
Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Applications of inductive types in artificial
intelligence and inductive reasoning

Ekaterina Komendantskaya

School of Computing, University of Dundee

Research Seminar in the University of Osnabrueck

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Outline

1 Introduction

2 Types for Ensuring Correctness of Neural Computations

3 Applications to Logic programming and AI.

4 Conclusions

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Outline

1 Introduction

2 Types for Ensuring Correctness of Neural Computations

3 Applications to Logic programming and AI.

4 Conclusions

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Outline

1 Introduction

2 Types for Ensuring Correctness of Neural Computations

3 Applications to Logic programming and AI.

4 Conclusions

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Outline

1 Introduction

2 Types for Ensuring Correctness of Neural Computations

3 Applications to Logic programming and AI.

4 Conclusions

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, golden medal for excellency).
I did my PhD in the UCC, Ireland (2004-2007). (The University of
the Famous George Boole) My research interests can be classified
into four main themes:

Logic Programming (its applications in Artificial Intelligence
and Automated reasoning)

(PhD thesis (2007))

Higher-order Interactive Theorem Provers

(Postdoc in INRIA,
France)

Neuro-Symbolic networks

(PhD Thesis, current EPSRC
fellowship in Universities of St Andrews and Dundee,
Scotland)

Categorical Semantics of Computations

(Research grant
parallel to PhD and postdoc studies)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, golden medal for excellency).
I did my PhD in the UCC, Ireland (2004-2007). (The University of
the Famous George Boole) My research interests can be classified
into four main themes:

Logic Programming (its applications in Artificial Intelligence
and Automated reasoning) (PhD thesis (2007))

Higher-order Interactive Theorem Provers

(Postdoc in INRIA,
France)

Neuro-Symbolic networks

(PhD Thesis, current EPSRC
fellowship in Universities of St Andrews and Dundee,
Scotland)

Categorical Semantics of Computations

(Research grant
parallel to PhD and postdoc studies)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, golden medal for excellency).
I did my PhD in the UCC, Ireland (2004-2007). (The University of
the Famous George Boole) My research interests can be classified
into four main themes:

Logic Programming (its applications in Artificial Intelligence
and Automated reasoning) (PhD thesis (2007))

Higher-order Interactive Theorem Provers (Postdoc in INRIA,
France)

Neuro-Symbolic networks

(PhD Thesis, current EPSRC
fellowship in Universities of St Andrews and Dundee,
Scotland)

Categorical Semantics of Computations

(Research grant
parallel to PhD and postdoc studies)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, golden medal for excellency).
I did my PhD in the UCC, Ireland (2004-2007). (The University of
the Famous George Boole) My research interests can be classified
into four main themes:

Logic Programming (its applications in Artificial Intelligence
and Automated reasoning) (PhD thesis (2007))

Higher-order Interactive Theorem Provers (Postdoc in INRIA,
France)

Neuro-Symbolic networks (PhD Thesis, current EPSRC
fellowship in Universities of St Andrews and Dundee,
Scotland)

Categorical Semantics of Computations

(Research grant
parallel to PhD and postdoc studies)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

About myself

I did my undergraduate degree in Logic, Moscow State University
(1998-2003); (1st class honours, golden medal for excellency).
I did my PhD in the UCC, Ireland (2004-2007). (The University of
the Famous George Boole) My research interests can be classified
into four main themes:

Logic Programming (its applications in Artificial Intelligence
and Automated reasoning) (PhD thesis (2007))

Higher-order Interactive Theorem Provers (Postdoc in INRIA,
France)

Neuro-Symbolic networks (PhD Thesis, current EPSRC
fellowship in Universities of St Andrews and Dundee,
Scotland)

Categorical Semantics of Computations (Research grant
parallel to PhD and postdoc studies)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

School of Computing, University of Dundee

Assistive and
healthcare
technologies;

Computational
systems
(Computer Vision;
Theory of
Argumentation
(C. Reed));

Interactive
systems design;

Space technology
centre.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Computational Logic in Neural Networks

Symbolic Logic as Deductive
System

Deduction in logic
calculi;

Logic programming;

Higher-order proof
assistants...

Sound symbolic methods we
can trust

Neural Networks

spontaneous behavior;

learning and adaptation;

parallel computing.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Computational Logic in Neural Networks

Symbolic Logic as Deductive
System

Deduction in logic
calculi;

Logic programming;

Higher-order proof
assistants...

Sound symbolic methods we
can trust

Neural Networks

spontaneous behavior;

learning and adaptation;

parallel computing.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Boolean Networks of McCullogh and Pitts, 1943.

