Coinduction and Corecursion in Coq; Inductive and Coinductive Components of Corecursive Functions.

Ekaterina Komendantskaya, joint work with Yves Bertot

INRIA Sophia Antipolis

CMCS’08, 04 April 2008
Outline

Motivation

Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Syntactic Approach to Termination: Structural Recursion and Guardedness
Outline

Motivation

Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Syntactic Approach to Termination: Structural Recursion and Guardedness

Formalisation of Productive Non-Guarded Functions in Coq
Inductive Component of Corecursive Functions
Coinductive Component of Corecursive Functions
Proving Properties about the Models
Outline

Motivation

Inductive and Coinductive Types in Coq
Terminative and Productive Functions
Syntactic Approach to Termination: Structural Recursion and Guardedness

Formalisation of Productive Non-Guarded Functions in Coq
Inductive Component of Corecursive Functions
Coinductive Component of Corecursive Functions
Proving Properties about the Models

Conclusions
Filter Function, [Bertot05]

Definition

(Filter for streams). For a given predicate P,

$$\text{filter} \ (\text{SCons} \ x \ \text{tl}) = \begin{cases} \text{SCons} \ x \ (\text{filter} \ \text{tl}) & \text{if } P(x) \\ \text{filter} \ \text{tl} & \text{otherwise.} \end{cases}$$
Inductive Types and Recursive Functions

Coq = COC [Coquand,Huet'88] + CIC [Coquand,Paulin’93]

Inductive nat : Set :=
 | O : nat
 | S : nat -> nat.

Fixpoint div2 n : nat :=
 match n with
 | O => 0
 | S O => 0
 | S (S n’) => S (div2 n’)
end.
Coinductive Types and Corecursive Functions

\[
\text{Coq} = \text{COC} \ [88] + \text{CIC} \ [93] + \text{CCC} \ [\text{Gimenez}'96]
\]

CoInductive str (A: Set) : Set :=
\[
\text{SCons: } A \to \text{str A} \to \text{str A}.
\]

CoFixpoint repeat (a: A) : str A :=
\[
\text{SCons a (repeat a)}.
\]
Termination

We require all computations to terminate, because of:

- Curry-Howard Isomorphism (propositions → types; proofs → programs): non-terminating proofs can lead to inconsistency.
Terminative and Productive Functions

Termination

We require all computations to terminate, because of:

- Curry-Howard Isomorphism (propositions → types; proofs → programs): non-terminating proofs can lead to inconsistency.
- To decide type-checking of dependent types, we need to reduce expressions to normal form.
Terminative and Productive Functions

Termination

We require all computations to terminate, because of:

- Curry-Howard Isomorphism (propositions → types; proofs → programs): non-terminating proofs can lead to inconsistency.
- To decide type-checking of dependent types, we need to reduce expressions to normal form.

Example

The function \(\text{div2} \) is terminative.
Productive Values

Values in co-inductive types are productive when all observations of fragments made using recursive functions are guaranteed to be computable in finite time.
Productive Values

Values in co-inductive types are **productive** when all observations of fragments made using recursive functions are guaranteed to be computable in finite time.

The element of the stream at position n can be found by:

\[
\begin{cases}
\text{nth 0 (SCons a tl) = a} \\
\text{nth (S n) (SCons a tl) = nth n tl}
\end{cases}
\]

A given stream s is productive if we can be sure that the computation of the list nth n s is guaranteed to terminate, whatever the value of n is.
Productive Values

Values in co-inductive types are **productive** when all observations of fragments made using recursive functions are guaranteed to be computable in finite time.

The element of the stream at position n can be found by:

$$
\begin{align*}
\text{nth } 0 (\text{SCons } a \text{ tl}) &= a \\
\text{nth } (S \ n) (\text{SCons } a \text{ tl}) &= \text{nth } n \text{ tl}
\end{align*}
$$

A given stream s is productive if we can be sure that the computation of the list $\text{nth } n \ s$ is guaranteed to terminate, whatever the value of n is.

