The Algorithms of Unification and SLD Resolution in Neural Networks

Ekaterina Komendantskaya

INRIA Sophia Antipolis, France

A talk in Universities of St.Andrews, Bath, Imperial College 3-6 March 2008

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs
(2) SLD-resolution

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs
(2) SLD-resolution
(3) First-Order Deduction in Neural networks

Outline

(1) Motivation

- Neuro-Symbolic Integration
- Connectionist Neural Networks and Logic Programs
(2) SLD-resolution
(3) First-Order Deduction in Neural networks

4 Conclusions and Future Work

Motivation

Symbolic Logic as Deductive

System
(1) Axioms: $(A \supset(B \supset A))$; $(A \supset(B \supset C)) \supset$ $((A \supset B) \supset(A \supset C))$; $(\neg \neg A \supset A)$; $\left((\forall x A) \supset S_{t}^{\times} A\right)$; $\forall x(A \supset B) \supset$
$(A \supset \forall x B)$;
(2) Rules:
$\frac{A \supset B, A}{B} ; \frac{A}{\forall x A}$.

Motivation

Symbolic Logic as Deductive

Neural Networks

System

(1) Axioms: $(A \supset(B \supset A))$; $(A \supset(B \supset C)) \supset$ $((A \supset B) \supset(A \supset C))$; $(\neg \neg A \supset A)$; $\left((\forall x A) \supset S_{t}^{\times} A\right)$; $\forall x(A \supset B) \supset$
$(A \supset \forall x B)$;
(2) Rules:

$$
\frac{A \supset B, A}{B} ; \frac{A}{\forall x A} .
$$

- spontaneous behavior;
- learning and adaptation

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$
- $T_{P}(I)=\left\{A \in B_{P}\right.$:
$A \leftarrow B_{1}, \ldots, B_{n}$
is a ground instance of a clause in P and $\left.\left\{B_{1}, \ldots, B_{n}\right\} \subseteq I\right\}$

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$
- $T_{P}(I)=\left\{A \in B_{P}\right.$:
$A \leftarrow B_{1}, \ldots, B_{n}$
is a ground instance of a clause in P and $\left.\left\{B_{1}, \ldots, B_{n}\right\} \subseteq I\right\}$
- $\operatorname{lfp}\left(T_{P} \uparrow \omega\right)=$ the least Herbrand model of P.

Motivation

Logic Programs

- $A \leftarrow B_{1}, \ldots, B_{n}$
- $T_{P}(I)=\left\{A \in B_{P}\right.$:
$A \leftarrow B_{1}, \ldots, B_{n}$
is a ground instance of a clause in P and $\left.\left\{B_{1}, \ldots, B_{n}\right\} \subseteq I\right\}$
- $\operatorname{lfp}\left(T_{P} \uparrow \omega\right)=$ the least Herbrand model of P.

Artificial Neural Networks

An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer recurrent neural network which computes T_{P}.

An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer recurrent neural network which computes T_{p}.

- No learning or adaptation;
- First-order atoms are not represented in the neural networks directly, and only truth values 0 and 1 are propagated.
- Require infinitely long layers in the first-order case.

A Simple Example

$B \leftarrow$
$A \leftarrow$
$C \leftarrow A, B$
$T_{P} \uparrow 0=\{B, A\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}$

A Simple Example

$B \leftarrow$
$A \leftarrow$
$C \leftarrow A, B$
$T_{P} \uparrow 0=\{B, A\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}$

A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

A Simple Example

A Simple Example

A Simple Example

$$
\begin{aligned}
& B \leftarrow \\
& A \leftarrow \\
& C \leftarrow A, B \\
& T_{P} \uparrow 0=\{B, A\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\{B, A, C\}
\end{aligned}
$$

Another Example: First-Order Case

$$
\begin{aligned}
& P(a) \leftarrow \\
& Q(x) \leftarrow P(x) \\
& R(b) \leftarrow \\
& \\
& T_{P} \uparrow 0=\{P(a), R(b)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1= \\
& \{P(a), R(b), Q(a)\}
\end{aligned}
$$

