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Motivation

Symbolic Logic as Deductive
System

1 Axioms: (A ⊃ (B ⊃ A));
(A ⊃ (B ⊃ C )) ⊃
((A ⊃ B) ⊃ (A ⊃ C ));
(¬¬A ⊃ A);
((∀xA) ⊃ Sx

t A);
∀x(A ⊃ B) ⊃
(A ⊃ ∀xB);

2 Rules:
A ⊃ B, A

B
;

A

∀xA
.

Neural Networks

spontaneous behavior;

learning and adaptation
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Motivation

Logic Programs

A← B1, . . . ,Bn

TP(I ) = {A ∈ BP :
A← B1, . . . ,Bn

is a ground instance of a
clause in P and
{B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least
Herbrand model of P.

Artificial Neural Networks
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An Important Result, [Kalinke, Hölldobler, 94]

Theorem

For each propositional program P, there exists a 3-layer recurrent
neural network which computes TP .

No learning or adaptation;

First-order atoms are not represented in the neural networks
directly, and only truth values 0 and 1 are propagated.

Require infinitely long layers in the first-order case.
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A Simple Example

B ←
A←
C ← A,B

TP ↑ 0 = {B,A}
lfp(TP) = TP ↑ 1 = {B,A,C}

A B C
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Another Example: First-Order Case

P(a)←
Q(x)← P(x)
R(b)←

TP ↑ 0 = {P(a),R(b)}
lfp(TP) = TP ↑ 1 =
{P(a),R(b),Q(a)}
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Example 3

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}

Paradox:
(computability,
complexity,
proof theory)
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Most General Unifier

MGU

Let S be a finite set of atoms. A substitution θ is called a unifier
for S if S is a singleton. A unifier θ for S is called a most general
unifier (mgu) for S if, for each unifier σ of S , there exists a
substitution γ such that σ = θγ.

Example: If S = (P(x),P(0)), then θ = {x/0} is the mgu.

Ekaterina Komendantskaya INRIA
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Disagreement set

Disagreement set

To find the disagreement set DS of S locate the leftmost symbol
position at which not all atoms in S have the same symbol and
extract from each atom in S the term beginning at that symbol
position. The set of all such terms is the disagreement set.

Example: For S = (Q(f (x , y)),Q(f (a, b))) we have DS = {x , a}.

Ekaterina Komendantskaya INRIA
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Unification algorithm

1 Put k = 0 and σ0 = ε.

2 If Sσk is a singleton, then stop; σk is an mgu of S .
Otherwise, find the disagreement set Dk of Sσk .

3 If there exist a variable v and a term t in Dk such that v does
not occur in t, then put θk+1 = θk{v/t}, increment k and go
to 2. Otherwise, stop; S is not unifiable.

Unification theorem.

Ekaterina Komendantskaya INRIA
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SLD-resolution - Example

P(0) ←
P(s(x)) ← P(x)

1 G0 =← P(x). S = {P(x),P(0)}. DS = {x , 0}. Put
θ1 = x/0. Sθ1 = {P(0)} is a singleton.
Answer: 0.

2 G0 =← P(x). S = {P(x),P(s(x))}. DS = {x , s(x)}. Put
θ1 = x/s(x). Sθ1 = {P(s(x))} is a singleton.
G1 =← P(s(x)). S = {P(s(x)),P(s(x)}. DS = {∅}.
G2 =← P(x); search can go on as in item 1 (θ2 = x/0,
answer s(0)); or as in item 2 (answers s(s(0)), . . .).
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Gödel Numbers of Formulae

Each symbol of the first-order language receives a Gödel number
as follows:

variables x1, x2, x3, . . . receive numbers (01), (011), (0111), . . .;

constants a1, a2, a3, . . . receive numbers
(21), (211), (2111), . . .;

function symbols f1, f2, f3, . . . receive numbers
(31), (311), (3111), . . .;

predicate symbols Q1,Q2,Q3, . . . receive numbers
(41), (411), (4111), . . .;

symbols (, ) and , receive numbers 5, 6 and 7 respectively.
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Operations on Gödel Numbers

Disagreement set: g1	g2;

Concatenation: g1 ⊕ g2;

Gödel number of substitution: s(g1, g2);

Applying the substitution: g�s;

Algorithm of unification.
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Disagreement set: g1	g2;