Example

For any n, the value $\text{repeat } n$ is productive.
Productive Functions

We call a function *productive at the input value* i, if it outputs a productive value at i.

Example

Filter is productive only on certain inputs.
A more general example

Definition

Let A, B be of type Set. For a predicate $P : B \to \text{bool}$ and functions $h : B \to A$, g, $g' : B \to B$, we define the function dyn:

$$\text{dyn} \; (x) = \begin{cases} \text{SCons} \; h(x) \; (\text{dyn} \; (g(x))) & \text{if } P(x) \\ \text{dyn} \; (g'(x)) & \text{otherwise.} \end{cases}$$
A more general example

Definition

Let A, B be of type Set. For a predicate $P : B \rightarrow \text{bool}$ and functions $h : B \rightarrow A$, $g, g' : B \rightarrow B$, we define the function dyn:

$$
\text{dyn} (x) = \begin{cases}
\text{SCons } h(x) \ (\text{dyn} \ (g(x))) & \text{if } P(x) \\
\text{dyn} \ (g'(x)) & \text{otherwise.}
\end{cases}
$$

Example

Suppose B is the set of natural numbers, $h = \text{id}$, $g = +1$; $g' = \times 2$; $P = \text{“even”}$. If we take $x = 1$, dyn will compute the infinite list: 2, 6, 14, 30, 62, 126, ...
A more general example

Definition

Let A, B be of type Set. For a predicate $P : B \to \text{bool}$ and functions $h : B \to A$, g, $g' : B \to B$, we define the function dyn:

$$
\text{dyn} \ (x) = \begin{cases}
\text{SCons} \ h(x) \ \text{(dyn} \ (g(x))) & \text{if } P(x) \\
\text{dyn} \ (g'(x)) & \text{otherwise.}
\end{cases}
$$

Example

Suppose B is the set of natural numbers, $h = \text{id}$, $g = +1$; $g' = \times 2$; $P = \text{“even”}$. If we take $x = 1$, dyn will compute the infinite list: 2, 6, 14, 30, 62, 126, ...

If B is a set of streams, we can have $\text{dyn} = \text{filter}$.
Totally-, Partially-, Non-Productive Functions

- **Totally Productive**
 (Function `repeat`)

- **Partially Productive**
 (Filters on streams and trees; dyn).

- **Non-Productive**
 Computing `nth 0 (filter even (repeat 1))` provokes the following computation:

 `filter even (repeat 1) repeat 1 ⇝ filter even (1::repeat 1) ⇝ ...`
Totally-, Partially-, Non- Productive Functions

- **Totally Productive**
 (Function `repeat`)
- **Partially Productive**
 (Filters on streams and trees; `dyn`).
- **Non-Productive**
 Computing `nth 0 (filter even (repeat 1))` provokes the following computation:
  ```
  filter even (repeat 1) repeat 1 \leadsto filter even (repeat 1)
  1::repeat 1 \leadsto filter even (repeat 1)
  ... 
  ```

Our method makes it possible to formalise totally and partially productive functions in Coq, using inductive and coinductive predicates to characterise the arguments on which these functions output productive values.
Structural Recursion

A structurally recursive definition is such that every recursive call is performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.
Structural Recursion

A structurally recursive definition is such that every recursive call is performed on a structurally smaller argument.

In this way we can be sure that the recursion terminates.

Example

```ocaml
Fixpoint div2 n : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.
```
General Recursion

Definitions where the recursive calls are not required to be on structurally smaller arguments, that is, where the recursive calls can be performed on any argument, are called general recursive arguments.

Example

\[
\begin{aligned}
\log(S\ 0) &= 0 \\
\log(S(S\ n)) &= S(\log\ S(\text{div2}\ n)).
\end{aligned}
\]
General Recursion

Definitions where the recursive calls are not required to be on structurally smaller arguments, that is, where the recursive calls can be performed on any argument, are called general recursive arguments.