Another Example: First-Order Case

Another Example: First-Order Case

$P(a) \leftarrow$
$Q(x) \leftarrow P(x)$
$R(b) \leftarrow$
$T_{P} \uparrow 0=\{P(a), R(b)\}$
$\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=$
$\{P(a), R(b), Q(a)\}$

Another Example: First-Order Case

```
\(P(a) \leftarrow\)
\(Q(x) \leftarrow P(x)\)
\(R(b) \leftarrow\)
\(T_{P} \uparrow 0=\{P(a), R(b)\}\)
\(\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\)
\(\{P(a), R(b), Q(a)\}\)
```


Another Example: First-Order Case

```
\(P(a) \leftarrow\)
\(Q(x) \leftarrow P(x)\)
\(R(b) \leftarrow\)
    \(T_{P} \uparrow 0=\{P(a), R(b)\}\)
\(\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\)
\(\{P(a), R(b), Q(a)\}\)
```


Another Example: First-Order Case

```
\(P(a) \leftarrow\)
\(Q(x) \leftarrow P(x)\)
\(R(b) \leftarrow\)
\(T_{P} \uparrow 0=\{P(a), R(b)\}\)
\(\operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow 1=\)
\(\{P(a), R(b), Q(a)\}\)
```


Example 3

$$
\begin{aligned}
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) \\
& \\
& T_{P} \uparrow 0=\{P(0)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow \omega= \\
& \{0, s(0), s(s(0)), \\
& s(s(s(0))), \ldots\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) \\
& \\
& T_{P} \uparrow 0=\{P(0)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow \omega= \\
& \{0, s(0), s(s(0)), \\
& s(s(s(0))), \ldots\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) \\
& \\
& T_{P} \uparrow 0=\{P(0)\} \\
& \operatorname{lfp}\left(T_{P}\right)=T_{P} \uparrow \omega= \\
& \{0, s(0), s(s(0)), \\
& s(s(s(0))), \ldots\} \\
& \text { Paradox: } \\
& \text { (computability, } \\
& \text { complexity, } \\
& \text { proof theory) }
\end{aligned}
$$

Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier for S if S is a singleton. A unifier θ for S is called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a substitution γ such that $\sigma=\theta \gamma$.

Example: If $S=(P(x), P(0))$, then $\theta=\{x / 0\}$ is the mgu.

Disagreement set

Disagreement set

To find the disagreement set D_{S} of S locate the leftmost symbol position at which not all atoms in S have the same symbol and extract from each atom in S the term beginning at that symbol position. The set of all such terms is the disagreement set.

Example: For $S=(Q(f(x, y)), Q(f(a, b)))$ we have $D_{S}=\{x, a\}$.

Unification algorithm

(1) Put $k=0$ and $\sigma_{0}=\varepsilon$.
(2) If $S \sigma_{k}$ is a singleton, then stop; σ_{k} is an mgu of S. Otherwise, find the disagreement set D_{k} of $S \sigma_{k}$.
(3) If there exist a variable v and a term t in D_{k} such that v does not occur in t, then put $\theta_{k+1}=\theta_{k}\{v / t\}$, increment k and go to 2 . Otherwise, stop; S is not unifiable.

Unification algorithm

(1) Put $k=0$ and $\sigma_{0}=\varepsilon$.
(2) If $S \sigma_{k}$ is a singleton, then stop; σ_{k} is an mgu of S. Otherwise, find the disagreement set D_{k} of $S \sigma_{k}$.
(3) If there exist a variable v and a term t in D_{k} such that v does not occur in t, then put $\theta_{k+1}=\theta_{k}\{v / t\}$, increment k and go to 2 . Otherwise, stop; S is not unifiable.

