The Algorithms of Unification and SLD Resolution in Neural Networks

Ekaterina Komendantskaya

INRIA Sophia Antipolis, France

A talk in Universities of St.Andrews, Bath, Imperial College 3 - 6 March 2008

1 Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

1 Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

2 SLD-resolution

1 Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

2 SLD-resolution

3 First-Order Deduction in Neural networks

Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

2 SLD-resolution

First-Order Deduction in Neural networks

Symbolic Logic as Deductive System

Axioms:
$$(A \supset (B \supset A));$$

 $(A \supset (B \supset C)) \supset$
 $((A \supset B) \supset (A \supset C));$
 $(\neg \neg A \supset A);$
 $((\forall xA) \supset S_t^xA);$
 $\forall x(A \supset B) \supset$
 $(A \supset \forall xB);$
Rules:
 $\frac{A \supset B, A}{B}; \frac{A}{\forall xA}.$

Neural Networks

Motivation

Symbolic Logic as Deductive System

Axioms:
$$(A \supset (B \supset A));$$

 $(A \supset (B \supset C)) \supset$
 $((A \supset B) \supset (A \supset C));$
 $(\neg \neg A \supset A);$
 $((\forall xA) \supset S_t^x A);$
 $\forall x(A \supset B) \supset$
 $(A \supset \forall xB);$
Rules:
 $\frac{A \supset B, A}{B}; \frac{A}{\forall xA}.$

- spontaneous behavior;
- learning and adaptation

Logic Programs

•
$$A \leftarrow B_1, \ldots, B_n$$

Logic Programs

•
$$A \leftarrow B_1, \ldots, B_n$$

•
$$T_P(I) = \{A \in B_P : A \leftarrow B_1, \dots, B_n$$

is a ground instance of a clause in P and $\{B_1, \dots, B_n\} \subseteq I\}$

Logic Programs

• $A \leftarrow B_1, \ldots, B_n$

•
$$T_P(I) = \{A \in B_P : A \leftarrow B_1, \dots, B_n$$

is a ground instance of a clause in P and $\{B_1, \dots, B_n\} \subseteq I\}$

 lfp(T_P ↑ ω) = the least Herbrand model of P.

Logic Programs

- $A \leftarrow B_1, \ldots, B_n$
- $T_P(I) = \{A \in B_P : A \leftarrow B_1, \dots, B_n$ is a ground instance of a clause in P and $\{B_1, \dots, B_n\} \subseteq I\}$
- lfp(T_P ↑ ω) = the least Herbrand model of P.

Conclusions and Future Work

An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer recurrent neural network which computes T_P .

An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer recurrent neural network which computes T_P .

- No learning or adaptation;
- First-order atoms are not represented in the neural networks directly, and only truth values 0 and 1 are propagated.
- Require infinitely long layers in the first-order case.

$$\begin{array}{l} B \leftarrow \\ A \leftarrow \\ C \leftarrow A, B \end{array}$$

$$T_P \uparrow 0 = \{B, A\}$$

$$lfp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

First-Order Deduction in Neural networks

Conclusions and Future Work

A Simple Example

$$T_P \uparrow 0 = \{B, A\}$$

$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

First-Order Deduction in Neural networks

Conclusions and Future Work

A Simple Example

 $B \leftarrow$ $A \leftarrow$ $C \leftarrow A, B$ $T_P \uparrow 0 = \{B, A\}$ $Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$B \leftarrow A \leftarrow C \leftarrow A, B$$
$$T_P \uparrow 0 = \{B, A\}$$
$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$B \leftarrow A \leftarrow C \leftarrow A, B$$
$$T_P \uparrow 0 = \{B, A\}$$
$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$B \leftarrow A \leftarrow C \leftarrow A, B$$
$$T_P \uparrow 0 = \{B, A\}$$
$$Ifp(T_P) = T_P \uparrow 1 = \{B, A, C\}$$