Example

\[
\begin{align*}
\log(S\ 0) &= 0 \\
\log(S(S\ n)) &= S(\log S(div2\ n)).
\end{align*}
\]
Method of Ad-hoc Predicates [Aczel77], [Bove02].

```ocaml
Fixpoint log (x:nat)(h:log_domain x){struct h} : nat :=

match x as y return x = y -> nat with
| 0 => fun h' => False
| S 0 => fun h' => 0
| S (S p) =>
  fun h' => S (log (S (div2 p)) (log_domain_inv x p h h'))
end (refl_equal x).
```
Method of Ad-hoc Predicates [Aczel77], [Bove02].

\[
\text{Fixpoint } \text{log} (x:\text{nat})(h:\text{log_domain } x)\{\text{struct } h\} : \\
\text{nat} := \\
\begin{cases}
\text{match } x \text{ as } y \text{ return } x = y \to \text{nat} \text{ with} \\
| 0 \to \text{fun } h' \Rightarrow \text{False}_\text{rec } \text{nat} (\text{log_domain_non_0 } x \text{ h h'}) \\
| S \ 0 \to \text{fun } h' \Rightarrow 0 \\
| S \ (S \ p) \Rightarrow \\
\text{fun } h' \Rightarrow S \ (\text{log} \ (S \ (\text{div2} \ p)) \ (\text{log_domain_inv } x \ p \ h h')) \\
\text{end } \ (\text{refl_equal } x).
\end{cases}
\]
Guardedness [Gimenez96: Calculus of Coinductive Constructions]

The guardedness condition insures that

* each corecursive call is made under at least one constructor;
** if the recursive call is under a constructor, it does not appear as an argument of any function.

Violation of any of these two conditions makes a function rejected by the guardedness test in Coq.
Guaranteedness [Gimenez96: Calculus of Coinductive Constructions]

The guardedness condition insures that

* each corecursive call is made under at least one constructor;
** if the recursive call is under a constructor, it does not appear as an argument of any function.

Violation of any of these two conditions makes a function rejected by the guardedness test in Coq.

Example

Non-guarded functions:

[*] is not satisfied:
Filters, dyn;

[**] is not satisfied:
Consider the following function computing lists of ordered natural numbers:
nats = (SCons 1 (map (+ 1) nats)).
where the function map above is defined as follows:

map f (s: str): str := Cons (f (hd s)) (map f (tl s)).
Non-guarded functions:

[*] is not satisfied:
Filters, dyn;

[**] is not satisfied:
Consider the following function computing lists of ordered natural numbers:

nats = (SCons 1 (map (+ 1) nats)).

where the function map above is defined as follows:

map f (s: str): str := Cons (f (hd s)) (map f (tl s)).
Non-guarded functions:

[*] is not satisfied:
Filters, dyn;

[**] is not satisfied:
Consider the following function computing lists of ordered natural numbers:
\[
nats = (S\text{Cons} 1 (\text{map} (+ 1) \ nats)).
\]
where the function map above is defined as follows:

\[
\text{map } f \ (s: \text{str}): \text{str} := \text{Cons} \ (f \ (\text{hd} \ s)) \ (\text{map} \ f \ (\text{tl} \ s)).
\]
Non-guarded functions:

[*] is not satisfied:
Filters, dyn;

[**] is not satisfied:
Consider the following function computing lists of ordered natural numbers:

\[\text{nats} = (S\text{Cons } 1 \ (\text{map } (+ \ 1) \ \text{nats})) \]

where the function map above is defined as follows:

\[\text{map } f \ (s: \text{str}): \text{str} := \text{Cons } (f \ (\text{hd } s)) \ (\text{map } f \ (\text{tl } s)). \]
Our Method: Inductive and Coinductive Components