Unification theorem.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x)$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\}$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\}$. $D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0 .
(2) $G_{0}=\leftarrow P(x)$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\}$. $D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0 .
(2) $G_{0}=\leftarrow P(x) . S=\{P(x), P(s(x))\}$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0.
(2) $G_{0}=\leftarrow P(x)$. $S=\{P(x), P(s(x))\}$. $D_{S}=\{x, s(x)\}$. Put $\theta_{1}=x / s(x)$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0 .
(2) $G_{0}=\leftarrow P(x)$. $S=\{P(x), P(s(x))\}$. $D_{S}=\{x, s(x)\}$. Put $\theta_{1}=x / s(x) . S \theta_{1}=\{P(s(x))\}$ is a singleton.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0.
(2) $G_{0}=\leftarrow P(x)$. $S=\{P(x), P(s(x))\}$. $D_{S}=\{x, s(x)\}$. Put $\theta_{1}=x / s(x) . S \theta_{1}=\{P(s(x))\}$ is a singleton.
$G_{1}=\leftarrow P(s(x))$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0.
(2) $G_{0}=\leftarrow P(x)$. $S=\{P(x), P(s(x))\}$. $D_{S}=\{x, s(x)\}$. Put $\theta_{1}=x / s(x) . S \theta_{1}=\{P(s(x))\}$ is a singleton. $G_{1}=\leftarrow P(s(x)) . S=\left\{P(s(x)), P(s(x)\} . D_{S}=\{\emptyset\}\right.$.

SLD-resolution - Example

$$
\begin{aligned}
P(0) & \leftarrow \\
P(s(x)) & \leftarrow P(x)
\end{aligned}
$$

(1) $G_{0}=\leftarrow P(x) . S=\{P(x), P(0)\} . D_{S}=\{x, 0\}$. Put $\theta_{1}=x / 0 . S \theta_{1}=\{P(0)\}$ is a singleton.
Answer: 0 .
(2) $G_{0}=\leftarrow P(x) . S=\{P(x), P(s(x))\}$. $D_{S}=\{x, s(x)\}$. Put $\theta_{1}=x / s(x) . S \theta_{1}=\{P(s(x))\}$ is a singleton.
$G_{1}=\leftarrow P(s(x)) . S=\left\{P(s(x)), P(s(x)\} . D_{S}=\{\emptyset\}\right.$.
$G_{2}=\leftarrow P(x)$; search can go on as in item $1\left(\theta_{2}=x / 0\right.$, answer $s(0)$); or as in item 2 (answers $s(s(0)), \ldots$).

Gödel Numbers of Formulae

Each symbol of the first-order language receives a Gödel number as follows:

- variables $x_{1}, x_{2}, x_{3}, \ldots$ receive numbers (01), (011), (0111), ...;
- constants $a_{1}, a_{2}, a_{3}, \ldots$ receive numbers (21), (211), (2111), ...;
- function symbols $f_{1}, f_{2}, f_{3}, \ldots$ receive numbers (31), (311), (3111), ...;
- predicate symbols $Q_{1}, Q_{2}, Q_{3}, \ldots$ receive numbers (41), (411), (4111), ...;
- symbols (,) and, receive numbers 5, 6 and 7 respectively.

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}$;
- Gödel number of substitution: $s\left(g_{1}, g_{2}\right)$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}$;
- Gödel number of substitution: $s\left(g_{1}, g_{2}\right)$;
- Applying the substitution: $g \odot s$;

Operations on Gödel Numbers

- Disagreement set: $g_{1} \ominus g_{2}$;
- Concatenation: $g_{1} \oplus g_{2}$;
- Gödel number of substitution: $s\left(g_{1}, g_{2}\right)$;
- Applying the substitution: $g \odot s$;
- Algorithm of unification.

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise }\end{cases} \\
& v^{\prime \prime \prime}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise }\end{cases} \\
& v^{\prime \prime \prime}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}^{\prime}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v_{j}^{\prime}
\end{aligned}
$$

Neurons in Connectionist Neural Networks

$$
\begin{aligned}
& p_{k}(t)=\left(\sum_{j=1}^{n_{k}} w_{k j} v_{j}(t)\right)-\Theta_{k} \\
& v_{k}(t+\Delta t)=\psi\left(p_{k}(t)\right)= \begin{cases}1 & \text { if } p_{k}(t)>0 \\
0 & \text { otherwise. }\end{cases} \\
& v^{\prime \prime \prime}
\end{aligned}
$$

Unification in Neural Networks

Claim 1

Unification Algorithm can be performed in finite (and very small) neural networks with error-correction learning.

