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°

Motivation

Symbolic Logic as Deductive
System

@ Axioms: (AD (B D A));

(AD(BDC())D
((A>DB)D>(ADQ));
(-—A D A);
((VxA) D SFA);
Vx(AD B) D
(A D VxB);

@ Rules:

ASB, A A
B " VXA
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Motivation

Motivation

Symbolic Logic as Deductive Neural Networks
System

@ Axioms: (AD (B D A));
(AD(BDC())D
((A>B)D> (AD Q));
(-—A D A);

((VxA) D SFA);
Vx(AD B) D
(A D VxB);

@ Rules:
ADB, A A @ spontaneous behavior;

B VXA @ learning and adaptation
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° TP(/) = {AG Bp:
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is a ground instance of a
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Motivation

Logic Programs

e A—By,...,B,

° TP(/) :{AG Bp:
A—B,...,B,
is a ground instance of a
clause in P and
{B1,...,B,} C I}

o 1fp(Tp T w) = the least
Herbrand model of P.
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Motivation

Artificial Neural Networks
Logic Programs

Intput links Heuron  Ouiput link
to neuron from neuron

o A—B,.... B, 5
] TP(/):{AG Bp: —l-.—b
A(—Bl,...,Bn /

is a ground instance of a

Heural network

clause in P and Intput —= output

{Bi1,...,Ba} C I} "’t':s_.. —":',':',k,ﬁ
@ 1fp(Tp T w) = the least neural—s _..r:tauralk

Herbrand model of P. network i L
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An Important Result, [Kalinke, Holldobler, 94]

For each propositional program P, there exists a 3-layer recurrent
neural network which computes Tp.
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An Important Result, [Kalinke, Holldobler, 94]

For each propositional program P, there exists a 3-layer recurrent
neural network which computes Tp.

@ No learning or adaptation;

@ First-order atoms are not represented in the neural networks
directly, and only truth values 0 and 1 are propagated.

@ Require infinitely long layers in the first-order case.

Ekaterina Komendantskaya INRIA
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A Simple Example

B —
A —
C—AB

Tp10= {B’A}
Ifo(Tp) = Tp 11={B,A C}
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A —

C—AB

Tp10={B,A}

Ito(Tp) = Tp 11 ={B,A,C}
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A Simple Example

B «—

A «—

C—AB

TPTOZ{B7A}

pr(TP) =TpT1 :{87A7 C}
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A Simple Example

B «—

A «—

C—AB

TPTOZ{B7A}

pr(TP) =TpT1 :{87A7 C}
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Another Example: First-Order Case

P(a) «
Q(x) « P(x)
R(b) —

Tp 1 0= {P(a), R(b)}

Ifp(Tp) = Tp 11 =
{P(a), R(b), Q(a)}
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P(a) «
Q(x) « P(x)
R(b) —

Tp 10={P(a), R(b)}
Ifp(Tp) = Tp 11 =
{P(a), R(b), Q(a)}

P(a)

P(b) Q(a) Q(b) R(a) R(b)




P(a) «
Q(x) « P(x)
R(b) —

Tp 10={P(a), R(b)}
Ifp(Tp) = Tp 11 =
{P(a), R(b), Q(a)}

P(a)

P(b) Q(a) Q(b) R(a)

R(b)
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Example 3

P(0) «—
P(s(x)) — P(x)

Tp 10={P(0)}
/fp( Tp) = Tp T w
{0,5(0), s(s(0)),
s(s(s(0))), ...}
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Example 3

P(0) «—
P(s(x)) — P(x)

Tp 10={P(0)}
Ifo(Tp) =Tp Tw
10,5(0), 5(s(0)),
s(s(s(0))), ...}
Paradox:
(computability,
complexity,

proof theory)
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SLD-resolution
Most General Unifier

Let S be a finite set of atoms. A substitution @ is called a unifier

for S if S is a singleton. A unifier 6 for S is called a most general
unifier (mgu) for S if, for each unifier o of S, there exists a
substitution « such that o = 6.

Example: If S = (P(x), P(0)), then § = {x/0} is the mgu.

