs 
nearly no time to answer a query
Even for time critical applications logic-based theories can be used

Uniformity
The network topology is fixed
Therefore, no construction of a new network is necessary if new input 
must be learned
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Conclusions

We sketched a framework for coding first-order logical 
inferences on the neural level.
The architecture is robust because queries can be 
answered by the network even though no complete 
information may be available.
Even in time-critical situations the network is able to 
answer. 
The architecture gives a first idea how an interaction 
between the symbolic and the neural level can be 
achieved. 
The architecture is cognitively more plausible than pure 
symbolic or sub-symbolic approaches. 
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Integrated Memory 

The topos level establishes a semi-symbolic level 
between the logical representation and the neural 
representation. 
Memory is coded implicitly by the topos constructions, 
and the weights of the neural network. 
Notice that not only an input is learned but an 
approximation of a logical model. 
The training is one-directional: from logical expressions, 
the neural representation is gained. 
The other direction, namely an extraction of rules from a 
trained network is currently not possible; nevertheless the 
network can be queried. 
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Thank you very much!!
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