Error-Correction (Supervised) Learning

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons;

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons; Error-signal: $e_{k}(t)=d_{k}(t)-v_{k}(t)$;

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d_{k} into neurons;
Error-signal: $e_{k}(t)=d_{k}(t)-v_{k}(t)$;
Error-correction learning rule: $\Delta w_{k j}(t)=\eta e_{k}(t) v_{j}(t)$.

Main Lemma

Lemma

Given two first-order atoms A and B, there exists a two-neuron learning neural network that performs the algorithm of unification for A and B.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{i k}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g_{6}$ is the Gödel number of $P(x)$; $d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{i k}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g_{6}$ is the Gödel number of $P(x)$; $d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$.

Example of Unification in Neural Networks: time $=t_{1}$.

$$
w_{k i}\left(t_{1}\right)=v_{i}\left(t_{1}\right)=g_{6} \text { is the }
$$ Gödel number of $P(x)$; $d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$;

Compute $e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus\right.$ $\left.v_{k}\left(t_{1}\right)\right)$ - the Gödel number of substitution for the disagreement set $d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)$.
$v_{h}\left(t_{1}\right)=0$

Example of Unification in Neural Networks: time $=t_{1}$.

$$
v_{h}=0
$$

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$ is the Gödel number of $P(x)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution for the disagreement set $d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)$; $\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right)=$ $e_{k}\left(t_{1}\right)$.

Example of Unification in Neural Networks: time $=t_{1}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$ is the
Gödel number of $P(x)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution x_{1} / a_{1};
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right) ;$
Substitutions are applied:
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$.
$v_{h_{1}}\left(t_{1}\right)=0$

Example of Unification in Neural Networks: time $=t_{1-2}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$ is the
Gödel number of $P(x)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution x_{1} / a_{1};
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right) ;$
The substitutions are applied:
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$.
$v_{h}\left(t_{1}\right)^{\gamma}=0$

Example of Unification in Neural Networks: time $=t_{1-2}$.

$w_{k i}\left(t_{1}\right)=v_{k}\left(t_{1}\right)=g_{6}$ is the
Gödel number of $P(x)$;
$d_{k}\left(t_{1}\right)=g_{1}$ is the Gödel number of $P(0)$;
$e_{k}\left(t_{1}\right)=s\left(d_{k}\left(t_{1}\right) \ominus v_{k}\left(t_{1}\right)\right)-$ the Gödel number of substitution x_{1} / a_{1};
$\Delta w\left(t_{1}\right)=v_{i}\left(t_{1}\right) e_{k}\left(t_{1}\right) ;$
The substitutions are applied:
$w_{k i}\left(t_{2}\right)=w_{k i}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$
and $d_{k}\left(t_{2}\right)=d_{k}\left(t_{1}\right) \odot \Delta w\left(t_{1}\right)$.
$w_{h k}\left(t_{2}\right)=w_{h k}\left(t_{1}\right) \oplus e_{k}\left(t_{1}\right)$.
$v_{h}\left(t_{1}\right)^{K}=0$

Example of Unification in Neural Networks: time $=t_{2}$.

$w_{i k}\left(t_{2}\right)=v_{i}\left(t_{2}\right)=g_{6}$ is the Gödel number of $P(0)$; $d_{k}\left(t_{2}\right)=g_{7}$ is the Gödel number of $P(0)$.

Example of Unification in Neural Networks: time $=t_{2}$.

$w_{i k}\left(t_{2}\right)=v_{i}\left(t_{2}\right)=g_{6}$ is the Gödel number of $P(0)$;
$d_{k}\left(t_{2}\right)=g_{7}$ is the Gödel number of $P(0)$.
$v_{i}\left(t_{2}\right) \ominus d_{k}\left(t_{2}\right)=\emptyset$. This means that we set $e_{k}\left(t_{2}\right)=0$.