Another Example: First-Order Case

$$P(a) \leftarrow Q(x) \leftarrow P(x) \ R(b) \leftarrow$$

Another Example: First-Order Case

 $P(a) \leftarrow Q(x) \leftarrow P(x) R(b) \leftarrow$

Another Example: First-Order Case

 $P(a) \leftarrow Q(x) \leftarrow P(x) R(b) \leftarrow$

Another Example: First-Order Case

 $P(a) \leftarrow Q(x) \leftarrow P(x) R(b) \leftarrow$

Another Example: First-Order Case

 $P(a) \leftarrow Q(x) \leftarrow P(x) R(b) \leftarrow$

$$P(a) \leftarrow P(x) \leftarrow$$

$$P(a) \leftarrow$$

$$Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow$$

$$T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 =$$

$$\{P(a), R(b), Q(a)\}$$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$P(a) \leftarrow$$

$$Q(x) \leftarrow P(x)$$

$$R(b) \leftarrow$$

$$T_P \uparrow 0 = \{P(a), R(b)\}$$

$$Ifp(T_P) = T_P \uparrow 1 =$$

$$\{P(a), R(b), Q(a)\}$$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$P(a) \leftarrow Q(x) \leftarrow P(x) \\ R(b) \leftarrow T_P \uparrow 0 = \{P(a), R(b)\} \\ lfp(T_P) = T_P \uparrow 1 = \{P(a), R(b), Q(a)\}$$

Example 3

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$

$$T_{P} \uparrow 0 = \{P(0)\} \\ lfp(T_{P}) = T_{P} \uparrow \omega = \\ \{0, s(0), s(s(0)), \\ s(s(s(0))), \ldots\} \end{cases}$$

Example 3

$$P(0) \leftarrow$$

$$P(s(x)) \leftarrow P(x)$$

$$T_P \uparrow 0 = \{P(0)\}$$

$$Ifp(T_P) = T_P \uparrow \omega =$$

$$\{0, s(0), s(s(0)),$$

$$s(s(s(0))), \ldots\}$$

Example 3

 $P(0) \leftarrow$ $P(s(x)) \leftarrow P(x)$ $T_P \uparrow 0 = \{P(0)\}$ $lfp(T_P) = T_P \uparrow \omega =$ $\{0, s(0), s(s(0)), \}$ $s(s(s(0))), ...\}$ Paradox: (computability, complexity, proof theory)

Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier for S if S is a singleton. A unifier θ for S is called a *most general unifier* (mgu) for S if, for each unifier σ of S, there exists a substitution γ such that $\sigma = \theta \gamma$.

Example: If S = (P(x), P(0)), then $\theta = \{x/0\}$ is the mgu.

Disagreement set

Disagreement set

To find the *disagreement set* D_S of S locate the leftmost symbol position at which not all atoms in S have the same symbol and extract from each atom in S the term beginning at that symbol position. The set of all such terms is the disagreement set.

Example: For S = (Q(f(x, y)), Q(f(a, b))) we have $D_S = \{x, a\}$.

Unification algorithm

- Put k = 0 and $\sigma_0 = \varepsilon$.
- If $S\sigma_k$ is a singleton, then stop; σ_k is an mgu of S. Otherwise, find the disagreement set D_k of $S\sigma_k$.
- If there exist a variable v and a term t in D_k such that v does not occur in t, then put θ_{k+1} = θ_k{v/t}, increment k and go to 2. Otherwise, stop; S is not unifiable.

Unification algorithm

- Put k = 0 and $\sigma_0 = \varepsilon$.
- 2 If $S\sigma_k$ is a singleton, then stop; σ_k is an mgu of S. Otherwise, find the disagreement set D_k of $S\sigma_k$.
- If there exist a variable v and a term t in D_k such that v does not occur in t, then put θ_{k+1} = θ_k{v/t}, increment k and go to 2. Otherwise, stop; S is not unifiable.

Unification theorem.

First-Order Deduction in Neural networks

Conclusions and Future Work

SLD-resolution - Example

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$
First-Order Deduction in Neural networks

Conclusions and Future Work

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$

$$G_0 = \leftarrow P(x).$$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$P(0) \leftarrow P(s(x)) \leftarrow P(x)$$

1
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}.$

Conclusions and Future Work

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$.