A
''OOOOOO

B // ?>=<89:; //C

If A and B then C .
————————-

1
''NNNNNNN

1 // WVUTPQRS0.5 //1

(A = 1) or (B = 1).

1
''NNNNNNN

1 // WVUTPQRS1.5 //1

(A = 1) and (B = 1).
————————-

−1 // _^]\XYZ[−0.5 //1

Not (A = −1).

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Neuro-symbolic architectures of other kinds based on the
same methodology:

The approach of McCulloch and Pitts to processing truth values
has dominated the area, and many modern neural network
architectures consciously or unconsciously follow and develop this
old method.

Core Method: massively parallel way to compute minimal
models of logic programs. [Holldobler et al, 1999 - 2009]

Markov Logic and Markov networks: statistical AI and
Machine learning implemented in NN. [Domingos et al.,
2006-2009]

Inductive Reasoning in Neural Networks [Broda, Garcez et al.
2002,2008]

Fuzzy Logic Programming in Fuzzy Networks [Zadeh at al].

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Markov Networks applied by [Domigos et al.]

Markov networks have been successfully applied in a
variety of areas.

A system based on them recently won a competition
on information extraction for biology. They have
been successfully applied to problems in information
extraction and integration, natural language
processing, robot mapping, social networks,
computational biology, and others, and are the basis
of the open-source Alchemy system. Applications to
Web mining, activity recognition, natural language
processing, computational biology, robot mapping
and navigation, game playing and others are under
way.

P. Domingos and D. Lowd. Markov Logic: An Interface Layer for
Artificial Intelligence. San Rafael, CA: Morgan and Claypool, 2009.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

How do we know that they are correct?

(x ∨ y) ∧ ¬z

x // ?>=<89:;1

))TTTTTTTTTTTT

y

55kkkkkkkkkkk GFED@ABC1.5 //

z // ONMLHIJK−0.5

55jjjjjjjjjj

Such network would not distinguish “logical” data (values 0 and 1)
from any other type of data, and would output the same result
both for sound inputs like x := 1, y := 1, z := 0, and for
non-logical values such as x := 100.555, y := 200.3333 . . . , z := 0.
Imagine a user monitors the outputs of a big network, and sees
outputs 1, standing for “true”, whereas in reality the network is
receiving some uncontrolled data.

The network gives correct
answers on the condition that the input is well-typed.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

How do we know that they are correct?

(x ∨ y) ∧ ¬z

x // ?>=<89:;1

))TTTTTTTTTTTT

y

55kkkkkkkkkkk GFED@ABC1.5 //

z // ONMLHIJK−0.5

55jjjjjjjjjj

Such network would not distinguish “logical” data (values 0 and 1)
from any other type of data, and would output the same result
both for sound inputs like x := 1, y := 1, z := 0, and for
non-logical values such as x := 100.555, y := 200.3333 . . . , z := 0.
Imagine a user monitors the outputs of a big network, and sees
outputs 1, standing for “true”, whereas in reality the network is
receiving some uncontrolled data. The network gives correct
answers on the condition that the input is well-typed.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Relational learning

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Relational Reasoning and Learning.

In [Garcez et al, 2009], were built networks that can learn relations.
E.g., given examples Q(b, c)→ P(a, b) and Q(d , e)→ P(c , d),
they can infer a more general relation Q(y , z)→ P(x , y).

Example

Learning a relation “grandparent” by examining families.
Classification of trains according to certain characteristics.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Relational Reasoning and Learning.

In [Garcez et al, 2009], were built networks that can learn relations.
E.g., given examples Q(b, c)→ P(a, b) and Q(d , e)→ P(c , d),
they can infer a more general relation Q(y , z)→ P(x , y).

Example

Learning a relation “grandparent” by examining families.
Classification of trains according to certain characteristics.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Problems with this method

Such relational learning works as long as input data is well-typed.

”Well-typed” means that only related people, and not any other
objects, are given to the network that learns relation
“grandparent”. And there are only trains of particular, known in
advance, configuration, that are considered by the network that
classifies trains.

This means that users have to make the preliminary classification
and filtering of data before it is given to such networks; and NNs
would not be able to warn the users if the data are ill-typed :-(.

Generally, as it turns out, typing is important for correct reasoning.

One can generalise from “This dog has four legs, and hence it can
run” to “Everything that has four legs can run”. However, we
know that there are some objects, such as chairs, that have four
legs but do not move. Hence we (often unconsciously) use typing
in such cases, e.g., apply the generalisation only to all animals.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Analogical Reasoning and Types

Analogical reasoning is in reality closely connected to reasoning
with types

We do not make analogies blindly, but we somehow filter certain
object as suitable for analogical comparison, and some - not.