Example of Unification in Neural Networks: time $=t_{3}$.

$w_{h k}\left(t_{3}\right)=w_{h k}\left(t_{2}\right) \oplus 0 ;$
$v_{h}\left(t_{3}\right)=w_{h k}\left(t_{3}\right)$.
When v_{h} starts and ends with 0 , computation stops.

Preliminary conclusions

Properties of these neural networks

- First-order atoms are embedded directly into a neural network via Gödel numbers.
- Neural networks are finite and give deterministic results, comparing with infinite layers needed to perform substitutions in [HK94].
- Unification algorithm is performed as an adaptive process, which corrects one piece of data relatively to the other piece of data.

Main theorem

Theorem

Let P be a definite logic program and G be a definite goal. Then there exists a 3-layer recurrent neural network which computes the Gödel number s of substitution θ if and only if SLD-refutation derives θ as an answer for $P \cup\{G\}$. (We will call these neural networks SLD neural networks).

Example. Time $=t_{1}$.

$$
\begin{aligned}
& P(0) \leftarrow ; \\
& P(s(x)) \leftarrow P(x) .
\end{aligned}
$$

Example. Time $=t_{1}$.

$$
\begin{aligned}
& P(0) \leftarrow ; \\
& P(s(x)) \leftarrow P(x) .
\end{aligned}
$$

Example. Time $=t_{1}$.

$$
\begin{aligned}
& P(0) \leftarrow ; \\
& P(s(x)) \leftarrow P(x) .
\end{aligned}
$$

Competitive learning; Kohonen's layer

We compute additional parameter $I_{i}=D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$,
$D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$ is the distance measurement function.
The common choice for $D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$ is the Euclidian distance $\left|w_{i}-v\right|$.

Competitive learning; Kohonen's layer

We compute additional parameter $I_{i}=D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$,
$D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$ is the distance measurement function.
The common choice for $D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$ is the Euclidian distance $\left|w_{i}-v\right|$.

Competitive learning; Kohonen's layer

We compute additional parameter $I_{i}=D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$,
$D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$ is the distance measurement function.
The common choice for $D\left(\mathbf{w}_{\mathbf{i}}, \mathbf{v}\right)$ is the Euclidian distance $\left|w_{i}-v\right|$.

We use a reduced form of this learning rule. With $l_{i}=i$, we use it to encode the order of clauses; and hence the priority among neurons.

Competitive learning; Kohonen's layer

We will denote the Kohonen's layer by $<\cdots \cdots$:

Example. Time $=t_{1}$.

Example. Time $=t_{1}$.

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

$$
w_{c i}^{\text {new }}=w_{c i}^{\text {old }}+\left[v_{i} v_{1}-w_{c i}^{\text {old }}\right] U\left(v_{i}\right),(i \in\{2,3\}),
$$

where $U\left(v_{i}\right)=1$ if $v_{i}>0$ and $U\left(v_{i}\right)=0$ otherwise.

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

$$
w_{c i}^{\text {new }}=w_{c i}^{\text {old }}+\left[v_{i} v_{1}-w_{c i}^{\text {old }}\right] U\left(v_{i}\right),(i \in\{2,3\}),
$$

where $U\left(v_{i}\right)=1$ if $v_{i}>0$ and $U\left(v_{i}\right)=0$ otherwise.

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

$$
w_{c i}^{\text {new }}=w_{c i}^{\text {old }}+\left[v_{i} v_{1}-w_{c i}^{\text {old }}\right] U\left(v_{i}\right),(i \in\{2,3\}),
$$

where $U\left(v_{i}\right)=1$ if $v_{i}>0$ and $U\left(v_{i}\right)=0$ otherwise.

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:

$$
w_{i c}^{\text {new }}=w_{i c}(t)^{\text {old }}+\left[v_{i} v_{1}-w_{i c}^{\text {old }}\right] U\left(v_{i}\right),(i \in\{2,3\}),
$$

where $U\left(v_{i}\right)=1$ if $v_{i}>0$ and $U\left(v_{i}\right)=0$ otherwise.