Ekaterina Komendantskaya INRIA



SLD-resolution

Disagreement set

Disagreement set

To find the disagreement set Ds of S locate the leftmost symbol
position at which not all atoms in S have the same symbol and
extract from each atom in S the term beginning at that symbol
position. The set of all such terms is the disagreement set.

Example: For S = (Q(f(x,y)), Q(f(a,b))) we have Ds = {x, a}.

Ekaterina Komendantskaya INRIA



SLD-resolution

Unification algorithm

Q@ Put k=0and gg =¢.

@ If Soy is a singleton, then stop; o is an mgu of S.
Otherwise, find the disagreement set Dy of Soy.

© If there exist a variable v and a term t in Dy such that v does
not occur in t, then put 041 = 0x{v/t}, increment k and go
to 2. Otherwise, stop; S is not unifiable.
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SLD-resolution

Unification algorithm

Q@ Put k=0and gg =¢.

@ If Soy is a singleton, then stop; o is an mgu of S.
Otherwise, find the disagreement set Dy of Soy.

© If there exist a variable v and a term t in Dy such that v does
not occur in t, then put 041 = 0x{v/t}, increment k and go
to 2. Otherwise, stop; S is not unifiable.

Unification theorem.
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SLD-resolution

SLD-resolution - Example

P(0) «
P(s(x)) — P(x)
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SLD-resolution
SLD-resolution - Example

Q Gy = P(x).
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SLD-resolution
SLD-resolution - Example

Q@ Gy =« P(x). S={P(x),P(0)}.
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SLD-resolution
SLD-resolution - Example

Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
91 = X/O.
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SLD-resolution
SLD-resolution - Example

Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.
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SLD-resolution
SLD-resolution - Example

P(0) «
P(s(x)) < P(x)

Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.

Q@ Gy = P(x).
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SLD-resolution
SLD-resolution - Example

P(0) «
P(s(x)) < P(x)

Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.

Q@ Go =— P(x). 5 ={P(x), P(s(x))}.

Ekaterina Komendantskaya INRIA



SLD-resolution

SLD-resolution - Example

P(0) «
P(s(x)) < P(x)

Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.

Q@ Gy =« P(x). S ={P(x),P(s(x))}. Ds ={x,s(x)}. Put
61 = x/s(x).
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Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.

Q@ Gy =« P(x). S ={P(x),P(s(x))}. Ds ={x,s(x)}. Put
01 = x/s(x). SO1 = {P(s(x))} is a singleton.




SLD-resolution - Example

P(0) «
P(s(x)) < P(x)

Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.
Q@ Gy =« P(x). S ={P(x),P(s(x))}. Ds ={x,s(x)}. Put
01 = x/s(x). SO1 = {P(s(x))} is a singleton.
Gy =« P(s(x)).




Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.
Q@ Gy =« P(x). S ={P(x),P(s(x))}. Ds ={x,s(x)}. Put
01 = x/s(x). SO1 = {P(s(x))} is a singleton.
G =— P(s(x)). S ={P(s(x)), P(s(x)}. Ds = {0}.




Q@ Gy =« P(x). S={P(x),P(0)}. Ds ={x,0}. Put
01 = x/0. SO = {P(0)} is a singleton.
Answer: 0.

Q@ Gy =« P(x). S ={P(x),P(s(x))}. Ds ={x,s(x)}. Put
01 = x/s(x). S61 = {P(s(x))} is a singleton.
G =— P(s(x)). S ={P(s(x)), P(s(x)}. Ds ={0}.
G, = P(x); search can go on as in item 1 (62 = x/0,
answer s(0)); or as in item 2 (answers s(s(0)), .. .).




SLD-resolution

Godel Numbers of Formulae

Each symbol of the first-order language receives a Gédel number
as follows:

@ variables xi, x2, x3, . .. receive numbers (01), (011), (0111),...;

@ constants ai, a, as, ... receive numbers
(21),(211),(2111),.. ;

@ function symbols fi, >, f3, ... receive numbers
(31),(311),(3111),..;

@ predicate symbols Q1, @2, Q3, ... receive numbers

(41), (411), (4111), .. ;

@ symbols (, ) and , receive numbers 5, 6 and 7 respectively.