CoRecursive Function (Non-Guarded):

Inductive Component

CoInductive Component

Coinduction and Corecursion in Coq; Inductive and Coinductive Components of Corecursive Functions.
Our Method: Inductive and Coinductive Components

CoRecursive Function (Non-Guarded):

Inductive Component

Predicate eventually

CoInductive Component

Predicate infinite
Our Method: Inductive and Coinductive Components

CoRecursive Function (Non-Guarded):

Inductive Component

Predicate eventually

ColInductive Component

Predicate infinite

CoRecursive Function (Guarded):

Coinduction and Corecursion in Coq; Inductive and Coinductive Components of Corecursive Functions.

INRIA Sophia Antipolis
Predicate eventually: First-Step Productivity

Using eventually, we can describe the inductive component of a corecursive function. This component is a recursive function that performs all the computations and tests that lead to the first guarded corecursive call.

\[
\text{Inductive eventually}_s : \text{str A} \rightarrow \text{Prop} :=
\]

\[
| \text{ev}_b : \forall x s, P x \rightarrow \text{eventually}_s (\text{SCons A x s})
| \text{ev}_r : \forall x s, \neg P x \rightarrow \text{eventually}_s s \rightarrow \text{eventually}_s (\text{SCons A x s}).
\]
Predicate eventually: First-Step Productivity

Using eventually, we can describe the inductive component of a corecursive function. This component is a recursive function that performs all the computations and tests that lead to the first guarded corecursive call.

\[
\text{Inductive eventually}_s \colon \text{str} \; A \rightarrow \text{Prop} := \\
| \text{ev}_b \colon \forall x \; s, \; P \; x \rightarrow \text{eventually}_s \; (\text{SCons} \; A \; x \; s) \\
| \text{ev}_r \colon \forall x \; s, \; \text{not} \; P \; x \\
\rightarrow \; \text{eventually}_s \; s \rightarrow \text{eventually}_s \; (\text{SCons} \; A \; x \; s).
\]
Using `eventually`, we can describe the inductive component of a corecursive function. This component is a recursive function that performs all the computations and tests that lead to the first guarded corecursive call.

\[
\text{Inductive eventually}_s : \text{str A} \rightarrow \text{Prop} :=
\begin{align*}
| \text{ev}_b : & \quad \forall x s, P x \rightarrow \text{eventually}_s (\text{SCons A x s}) \\
| \text{ev}_r : & \quad \forall x s, \neg P x \\
& \rightarrow \text{eventually}_s s \rightarrow \text{eventually}_s (\text{SCons A x s}).
\end{align*}
\]
eventually for dyn

\[
\text{Inductive eventually_dyn} (x: \ B): \text{Prop} := \\
| \text{ev_dyn1} : \ P x = \text{true} \rightarrow \text{eventually_dyn} x \\
| \text{ev_dyn2} : \ P x = \text{false} \rightarrow \text{eventually_dyn} (g' x) \rightarrow \text{eventually_dyn} x.
\]

Compare eventually with ◊ in [Pnueli81, Jacobs02].
Inversion Lemmas

Lemma eventually_s_inv:

\[
\text{forall } (s : \text{ str } A), \text{ eventually}_s s \rightarrow \text{forall } x s', s = \text{ SCons } A x s' \rightarrow \not P x \rightarrow \text{ eventually}_s s'.
\]
Inversion Lemmas

Lemma eventually_s_inv:

\[
\forall (s : \text{str } A), \quad \text{eventually}_s s \Rightarrow \forall x s', s = \text{SCons } A x s' \Rightarrow \\
\neg P x \Rightarrow \text{eventually}_s s'.
\]

Lemma eventually_dyn_inv:

\[
\forall x, \text{eventually_dyn } x \Rightarrow P x = \text{false} \Rightarrow \\
\text{eventually_dyn } (g' x).
\]
Inductive Component of Filter