Coming back to the previous example

Taking two objects - a dog and a chair - we are unlikely to form
any particularly useful kind of analogy. Unless we find a particular
type of features that make the analogy useful...

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Analogical Reasoning and Types

Analogical reasoning is in reality closely connected to reasoning
with types

We do not make analogies blindly, but we somehow filter certain
object as suitable for analogical comparison, and some - not.

Coming back to the previous example

Taking two objects - a dog and a chair - we are unlikely to form
any particularly useful kind of analogy. Unless we find a particular
type of features that make the analogy useful...

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Solutions: K.K., K. Broda, A.Garcez, to be presented at
CiE’2010

Solution

As an alternative to the manual pre-processing of
data, we propose neural networks that can do the
same automatically. We use neural networks called
type recognisers; and implement such networks to
ensure the correctness of neural computations; both
for classical cases (McCulloch & Pitts) and for the
relational reasoning and learning.

The solution involves techniques like pattern-
matching, inductive type definitions, etc. that are used
in functional programming, type theory, and interactive
theorem provers!

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Solutions: K.K., K. Broda, A.Garcez, to be presented at
CiE’2010

Solution

As an alternative to the manual pre-processing of
data, we propose neural networks that can do the
same automatically. We use neural networks called
type recognisers; and implement such networks to
ensure the correctness of neural computations; both
for classical cases (McCulloch & Pitts) and for the
relational reasoning and learning.

The solution involves techniques like pattern-
matching, inductive type definitions, etc. that are used
in functional programming, type theory, and interactive
theorem provers!

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

The main result

First ever method of using Types for ensuring the correctness of
Neural or Neuro-Symbolic computations.

Theorem

For any a type A, given an expression E presented in a form of a
numerical vector, we can construct a neural network that
recognises whether E is of type A.

Such networks are called Type recognisers, and for each given type
A, the network that recognises A is called an A-recogniser. This
construction covers simple types, such as Bool, as well as more
complex inductive types, such as natural numbers, lists; or even
dependent inductive types, such as lists of natural numbers.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Source books for reading on Interactive Theorem Provers

Programming in Martin-Löf’s
Type Theory. An Introduction
by
Bengt Nordström, Kent Pe-
tersson, Jan M. Smith

http://www.cse.chalmers.se/
research/group/logic/book/

Coq Art by
Bertot and Casteran.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Source books for reading on Interactive Theorem Provers

Programming in Martin-Löf’s
Type Theory. An Introduction
by
Bengt Nordström, Kent Pe-
tersson, Jan M. Smith

http://www.cse.chalmers.se/
research/group/logic/book/

Coq Art by
Bertot and Casteran.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Some examples of inductive types

Primitive:

Inductive bool : Type := | t : bool
| f : bool.

Recursive:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Typical element of the set SSSO.

Dependent:

Inductive list : Set :=
| nil : list
| cons : nat -> list -> list.

Typical element of the set is O::SO::SSSO::O::nil also written
cons O cons SO cons SSSO cons O cons nil.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Some examples of inductive types

Primitive:

Inductive bool : Type := | t : bool
| f : bool.

Recursive:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Typical element of the set SSSO.

Dependent:

Inductive list : Set :=
| nil : list
| cons : nat -> list -> list.

Typical element of the set is O::SO::SSSO::O::nil also written
cons O cons SO cons SSSO cons O cons nil.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Some examples of inductive types

Primitive:

Inductive bool : Type := | t : bool
| f : bool.

Recursive:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Typical element of the set SSSO.

Dependent:

Inductive list : Set :=
| nil : list
| cons : nat -> list -> list.

Typical element of the set is O::SO::SSSO::O::nil also written
cons O cons SO cons SSSO cons O cons nil.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

“Atomic” symbol recognisers

1/0

= 0?

1
OO

GFED@ABC−s

1
OO

x

1
OO

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Inductive recogniser for bool

1/0

1/0 GFED@ABC�

OO

= 0?

1

OO

= 0?

1
BB�����

= 0?
1

\\:::::

GFED@ABC−s

1
OO

GFED@ABC−t
1
OO

GFED@ABC−f
1
OO

x

1
OO

x

1 ??�����
1__?????

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Inductive recogniser for nat

x y x y

1 0 - success

= 0?

OO

= 0?