Ekaterina Komendantskaya INRIA



SLD-resolution

Operations on Godel Numbers

o Disagreement set: g16g;
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SLD-resolution

Operations on Godel Numbers

o Disagreement set: g16g;

o Concatenation: g; ® go;

Ekaterina Komendantskaya INRIA



SLD-resolution

Operations on Godel Numbers

o Disagreement set: g16gy;
o Concatenation: g; ® go;

e Godel number of substitution: s(g1, g2);
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SLD-resolution

Operations on Godel Numbers

Disagreement set: g16g»;
Concatenation: g; ® go;
Godel number of substitution: s(gi1, g2);

Applying the substitution: g©s;
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SLD-resolution

Operations on Godel Numbers

Disagreement set: g16g»;

Concatenation: g; ® go;

o
o
e Godel number of substitution: s(g1, g2);
e Applying the substitution: g©s;

o

Algorithm of unification.

Ekaterina Komendantskaya INRIA



SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O
vi(t + At) = P(pi(t)) = {;

if pe(t) >0

otherwise.
P (-
/\/
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SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O
1 if p(t) >0
Vk(t + At) - ”L/J(pk(t)) - {0 otherwise.

!/

N
H—C
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SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O
1 if p(t) >0
vi(t + At) = P(pi(t)) = {0

otherwise.

VK\\\X pj

e 09
\_/

V//// J k
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SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O

1 if p(t) >0
vi(t + At) = ¢(pk(t)) = {0 otherwise
/ Pj Wkj

N
H—C
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SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O
1 if p(t) >0
vi(t + At) = P(pi(t)) = {0

otherwise.

! Pj Wij

174

e OR
(&)

V/I// J k
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SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O
1 if p(t) >0
vi(t + At) = P(pi(t)) = {0

otherwise.

v’\ Pj Wij

Pk
V/l// J k
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SLD-resolution

Neurons in Connectionist Neural Networks

Pi(t) = (Zfil ijVj(f)) — O
1 if p(t) >0
vi(t + At) = P(pi(t)) = {0

otherwise.

v’\ Pj Wij

Pk
V//// _/ k

Ekaterina Komendantskaya
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First-Order Deduction in Neural networks

Unification in Neural Networks

Unification Algorithm can be performed in finite (and very small)
neural networks with error-correction learning.

Ekaterina Komendantskaya INRIA



First-Order Deduction in Neural networks

Error-Correction (Supervised) Learning

v/ pj Wi + Awy; ek
V! O; Ok, dx) —€k, Vk
A
1" _l ij k
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First-Order Deduction in Neural networks

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d, into neurons;

v/ pj ij-l-AWm
\m J/ N
U ks dk) —%k: Vk
/ Wi
G k
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First-Order Deduction in Neural networks

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d, into neurons;
Error-signal: e, (t) = dk(t) — vk(t);

v/ pj ij-l-AWm
\m J/ N,
U ks dk) —=%k: Vk
/ Wi
G k
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First-Order Deduction in Neural networks

Error-Correction (Supervised) Learning

We embed a new parameter, desired response d, into neurons;
Error-signal: e, (t) = dk(t) — vk(t);
Error-correction learning rule: Awy;(t) = nex(t)v;(t).

v/ pj ij—‘rAm
v ks k) —=Ck» Vk
G k

Ekaterina Komendantskaya INRIA



First-Order Deduction in Neural networks

Main Lemma

Given two first-order atoms A and B, there exists a two-neuron
learning neural network that performs the algorithm of unification
for A and B.

Ekaterina Komendantskaya INRIA



First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;.

86

@ wik(t1) = vi(t1) = ge is the

Godel number of P(x);
Wik (11)=0 di(t1) = g1 is the Godel num-
ber of P(0).

)
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;.

86

@ wik(t1) = vi(t1) = ge is the

Godel number of P(x);
Wik (11)=0 di(t1) = g1 is the Godel num-
ber of P(0).

)
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;.

wii(t1) = vi(t1) = g is the
@ Godel number of P(x);
L dk(t1) = g1 is the Godel num-
ex(ty) ber of P(0);
Compute e(t1) = s(dk(t1) ©
vk(t1)) - the Godel number of

@ substitution for the disagree-
ment set di(t1) © vi(t1).