Concatenation: g1 ⊕ g2;
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Neurons in Connectionist Neural Networks

pk(t) =
(∑nk

j=1 wkjvj(t)
)
−Θk

vk(t + ∆t) = ψ(pk(t)) =

{
1 if pk(t) > 0

0 otherwise.

v ′

&&NNNNNNN

pj wkj pk

v ′′ //WVUTPQRS

Θj

// WVUTPQRS

Θk

//

vk

v ′′′

88qqqqqq
j k
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Unification in Neural Networks

Claim 1

Unification Algorithm can be performed in finite (and very small)
neural networks with error-correction learning.
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Error-Correction (Supervised) Learning

We embed a new parameter, desired response dk into neurons;
Error-signal: ek(t) = dk(t)− vk(t);
Error-correction learning rule: ∆wkj(t) = ηek(t)vj(t).

v ′

''OOOOOOO pj wkj + ∆wkj

��

ek

v ′′ //WVUTPQRSΘj // _^]\XYZ[Θk , dk
//ek , vk

ss

v ′′′

77nnnnnn
j wkj k
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Main Lemma

Lemma

Given two first-order atoms A and B, there exists a two-neuron
learning neural network that performs the algorithm of unification
for A and B.
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Example of Unification in Neural Networks: time = t1.

1

g6

��WVUTPQRSdk(t1)

whk (t1)=0
DD

DD
DD

!!D
DD

DD
DD

?>=<89:;h

��
vh(t1) = 0

wik(t1) = vi (t1) = g6 is the
Gödel number of P(x);
dk(t1) = g1 is the Gödel num-
ber of P(0).
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Example of Unification in Neural Networks: time = t1.

1

g6

��WVUTPQRSdk(t1)
MMMM

ek(t1)

""E
EEEEEEEEEE

?>=<89:;h

��
vh(t1) = 0

wki (t1) = vi (t1) = g6 is the
Gödel number of P(x);
dk(t1) = g1 is the Gödel num-
ber of P(0);
Compute ek(t1) = s(dk(t1) 	
vk(t1)) - the Gödel number of
substitution for the disagree-
ment set dk(t1)	 vk(t1).
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Example of Unification in Neural Networks: time = t1.

1

g6

��

∆w(t1)

WVUTPQRSdk(t1)
MMMM

ek1(t1)

  A
AA

AA
AA

AA
A

EE

?>=<89:;h

��
vh = 0

wki (t1) = vk(t1) = g6 is the
Gödel number of P(x);
dk(t1) = g1 is the Gödel num-
ber of P(0);
ek(t1) = s(dk(t1) 	 vk(t1)) -
the Gödel number of substitu-
tion for the disagreement set
dk(t1)	 vk(t1);
∆w(t1) = vi (t1)ek(t1) =
ek(t1).

Ekaterina Komendantskaya INRIA



Motivation SLD-resolution First-Order Deduction in Neural networks Conclusions and Future Work

Example of Unification in Neural Networks: time = t1.
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""F
FFFFFFFFFF
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��
vh1(t1) = 0

wki (t1) = vk(t1) = g6 is the
Gödel number of P(x);
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the Gödel number of substitu-
tion x1/a1;
∆w(t1) = vi (t1)ek(t1);
Substitutions are applied:
wki (t2) = wki (t1) � ∆w(t1)
and dk(t2) = dk(t1)�∆w(t1).
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Example of Unification in Neural Networks: time = t1−2.
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and dk(t2) = dk(t1)�∆w(t1).
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Example of Unification in Neural Networks: time = t2.

1

g6

��WVUTPQRSdk(t2)

whk (t2)=0⊕ek (t1)
CC

CC
CC

!!C
CC

CC
CC

?>=<89:;h

��
0⊕ ek(t1)

wik(t2) = vi (t2) = g6 is the
Gödel number of P(0);
dk(t2) = g7 is the Gödel num-
ber of P(0).

vi (t2) 	 dk(t2) = ∅. This
means that we set ek(t2) = 0.
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Example of Unification in Neural Networks: time = t3.

1

g6

��WVUTPQRSdk(t3)

whk (t3)=0⊕ek (t1)⊕0
GGG

GGG
G

##G
GG

GG
GG

G

?>=<89:;h

��
0⊕ ek(t1)⊕ 0

whk(t3) = whk(t2)⊕ 0;
vh(t3) = whk(t3).
When vh starts and ends with
0, computation stops.
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Preliminary conclusions

Properties of these neural networks

First-order atoms are embedded directly into a neural network
via Gödel numbers.