OO

0 1 - working

1 1- impossible

GFED@ABC−O
1

OO

GFED@ABC−S
1

OO

?>=<89:;?>=<89:;?>=<89:;1
ii

1

aa

1

^^]]

0 0 - failure

S

ZZ OO

S

OO

S

OO

O

OO

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Inductive recogniser for list nat

z w

= 0?

OO

��
= 0?

OO

GFED@ABC−O
1
OO

GFED@ABC−S
1
OO

?>=<89:;?>=<89:;?>=<89:; . . . 1
gg {hY

1
bb �

}
pe[R

I

1
__

�
{

ncX
O

F
A]]

	
�

�
~

x
rlga\WR

M
H

C
>x y

= 0?

OO

= 0?

OO

_^]\XYZ[−nil
1
OO

_^]\XYZ[−cons
1
OO

?>=<89:;

;;wwwwwwwwwwwwwwwwwwwww

JJ������������ ?>=<89:;

;;wwwwwwwwwwwwwwwwwwwww ?>=<89:;

=={{{{{{{{{{{{{{{{{{{ ?>=<89:;

>>}}}}}}}}}}}}}}}}}}
. . . .

kk

.

gg

.

dd ee

cons

`` OO

S

OO

O

OO

cons

OO

S

OO

. . .

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Example with trains

Inductive shape : Type :=
| oval : shape
| triangle : shape.

Inductive direction : Set :=
| west : direction
| east : direction.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Example with trains

Definition train : Set :=

< n:nat, m:nat, s: list shape, t: list shape>

Function t:train : dir := match t with <n,m,s,t>

if n = 3 and m = 2 and (exists n’, nth n’ s = s’ and
s = triangle) => west
if ...

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Inductive types in Neuro-symbolic networks

Inductive types can naturally be represented in neural networks:

For finite sets, we use feed-forward networks

For infinite sets defined recursively we use recursive
connections in networks

The networks can be integrated into big Neuro-symbolic
systems to type-check inputs/outputs;

The networks can be used for inductive generalisations and
analogy. (connection to Osbnabrueck research?)

Also note their relaton to coalgebra (possible connection to
[Kai-Uwe et al.] topos-theoretic approach)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Logic programs

Logic Programs

A← B1, . . . ,Bn

TP(I) = {A ∈ BP :
A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least Herbrand model of P.

An Important Result, [Kalinke, Hölldobler, 94]

For each propositional program P, there exists a 3-layer
feedforward neural network which computes TP .

We will call such neural networks TP -neural networks.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Logic programs

Logic Programs

A← B1, . . . ,Bn

TP(I) = {A ∈ BP :
A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}

lfp(TP ↑ ω) = the least Herbrand model of P.

An Important Result, [Kalinke, Hölldobler, 94]

For each propositional program P, there exists a 3-layer
feedforward neural network which computes TP .

We will call such neural networks TP -neural networks.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Logic programs

Logic Programs

A← B1, . . . ,Bn

TP(I) = {A ∈ BP :
A← B1, . . . ,Bn

is a ground instance of a clause in P and {B1, . . . ,Bn} ⊆ I}
lfp(TP ↑ ω) = the least Herbrand model of P.

An Important Result, [Kalinke, Hölldobler, 94]

For each propositional program P, there exists a 3-layer
feedforward neural network which computes TP .

We will call such neural networks TP -neural networks.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Characteristic Properties of TP-Neural Networks

1 The number of neurons in the input and output layers is
the number of atoms in the Herbrand base BP of a given
program P .

2 First-order atoms are not presented in the neural network
directly, and only truth values 1 and 0 are propagated.

3 Arise from Boolean networks of McCulloch and Pitts;
4 Require infinitely long layers in the first-order case.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Characteristic Properties of TP-Neural Networks

1 The number of neurons in the input and output layers is
the number of atoms in the Herbrand base BP of a given
program P .

2 First-order atoms are not presented in the neural network
directly, and only truth values 1 and 0 are propagated.

3 Arise from Boolean networks of McCulloch and Pitts;
4 Require infinitely long layers in the first-order case.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Characteristic Properties of TP-Neural Networks

1 The number of neurons in the input and output layers is
the number of atoms in the Herbrand base BP of a given
program P .

2 First-order atoms are not presented in the neural network
directly, and only truth values 1 and 0 are propagated.

3 Arise from Boolean networks of McCulloch and Pitts;
4 Require infinitely long layers in the first-order case.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Characteristic Properties of TP-Neural Networks

1 The number of neurons in the input and output layers is
the number of atoms in the Herbrand base BP of a given
program P .