INRIA
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;.

A4 (tl) Wk,'(tl) = Vk(tl) = gp is the
& Godel number of P(x);
@ dik(t1) = g1 is the Godel num-
~ ber of P(0);

L,/ekl(tl) ek(tl) = S(dk(tl) o Vk(tl)) -

the Godel number of substitu-
tion for the disagreement set

di(t1) © vi(t1);
@ Aw(ltl) = 1v,-(tl)ek(fl) =
ek(tl).

VhZO

INRIA
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;.

Wk,'(tl) = Vk(tl) = gp Is the
Godel number of P(x);

dk(tl) = g1 is the Godel
number of P(0);

ek(tl) = S(dk(tl) S) Vk(t1)) -
the Godel number of substitu-
tion xi/a;

AW(tl) = v,-(tl)ek(tl);
Substitutions are  applied:
wii(t2) = wii(t) © Aw(ty)
and dk(tz) = dk(tl)@AW(tl).

Vhl(tl) =0

INRIA
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;_,.

Wk,-(tl) = Vk(tl) = gp Is the

An(ty) Godel number of P(x);
& di(t1) = g1 is the Godel num-
@ ber of P(0);
o ex(t1) = s(di(t1) © w(t1)) -
ex(t1) the Godel number of substitu-

tion xj/a;
AW(tl) = v,-(tl)ek(tl);
The substitutions are applied:

@ Wk,'(tg) = Wk,'(tl) O) AW(tl)
and dk(tz) = dk(tl)@AW(tl).

INRIA
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;_,.

Wk,-(tl) = Vk(tl) = gp Is the

An(ty) Godel number of P(x);
& di(t1) = g1 is the Godel num-
@ ber of P(0);
o ex(t1) = s(di(t1) © w(t1)) -
ex(t1) the Godel number of substitu-

tion xj/a;
AW(tl) = v,-(tl)ek(tl);
The substitutions are applied:

@ Wk,'(tg) = Wk,'(tl) O) AW(tl)
and dk(tz) = dk(tl)@AW(tl).
th(tz) = th(tl) D ek(tl).
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t,.

86

@ wik(t2) = vi(t2) = ge is the
Godel number of P(0);

dk(t2) = gy is the Godel num-
wik (t2)=00 ek (t1) ber of P(0).

0

0d ek(tl)
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t,.

5
@ wik(t2) = vi(t2) = ge is the
Godel number of P(0);
dk(t2) = gy is the Godel num-
ik (t2)=00ex(t1) ber of P(0).
V,'(tz) O dk(tg) = (0. This
@ means that we set e, (ty) = 0.

0d ek(tl)

INRIA
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First-Order Deduction in Neural networks

Example of Unification in Neural Networks: time = t;.

86

@ th(t3) = th(t2) @ 0;

N e (450 vh(t3) = whi(ts).
wik(£3)=0e (81) When v}, starts and ends with

0, computation stops.

0D e l’1)€BO

INRIA
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First-Order Deduction in Neural networks

Preliminary conclusions

Properties of these neural networks

@ First-order atoms are embedded directly into a neural network
via Godel numbers.

@ Neural networks are finite and give deterministic results,
comparing with infinite layers needed to perform substitutions
in [HK94].

@ Unification algorithm is performed as an adaptive process,
which corrects one piece of data relatively to the other piece
of data.

Ekaterina Komendantskaya INRIA



First-Order Deduction in Neural networks

Main theorem

Let P be a definite logic program and G be a definite goal. Then
there exists a 3-layer recurrent neural network which computes the
Godel number s of substitution 8 if and only if SLD-refutation
derives 6 as an answer for PU{G}. (We will call these neural
networks SLD neural networks).

Ekaterina Komendantskaya INRIA



First-Order Deduction in Neural networks

Example. Time = t;.

@ @ P(s(x)).<— P(x).
I
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First-Order Deduction in Neural networks

Example. Time = t;.

@ @ P(s(x)).<— P(x).
I
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First-Order Deduction in Neural networks

Example. Time = t;.