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:

$$
w_{i c}^{\text {new }}=w_{i c}(t)^{\text {old }}+\left[v_{i} v_{1}-w_{i c}^{\text {old }}\right] U\left(v_{i}\right),(i \in\{2,3\}),
$$

where $U\left(v_{i}\right)=1$ if $v_{i}>0$ and $U\left(v_{i}\right)=0$ otherwise.

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:

$$
w_{i c}^{\text {new }}=w_{i c}(t)^{\text {old }}+\left[v_{i} v_{1}-w_{i c}^{\text {old }}\right] U\left(v_{i}\right),(i \in\{2,3\}),
$$

where $U\left(v_{i}\right)=1$ if $v_{i}>0$ and $U\left(v_{i}\right)=0$ otherwise.

Example. Time t_{1} : signals are filtered and unification initialized.

Example. Time $t_{2}-t_{3}$: unification.

$$
\begin{aligned}
& g_{6}=P(x) . \\
& P(0) \leftarrow \\
& P(s(x)) \leftarrow P(x) .
\end{aligned}
$$

Example. Time $t_{2}-t_{3}$: unification.

$$
\begin{aligned}
& g_{6}=P(x) . \\
& P(0) \leftarrow ; \\
& P(s(x)) \leftarrow P(x) . \\
& v_{h_{1}}\left(t_{3}\right)=0 \oplus e_{k_{1}}\left(t_{1}\right) \oplus 0 .
\end{aligned}
$$

That is, the output is the Gödel number for the substitution $\times / 0$. Computations terminate.

Example. Time $=t_{4}$.

$$
\begin{aligned}
& G_{0}=g_{6}=P(x) . \\
& P(0) \leftarrow ; \\
& P(s(x)) \leftarrow P(x) .
\end{aligned}
$$

Example. Time $t_{4}-t_{6}$: unification.

$$
\begin{aligned}
& G_{0}=g_{6}=P(x) . \\
& P(0) \leftarrow ; \\
& P(s(x)) \leftarrow P(x) .
\end{aligned}
$$

Using the error-correction learning, the network computes $e_{k 2}\left(t_{6}\right)$, the Gödel number of the substitution $(x / s(x))$.

Example. Time t_{6} : next step.

$P(0) \leftarrow ;$
$P(s(x)) \leftarrow P(x)$.
The signal $e_{k 2}\left(t_{6}\right)$ is given as an output value $v_{h_{2}}\left(t_{6}\right)$; it is also used to amend and activate the weight g_{2}; the signal passes to the neuron o_{1}.

Example. Time $=t_{7}$. New iteration starts.

$P(0) \leftarrow ;$
$P(s(x)) \leftarrow P(x)$.
The signal $g_{2} \odot e_{k 2}\left(t_{6}\right)$
is sent from the unit o_{1}
to the input units.
It is the Gödel number of
$P(x) \theta=P(s(x))$.
the signals will be filtered; and only one of them will be processed next.

Example. Time $=t_{7}$. New iteration starts.

$P(0) \leftarrow ;$
$P(s(x)) \leftarrow P(x)$.
The signal $g_{2} \odot e_{k 2}\left(t_{6}\right)$
is sent from the unit o_{1}
to the input units.
It is the Gödel number of
$P(x) \theta=P(s(x))$.
the signals will be filtered; and only one of them will be processed next.

Conclusions

- SLD neural networks have finite architecture, but their effectiveness is due to several learning functions.
- Unification is performed as adaptive process.
- Atoms and substitutions are represented in SLD neural networks directly, via Gödel numbers, and hence allow easier machine implementations.

Future Work

- Practical implementations of SLD neural networks.

Future Work

- Practical implementations of SLD neural networks.
- Theoretical development:
- SLD neural networks allow higher-order generalizations.
- ...can therefore be extended to higher-order Horn logics, hereditary Harrop logics...
- ...can be extended to non-classical logic programs: linear, many-valued, etc...
- Inductive logic and SLD neural networks.

Thank you!