Fixpoint pre_filter_s (s : str A) (h : eventually_s s) struct h : A * str A :=

match s as b return s = b -> A*str A with
SCons x s’ =>
fun heq =>
match P_dec x with
| left _ => (x, s’)
| right hn =>
pre_filter_s s’ (eventually_s_inv s h x s’ heq hn)
end
end (refl_equal s).
Inductive Component of Filter

\[
\text{Fixpoint pre_filter_s (s : str A) (h : eventually_s s) struct h : A * str A :=}
\]

\[
\begin{align*}
\text{match s as b return s = b \to A*str A with} \\
\text{SCons x s' =>} \\
\text{fun heq =>} \\
\text{match P_dec x with} \\
| \text{left _ => (x, s')} \\
| \text{right hn =>} \\
\text{pre_filter_s s'} (\text{eventually_s_inv s h x s' heq hn}) \\
\text{end} \\
\text{end (refl_equal s).}
\end{align*}
\]
Inductive Component of Corecursive Functions

Fixpoint pre_filter_s (s : str A) (h : eventually_s s) struct h : A * str A :=

match s as b return s = b -> A*str A with
SCons x s' =>
fun heq =>
match P_dec x with
| left _ => (x, s')
| right hn =>
pre_filter_s s' (eventually_s_inv s h x s' heq hn)
end
end (refl_equal s).
Inductive Component of \texttt{dyn}

\begin{verbatim}
Fixpoint pre_dyn(x:B)(d:eventually_dyn x){struct d}: A*B:=
 match P x as b return P x = b -> A*B with
 | true => fun t => (h x, g x)
 | false => fun t =>
 pre_dyn (g' x) (eventually_dyn_inv x d t)
 end (refl_equal (P x)).
\end{verbatim}
Inductive Component of \textit{dyn}

\begin{verbatim}
Fixpoint pre_dyn(x:B)(d:eventually_dyn x){struct d}: A*B:=

 match P x as b return P x = b -> A*B with
 | true => fun t => (h x, g x)
 | false => fun t =>
 pre_dyn (g' x) (eventually_dyn_inv x d t)
 end (refl_equal (P x)).
\end{verbatim}
Inductive Component of \textit{dyn}

\begin{verbatim}
Fixpoint pre_dyn(x:B)(d:eventually_dyn x){struct d}: A*B:=

 match P x as b return P x = b -> A*B with
 | true => fun t => (h x, g x)
 | false => fun t =>
 pre_dyn (g' x) (eventually_dyn_inv x d t)
 end (refl_equal (P x)).
\end{verbatim}
Coinductive Predicate \textit{infinite}

Corecursive computations are introduced by repeating computations performed by the inductive component. This can happen only if recursive calls satisfy the \textit{eventually} predicate repeatedly. We need the predicate \textit{infinite} to express this.

\begin{verbatim}
CoInductive infinite_s : str -> Prop :=
 al_cons: forall (s: str A) (h: eventually s),
 infinite_s (snd(pre_filter_s s h)) -> infinite_s s.
\end{verbatim}
The same predicate for \textit{dyn}

\begin{verbatim}
CoInductive infinite_dyn (x : B): Prop :=
 di : forall (d: eventually_dyn x),
 infinite_dyn (snd (pre_dyn x d)) -> infinite_dyn x.
\end{verbatim}

The infinite predicate describes exactly those arguments to the function for which the function is guaranteed to be productive.
Relating eventually and infinite

Lemma infinite_eventually_dyn :

forall x, infinite_dyn x -> eventually_dyn x.