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

Conclusions and Future Work

SLD-resolution - Example

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

●
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

 $G_0 = \leftarrow P(x).$

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

$$G_0 = \leftarrow P(x). \ S = \{P(x), P(s(x))\}.$$

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

○
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

②
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(s(x))\}$. $D_S = \{x, s(x)\}$. Put $\theta_1 = x/s(x)$.

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

2
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(s(x))\}$. $D_S = \{x, s(x)\}$. Put $\theta_1 = x/s(x)$. $S\theta_1 = \{P(s(x))\}$ is a singleton.

Conclusions and Future Work

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

2
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(s(x))\}$. $D_S = \{x, s(x)\}$. Put $\theta_1 = x/s(x)$. $S\theta_1 = \{P(s(x))\}$ is a singleton. $G_1 = \leftarrow P(s(x))$.

Conclusions and Future Work

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

2
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(s(x))\}$. $D_S = \{x, s(x)\}$. Put $\theta_1 = x/s(x)$. $S\theta_1 = \{P(s(x))\}$ is a singleton. $G_1 = \leftarrow P(s(x))$. $S = \{P(s(x)), P(s(x))\}$. $D_S = \{\emptyset\}$.

$$\begin{array}{rcl} P(0) & \leftarrow \\ P(s(x)) & \leftarrow & P(x) \end{array}$$

•
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(0)\}$. $D_S = \{x, 0\}$. Put $\theta_1 = x/0$. $S\theta_1 = \{P(0)\}$ is a singleton.
Answer: 0.

2
$$G_0 = \leftarrow P(x)$$
. $S = \{P(x), P(s(x))\}$. $D_S = \{x, s(x)\}$. Put $\theta_1 = x/s(x)$. $S\theta_1 = \{P(s(x))\}$ is a singleton.
 $G_1 = \leftarrow P(s(x))$. $S = \{P(s(x)), P(s(x))\}$. $D_S = \{\emptyset\}$.
 $G_2 = \leftarrow P(x)$; search can go on as in item 1 ($\theta_2 = x/0$, answer $s(0)$); or as in item 2 (answers $s(s(0)), \ldots$).

Gödel Numbers of Formulae

Each symbol of the first-order language receives a **Gödel number** as follows:

- variables x_1, x_2, x_3, \ldots receive numbers (01), (011), (0111), ...;
- constants *a*₁, *a*₂, *a*₃, ... receive numbers (21), (211), (2111), ...;
- function symbols f₁, f₂, f₃, ... receive numbers (31), (311), (3111), ...;
- predicate symbols Q₁, Q₂, Q₃, ... receive numbers (41), (411), (4111), ...;
- symbols (,) and , receive numbers 5, 6 and 7 respectively.

Operations on Gödel Numbers

• **Disagreement set**: $g_1 \ominus g_2$;

First-Order Deduction in Neural networks

Conclusions and Future Work

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2$;

- Disagreement set: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2$;
- Gödel number of substitution: $s(g_1, g_2)$;

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2$;
- Gödel number of substitution: $s(g_1, g_2)$;
- Applying the substitution: $g \odot s$;

- **Disagreement set**: $g_1 \ominus g_2$;
- Concatenation: $g_1 \oplus g_2$;
- Gödel number of substitution: $s(g_1, g_2)$;
- Applying the substitution: $g \odot s$;
- Algorithm of unification.

$$egin{aligned} p_k(t) &= \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)
ight) - \Theta_k \ v_k(t+\Delta t) &= \psi(p_k(t)) = egin{cases} 1 & ext{if} & p_k(t) > 0 \ 0 & ext{otherwise}. \end{aligned}$$

$$egin{aligned} p_k(t) &= \left(\sum_{j=1}^{n_k} w_{kj} v_j(t)
ight) - \Theta_k \ v_k(t+\Delta t) &= \psi(p_k(t)) = egin{cases} 1 & ext{if} & p_k(t) > 0 \ 0 & ext{otherwise}. \end{aligned}$$

Unification in Neural Networks

Claim 1

Unification Algorithm can be performed in finite (and very small) neural networks with error-correction learning.