2 First-order atoms are not presented in the neural network
directly, and only truth values 1 and 0 are propagated.

3 Arise from Boolean networks of McCulloch and Pitts;

4 Require infinitely long layers in the first-order case.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Characteristic Properties of TP-Neural Networks

1 The number of neurons in the input and output layers is
the number of atoms in the Herbrand base BP of a given
program P .

2 First-order atoms are not presented in the neural network
directly, and only truth values 1 and 0 are propagated.

3 Arise from Boolean networks of McCulloch and Pitts;
4 Require infinitely long layers in the first-order case.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

A Simple Example

B ←
A←
C ← A, B

TP ↑ 0 = {B , A}
lfp(TP) = TP ↑ 1 = {B , A, C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

ONMLHIJK−0.5

OO

ONMLHIJK−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

PP

GFED@ABC0.5

A B C

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

A Simple Example

B ←
A←
C ← A, B

TP ↑ 0 = {B , A}
lfp(TP) = TP ↑ 1 = {B , A, C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

ONMLHIJK−0.5

OO

ONMLHIJK−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

PP

GFED@ABC0.5

A B C

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

A Simple Example

B ←
A←
C ← A, B
TP ↑ 0 = {B, A}
lfp(TP) = TP ↑ 1 = {B, A, C}

A B C

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

A B C

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

A Simple Example

B ←
A←
C ← A, B
TP ↑ 0 = {B, A}
lfp(TP) = TP ↑ 1 = {B, A, C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5 GFED@ABC0.5 GFED@ABC0.5

A B C

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

A Simple Example

B ←
A←
C ← A, B
TP ↑ 0 = {B, A}
lfp(TP) = TP ↑ 1 = {B, A, C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

A Simple Example

B ←
A←
C ← A, B
TP ↑ 0 = {B, A}
lfp(TP) = TP ↑ 1 = {B, A, C}

A B C

GFED@ABC0.5

��

GFED@ABC0.5

GFED@ABC0.5

OO

GFED@ABC−0.5

OO

GFED@ABC−0.5

OO

GFED@ABC1.5

OO

GFED@ABC0.5

@@������������� GFED@ABC0.5

QQ

GFED@ABC0.5

A B C

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Example 2

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}

Paradox:
(computability,
complexity,
proof theory)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Example 2

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}

Paradox:
(computability,
complexity,
proof theory)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Example 2

P(0)←
P(s(x))← P(x)

TP ↑ 0 = {P(0)}
lfp(TP) = TP ↑ ω =
{0, s(0), s(s(0)),
s(s(s(0))), . . .}
Paradox:
(computability,
complexity,
proof theory)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Solution

Solution to the problem can be found in the approach known as
Logic Programs as Inductive Definitions. Consider the logic
programs below:

bool(t) <-
bool(f) <-

nat(O) <-
nat(S(n)) <- nat(n)

list(nil) <-
list(cons(n,s)) <- nat(n), list(s)

It turns out that most of “problematic” implementations of
Neuro-Symbolic systems relate to the recursive structures.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Neural networks for inductive logic programs

We can use precisely the same networks to handle inductive logic
programs:

x y x y

1 0 - success

= 0?

OO

= 0?

OO

0 1 - working

1 1- impossible

GFED@ABC−O
1

OO

GFED@ABC−S
1

OO

?>=<89:;?>=<89:;?>=<89:;1
ii

1

aa

1

^^]]

0 0 - failure

S

ZZ OO

S

OO

S

OO

O

OO

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Relation to Logic programming semantics

The inductive definition of nat is built on the assumption that the
set of natural numbers is computed at the least fixed point. This
gives rise to two common applications for inductive definitions -
they can be used to generate the elements of a set - if they are
read from right to left; and they can be used for type-checking of
expressions - if they are read from left to right. Both kinds of
implementation require finite and terminating computations.

S

S

O S

?>=<89:;O
1

OO

?>=<89:;S
1

OO

1
S^^

1

1
GG����

1
WW////

nat(O) <-
nat(S(n)) <- nat(n)

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Conclusions

Types and type-theoretic approach has a big future in AI: be
it inductive reasoning, learning techniques, or neuro-symbolic
integration.

Inductive types are closely related to recursive structures that
arise in Neural networks;

Inductive types should be used to ensure safety and security of
Neuro-Symbolic networks;

Finally, they can be used to improve the performance of the
exisiting state-of-the-art Neuro-Symbolic Systems.

Introduction Types for Ensuring Correctness of Neural Computations Applications to Logic programming and AI. Conclusions

Thank you!

	Introduction
	Types for Ensuring Correctness of Neural Computations
	Applications to Logic programming and AI.
	Conclusions