Lemma infinite_always_dyn :

forall x, infinite_dyn x ->
forall e: eventually_dyn x,
infinite_dyn (snd (pre_dyn x e)).
CoFixpoint filter (s : str A) : forall (h: infinite_s s), str A :=

match s return infinite_s s -> str A with
| SCons x s’ =>
 fun h’ : infinite_s (SCons A x s’) =>
 SCons A (fst
 (pre_filter_s _ infinite_eventually_s (SCons A x s’) h’))
 (filter _ (infinite_always_s (SCons A x s’) h’))
end.
Guarded Representation of a filter

CoFixpoint filter (s : str A) : forall (h: infinite_s s), str A :=

match s return infinite_s s -> str A with
 | SCons x s’ =>
 fun h’ : infinite_s (SCons A x s’) =>
 SCons A (fst
 (pre_filter_s _ infinite_eventually_s (SCons A x s’) h’))
 (filter _ (infinite_always_s (SCons A x s’) h’)) end.
Guarded Representation of \texttt{dyn}

\begin{verbatim}
CoFixpoint dyn (x:B)(h:infinite_dyn x) : str :=
 SCons (fst (pre_dyn x (infinite_eventually_dyn ev x h)))
 (dyn _ (infinite_always_dyn x h
 (infinite_eventually_dyn x h))).
\end{verbatim}
Guar ded Representation of dyn

\[
\text{CoFixpoint dyn (x:B)(h:infinite_dyn x) : str := SCons (fst (pre_dyn x (infinite_eventually_dyn ev x h))) (dyn _ (infinite_always_dyn x h (infinite_eventually_dyn x h))).}
\]
Proving Properties about the Models

Recursive Equation Lemma for dyn

Theorem dyn_equation :

\[
\forall x \quad \text{i: infinite_dyn x}, \quad \text{bisimilar_s (dyn x \ [i])}
\]

\[
\text{(match Px as b return Px = b -> infinite_dyn x -> str with}
\]

\[
|\text{true} \Rightarrow \text{fun t i =>}
\]

\[
\text{SCons(h x)(dyn(g x)} \ (\text{dyn_step1 x t i}))
\]

\[
|\text{false} \Rightarrow \text{fun t i => dyn (g' x)} \ (\text{dyn_step2 x t i})
\]

\[
\text{end (refl_equal (P x)) i).}
\]
More Complicated Applications of Our Method:

Expression trees and dynamic filtering on expression trees.

The **dynamic filter function on expression trees** was used to establish a normalisation algorithm for an admissible representation of a closed interval of real numbers in [Geuvers1993], [Niqui2004].
More Complicated Applications of Our Method:

Expression trees and dynamic filtering on expression trees.

The **dynamic filter function on expression trees** was used to establish a normalisation algorithm for an admissible representation of a closed interval of real numbers in [Geuvers1993], [Niqui2004]. The function was not guarded.

We applied our method to give a Coq formalisation of the function.
Other Productive Non-Guarded Functions

What other productive non-guarded functions do we know?
Other Productive Non-Guarded Functions

What other productive non-guarded functions do we know?

Every terminative function gives rise to a non-guarded totally productive function.

Example

Terminative function $x - 1$ gives rise to the totally productive function f: stream nat -> stream nat:

$$f (x::y::tl) = \begin{cases} x::f(y::tl) & \text{if } x \leq y \\ f((x-1)::y::tl) & \text{otherwise.} \end{cases}$$
Conclusions

1. We generalised the method of [Bertot05] to a wider class of functions:
 ▶ various output data types including streams, expression and binary trees;
 ▶ included dynamically changing functions;
and thereby gave a general analysis of the method.

2. We work with partial productivity, and not just total productivity.

3. We establish the uniform **Recursive Equation Lemmas** for the functions we formalise, this was not achieved in [Bertot05].
Conclusions

1. We generalised the method of [Bertot05] to a wider class of functions:
 - various output data types including streams, expression and binary trees;
 - included dynamically changing functions;
and thereby gave a general analysis of the method.

2. We work with partial productivity, and not just total productivity.

3. We establish the uniform **Recursive Equation Lemmas** for the functions we formalise, this was not achieved in [Bertot05].

Future work → further automatisation.
Thank you!