First-Order Deduction in Neural networks

Conclusions and Future Work

Error-Correction (Supervised) Learning

Error-Correction (Supervised) Learning

We embed a new parameter, **desired response** d_k into neurons;

Error-Correction (Supervised) Learning

We embed a new parameter, **desired response** d_k into neurons; **Error-signal**: $e_k(t) = d_k(t) - v_k(t)$;

Error-Correction (Supervised) Learning

We embed a new parameter, **desired response** d_k into neurons; **Error-signal**: $e_k(t) = d_k(t) - v_k(t)$; **Error-correction learning rule**: $\Delta w_{ki}(t) = \eta e_k(t)v_i(t)$.

Main Lemma

Lemma

Given two first-order atoms A and B, there exists a two-neuron learning neural network that performs the algorithm of unification for A and B.

Example of Unification in Neural Networks: time $= t_1$.

 $w_{ik}(t_1) = v_i(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0).

First-Order Deduction in Neural networks

Conclusions and Future Work

Example of Unification in Neural Networks: time $= t_1$.

 $w_{ik}(t_1) = v_i(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0).

Motivation SLD-resolution

Example of Unification in Neural Networks: time $= t_1$.

 $w_{ki}(t_1) = v_i(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0); Compute $e_k(t_1) = s(d_k(t_1) \oplus v_k(t_1))$ - the Gödel number of substitution for the disagreement set $d_k(t_1) \oplus v_k(t_1)$.

Motivation SLD-resolution

First-Order Deduction in Neural networks

Conclusions and Future Work

Example of Unification in Neural Networks: time $= t_1$.

 $w_{ki}(t_1) = v_k(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0); $e_k(t_1) = s(d_k(t_1) \ominus v_k(t_1))$ the Gödel number of substitution for the disagreement set $d_k(t_1) \ominus v_k(t_1);$ $\Delta w(t_1) = v_i(t_1)e_k(t_1) =$ $e_k(t_1)$.

Motivation SLD-resolution

First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time $= t_1$.

 $\hat{e}_{k_1}(t_1)$ h_1

 $w_{ki}(t_1) = v_k(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0); $e_k(t_1) = s(d_k(t_1) \ominus v_k(t_1))$ the Gödel number of substitution x_1/a_1 ; $\Delta w(t_1) = v_i(t_1)e_k(t_1);$ Substitutions are applied: $w_{ki}(t_2) = w_{ki}(t_1) \odot \Delta w(t_1)$ and $d_k(t_2) = d_k(t_1) \odot \Delta w(t_1)$.

Motivation SLD-resolutio

First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time $= t_{1-2}$.

 $e_k(t_1)$ h

 $w_{ki}(t_1) = v_k(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0); $e_k(t_1) = s(d_k(t_1) \ominus v_k(t_1))$ the Gödel number of substitution x_1/a_1 ; $\Delta w(t_1) = v_i(t_1)e_k(t_1);$ The substitutions are applied: $w_{ki}(t_2) = w_{ki}(t_1) \odot \Delta w(t_1)$ and $d_k(t_2) = d_k(t_1) \odot \Delta w(t_1)$.
Motivation SLD-resolutio

First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time $= t_{1-2}$.

 $e_k(t_1$

 $w_{ki}(t_1) = v_k(t_1) = g_6$ is the Gödel number of P(x); $d_k(t_1) = g_1$ is the Gödel number of P(0); $e_k(t_1) = s(d_k(t_1) \ominus v_k(t_1))$ the Gödel number of substitution x_1/a_1 ; $\Delta w(t_1) = v_i(t_1)e_k(t_1);$ The substitutions are applied: $w_{ki}(t_2) = w_{ki}(t_1) \odot \Delta w(t_1)$ and $d_k(t_2) = d_k(t_1) \odot \Delta w(t_1)$. $w_{hk}(t_2) = w_{hk}(t_1) \oplus e_k(t_1).$

First-Order Deduction in Neural networks

Conclusions and Future Work

Example of Unification in Neural Networks: time $= t_2$.