@ @ P(s(x)).<— P(x).
I
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First-Order Deduction in Neural networks

Competitive learning; Kohonen's layer

We compute additional parameter [; = D(wj, v),
D(wj, v) is the distance measurement function.
The common choice for D(w;, v) is the Euclidian distance |w; — v/|.
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First-Order Deduction in Neural networks

Competitive learning; Kohonen's layer

We compute additional parameter [; = D(wj, v),
D(wj, v) is the distance measurement function.
The common choice for D(w;, v) is the Euclidian distance |w; — v/|.

1 2 3
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First-Order Deduction in Neural networks

Competitive learning; Kohonen's layer

We compute additional parameter [; = D(wj, v),
D(wj, v) is the distance measurement function.
The common choice for D(w;, v) is the Euclidian distance |w; — v/|.

1 2 3

We use a reduced form of this learning rule. With [; = i, we use it
to encode the order of clauses; and hence the priority among
neurons.
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First-Order Deduction in Neural networks

Competitive learning; Kohonen's layer

We will denote the Kohonen's layer by <>
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First-Order Deduction in Neural networks

Example. Time = t;.
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First-Order Deduction in Neural networks

Example. Time = t;.
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First-Order Deduction in Neural networks

Filter Learning: Grossberg's law

Grossberg's law is expressed by the equation

whew — Old + [vivi — Old]U(v,) (i € {2,3}),

(o]

where U(v;) = 1if v; > 0 and U(v;) = 0 otherwise.

V]_\

Vo —wo> @ —>V
ws”

V3/
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First-Order Deduction in Neural networks
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First-Order Deduction in Neural networks

Filter Learning: inverse Grossberg's law

The inverse form of Ginsberg's law:
Wi = wie (1) + [vivi — w2 U(w), (i € {2,3}),

1

where U(v;) = 1 if v; > 0 and U(v;) = 0 otherwise.
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First-Order Deduction in Neural networks

Example. Time t;: signals are filtered and unification

initialized.

AW
86 ..
SN
()
\ekl Go = g = P(x)
@ @ P(s(x)) — P(x)
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Example. Time t, — t3: unification.

Aw
Z g = P(x)
0
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First-Order Deduction in Neural networks

Example. Time t, — t3: unification.

86 — P(X)
(an) P(O)
e, P(s(x)) — P(x).
Vi, (t3) = 0 @ ek, (t1) @ 0.
That is, the output is
the Gédel number for
the substitution x/0.

Computations terminate.
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First-Order Deduction in Neural networks

Example. Time = t4.

o
&

Go = g6 = P(x)
P(0) «;
P(s(x)) < P(x)
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First-Order Deduction in Neural networks

Example. Time t; — tg: unification.

Go = 86 — P(X).

P(0) «;

P(s(x)) < P(x).

Using the error-correction
learning, the network
computes exo(ts),

the Godel number

ONNC
gL of the substitution (x/s(x)).
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First-Order Deduction in Neural networks

Example. Time tg: next step.

e The signal exo(te) is given

as an output value vp,(t6);
it is also used
@ to amend and activate

‘ the weight g»;
D Oer(ts) the signal passes
Vhy (t6) to the neuron o;.
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First-Order Deduction in Neural networks

Example. Time = t7. New iteration starts.

P(0) —;
S, P(s(x)) < P(x).
@ The signal go © exo(ts)
is sent from the unit o;
to the input units.
@ @ It is the Godel number of
P(x)8 = P(s(x)).
éL the signals will be filtered;

and only one of them
@ will be processed next.
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Conclusions and Future Work

Conclusions

@ SLD neural networks have finite architecture, but their
effectiveness is due to several learning functions.

@ Unification is performed as adaptive process.

@ Atoms and substitutions are represented in SLD neural
networks directly, via Gédel numbers, and hence allow easier
machine implementations.
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Future Work

@ Practical implementations of SLD neural networks.
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Conclusions and Future Work

Future Work

@ Practical implementations of SLD neural networks.
@ Theoretical development:

o SLD neural networks allow higher-order generalizations.

e ...can therefore be extended to higher-order Horn logics,
hereditary Harrop logics...

e ...can be extended to non-classical logic programs: linear,
many-valued, etc...

e Inductive logic and SLD neural networks.
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Conclusions and Future W

Thank you! J
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