Neural networks are finite and give deterministic results,
comparing with infinite layers needed to perform substitutions
in [HK94].

Unification algorithm is performed as an adaptive process,
which corrects one piece of data relatively to the other piece
of data.
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Main theorem

Theorem

Let P be a definite logic program and G be a definite goal. Then
there exists a 3-layer recurrent neural network which computes the
Gödel number s of substitution θ if and only if SLD-refutation
derives θ as an answer for P ∪ {G}. (We will call these neural
networks SLD neural networks).
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Example. Time = t1.

ONMLHIJKdk1

��

�� ��ONMLHIJKdk2

��GFED@ABCh1
GFED@ABCh2

g2

��GFED@ABCo1

P(0)←;
P(s(x))← P(x).
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Competitive learning; Kohonen’s layer

We compute additional parameter Ii = D(wi, v),
D(wi, v) is the distance measurement function.
The common choice for D(wi, v) is the Euclidian distance |wi − v |.

_^]\XYZ[k1

w1

OO

oo //
**_^]\XYZ[k2

w2

OO

oo // _^]\XYZ[k3

w3

OO

ww

v1

77ooooooooooooooooo

33ggggggggggggggggggggggggggggggggggg

wv1k1

OO

v2

77ooooooooooooooooo

OO

wv2k1

``

v3

OO
ggOOOOOOOOOOOOOOOOO

wv3k1

hh

We use a reduced form of this learning rule. With Ii = i , we use it
to encode the order of clauses; and hence the priority among
neurons.
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Competitive learning; Kohonen’s layer

We will denote the Kohonen’s layer by oo // :
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Example. Time = t1.
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G0 = g6 = P(x).
P(0)←;
P(s(x))← P(x).
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Filter Learning: Grossberg’s law

Grossberg’s law is expressed by the equation

wnew
ci = wold

ci + [viv1 − wold
ci ]U(vi ), (i ∈ {2, 3}),

where U(vi ) = 1 if vi > 0 and U(vi ) = 0 otherwise.
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Filter Learning: inverse Grossberg’s law

The inverse form of Ginsberg’s law:

wnew
ic = wic(t)

old + [viv1 − wold
ic ]U(vi ), (i ∈ {2, 3}),

where U(vi ) = 1 if vi > 0 and U(vi ) = 0 otherwise.
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v // GFED@ABCc w2 //
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Example. Time t1: signals are filtered and unification
initialized.
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G0 = g6 = P(x).
P(0)←;
P(s(x))← P(x).
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Example. Time t2 − t3: unification.
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ek1
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g2

��
vh1(t3)

GFED@ABCo1

g6 = P(x).
P(0)←;
P(s(x))← P(x).

vh1(t3) = 0⊕ ek1(t1)⊕ 0.
That is, the output is
the Gödel number for
the substitution x/0.
Computations terminate.
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Example. Time = t4.
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Example. Time t4 − t6: unification.
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G0 = g6 = P(x).
P(0)←;
P(s(x))← P(x).
Using the error-correction
learning, the network
computes ek2(t6),
the Gödel number
of the substitution (x/s(x)).
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Example. Time t6: next step.

1
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P(0)←;
P(s(x))← P(x).

The signal ek2(t6) is given
as an output value vh2(t6);
it is also used
to amend and activate
the weight g2;
the signal passes
to the neuron o1.
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Example. Time = t7. New iteration starts.

ONMLHIJKdk1
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P(0)←;
P(s(x))← P(x).
The signal g2 � ek2(t6)
is sent from the unit o1

to the input units.
It is the Gödel number of
P(x)θ = P(s(x)).
the signals will be filtered;
and only one of them
will be processed next.
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Conclusions

SLD neural networks have finite architecture, but their
effectiveness is due to several learning functions.

Unification is performed as adaptive process.

Atoms and substitutions are represented in SLD neural
networks directly, via Gödel numbers, and hence allow easier
machine implementations.

Ekaterina Komendantskaya INRIA



Motivation SLD-resolution First-Order Deduction in Neural networks Conclusions and Future Work

Future Work

Practical implementations of SLD neural networks.

Theoretical development:

SLD neural networks allow higher-order generalizations.
...can therefore be extended to higher-order Horn logics,
hereditary Harrop logics...
...can be extended to non-classical logic programs: linear,
many-valued, etc...
Inductive logic and SLD neural networks.
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Thank you!

Ekaterina Komendantskaya INRIA
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