 $w_{ik}(t_2) = v_i(t_2) = g_6$ is the Gödel number of P(0); $d_k(t_2) = g_7$ is the Gödel number of P(0).

Conclusions and Future Work

Example of Unification in Neural Networks: time $= t_2$.

 $w_{ik}(t_2) = v_i(t_2) = g_6$ is the Gödel number of P(0); $d_k(t_2) = g_7$ is the Gödel number of P(0). $v_i(t_2) \ominus d_k(t_2) = \emptyset$. This means that we set $e_k(t_2) = 0$.

Example of Unification in Neural Networks: time $= t_3$.

$$w_{hk}(t_3) = w_{hk}(t_2) \oplus 0;$$

 $v_h(t_3) = w_{hk}(t_3).$
When v_h starts and ends with
0, computation stops.

Preliminary conclusions

Properties of these neural networks

- First-order atoms are embedded directly into a neural network via Gödel numbers.
- Neural networks are finite and give deterministic results, comparing with infinite layers needed to perform substitutions in [HK94].
- Unification algorithm is performed as an adaptive process, which corrects one piece of data relatively to the other piece of data.

Main theorem

Theorem

Let P be a definite logic program and G be a definite goal. Then there exists a 3-layer recurrent neural network which computes the Gödel number s of substitution θ if and only if SLD-refutation derives θ as an answer for $P \cup \{G\}$. (We will call these neural networks SLD neural networks).

First-Order Deduction in Neural networks

Conclusions and Future Work

 $P(0) \leftarrow;$ $P(s(x)) \leftarrow P(x).$

First-Order Deduction in Neural networks

Conclusions and Future Work

$$P(0) \leftarrow;$$

 $P(s(x)) \leftarrow P(x).$

First-Order Deduction in Neural networks

Conclusions and Future Work

 $P(0) \leftarrow;$ $P(s(x)) \leftarrow P(x).$

Competitive learning; Kohonen's layer

We compute additional parameter $I_i = D(\mathbf{w_i}, \mathbf{v})$, $D(\mathbf{w_i}, \mathbf{v})$ is the distance measurement function. The common choice for $D(\mathbf{w_i}, \mathbf{v})$ is the Euclidian distance $|w_i - v|$.

Competitive learning; Kohonen's layer

We compute additional parameter $I_i = D(\mathbf{w_i}, \mathbf{v})$, $D(\mathbf{w_i}, \mathbf{v})$ is the distance measurement function. The common choice for $D(\mathbf{w_i}, \mathbf{v})$ is the Euclidian distance $|w_i - v|$.

Competitive learning; Kohonen's layer

We compute additional parameter $I_i = D(\mathbf{w_i}, \mathbf{v})$, $D(\mathbf{w_i}, \mathbf{v})$ is the distance measurement function. The common choice for $D(\mathbf{w_i}, \mathbf{v})$ is the Euclidian distance $|w_i - v|$.

We use a reduced form of this learning rule. With $I_i = i$, we use it to encode the order of clauses; and hence the priority among neurons.

Competitive learning; Kohonen's layer

We will denote the Kohonen's layer by $\langle \cdots \rangle$:

Conclusions and Future Work

$$G_0 = g_6 = P(x).$$

$$P(0) \leftarrow;$$

$$P(s(x)) \leftarrow P(x).$$

Conclusions and Future Work

$$G_0 = g_6 = P(x).$$

 $P(0) \leftarrow;$
 $P(s(x)) \leftarrow P(x).$

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

$$w_{ci}^{\text{new}} = w_{ci}^{\text{old}} + [v_i v_1 - w_{ci}^{\text{old}}]U(v_i), (i \in \{2,3\}),$$

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

$$w_{ci}^{\text{new}} = w_{ci}^{\text{old}} + [v_i v_1 - w_{ci}^{\text{old}}]U(v_i), (i \in \{2,3\}),$$

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

$$w_{ci}^{\text{new}} = w_{ci}^{\text{old}} + [v_i v_1 - w_{ci}^{\text{old}}]U(v_i), (i \in \{2,3\}),$$

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:

$$w_{ic}^{new} = w_{ic}(t)^{old} + [v_i v_1 - w_{ic}^{old}]U(v_i), (i \in \{2,3\}),$$

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:

$$w_{ic}^{new} = w_{ic}(t)^{old} + [v_i v_1 - w_{ic}^{old}]U(v_i), (i \in \{2,3\}),$$

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:

$$w_{ic}^{new} = w_{ic}(t)^{old} + [v_i v_1 - w_{ic}^{old}]U(v_i), (i \in \{2,3\}),$$

First-Order Deduction in Neural networks

Conclusions and Future Work

Example. Time t_1 : signals are filtered and unification initialized.

$$G_0 = g_6 = P(x).$$

 $P(0) \leftarrow;$
 $P(s(x)) \leftarrow P(x).$

First-Order Deduction in Neural networks

Conclusions and Future Work

Example. Time $t_2 - t_3$: unification.

$$egin{aligned} & g_6 = P(x), \ P(0) \leftarrow; \ P(s(x)) \leftarrow P(x). \end{aligned}$$

Conclusions and Future Work

Example. Time $t_2 - t_3$: unification.

 $\begin{array}{l} g_6 = P(x). \\ P(0) \leftarrow; \\ P(s(x)) \leftarrow P(x). \\ v_{h_1}(t_3) = 0 \oplus e_{k_1}(t_1) \oplus 0. \\ \text{That is, the output is} \\ \text{the Gödel number for} \\ \text{the substitution } x/0. \\ \text{Computations terminate.} \end{array}$

Conclusions and Future Work

$$G_0 = g_6 = P(x).$$

$$P(0) \leftarrow;$$

$$P(s(x)) \leftarrow P(x).$$

First-Order Deduction in Neural networks

Conclusions and Future Work

Example. Time $t_4 - t_6$: unification.

 $G_0 = g_6 = P(x).$ $P(0) \leftarrow;$ $P(s(x)) \leftarrow P(x).$ Using the error-correction learning, the network computes $e_{k2}(t_6)$, the Gödel number of the substitution (x/s(x)).

Conclusions and Future Work

Example. Time t_6 : next step.

 $P(0) \leftarrow;$ $P(s(x)) \leftarrow P(x).$

The signal $e_{k2}(t_6)$ is given as an output value $v_{h_2}(t_6)$; it is also used to amend and activate the weight g_2 ; the signal passes to the neuron o_1 .

First-Order Deduction in Neural networks

Conclusions and Future Work

Example. Time = t_7 . New iteration starts.

 $P(0) \leftarrow;$ $P(s(x)) \leftarrow P(x).$ The signal $g_2 \odot e_{k2}(t_6)$ is sent from the unit o_1 to the input units. It is the Gödel number of $P(x)\theta = P(s(x)).$ the signals will be filtered; and only one of them will be processed next.

First-Order Deduction in Neural networks

Conclusions and Future Work

Example. Time = t_7 . New iteration starts.

 $P(0) \leftarrow;$ $P(s(x)) \leftarrow P(x).$ The signal $g_2 \odot e_{k2}(t_6)$ is sent from the unit o_1 to the input units. It is the Gödel number of $P(x)\theta = P(s(x)).$ the signals will be filtered; and only one of them will be processed next.

Conclusions

- SLD neural networks have finite architecture, but their effectiveness is due to several learning functions.
- Unification is performed as adaptive process.
- Atoms and substitutions are represented in SLD neural networks directly, via Gödel numbers, and hence allow easier machine implementations.

Future Work

• Practical implementations of SLD neural networks.

Future Work

- Practical implementations of SLD neural networks.
- Theoretical development:
 - SLD neural networks allow higher-order generalizations.
 - ...can therefore be extended to higher-order Horn logics, hereditary Harrop logics...
 - ...can be extended to non-classical logic programs: linear, many-valued, etc...
 - Inductive logic and SLD neural networks.

Thank you!