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Neural Network: definitions
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Logic and Neurons: McCullogh and Pitts, 1943.

If A and B then C.

1
=
1%»1 11— —1

(A=1)or (B=1). Not (A = —1).
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Logic and Neurons - Level of abstraction 1: Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and
digital hardware are equally suitable for symbolic computations.
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Logic and Neurons - Level of abstraction 1: Automata

(Minsky 1954; Kleene 1956; von Neumann 1958: Neural and
digital hardware are equally suitable for symbolic computations.
The picture is due to Alexander & Morton, 1996)
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Logic and NNs: summary [Siegelmann]

Finite Automata — Binary threshold networks

Turing Machines — Neural networks with rational weights
Probabilistic Turing Machines — NNs with rational weights
9-neuron network will suffice to simulate Universal Turing machine
[Siegelmann and Sontag]
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Levels of Abstraction: from 1 to 2

The results we have mentioned form the 1st, theoretical, level of
abstraction are general and powerful enough to claim that, given a
neural computer, we can transform hardware and software
architectures of digital computers to fit the neural hardware.
However, in 2009, unlike in 1959, the development of digital and
neural hardware do not come hand in hand. As soon as digital
computers started to take over, another level of abstraction, much
less general, became popular.
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Levels of Abstraction: from 1 to 2

The results we have mentioned form the 1st, theoretical, level of
abstraction are general and powerful enough to claim that, given a
neural computer, we can transform hardware and software
architectures of digital computers to fit the neural hardware.
However, in 2009, unlike in 1959, the development of digital and
neural hardware do not come hand in hand. As soon as digital
computers started to take over, another level of abstraction, much
less general, became popular.

Given a Neural Network simulator, what kind of practical problems
can | solve with it? where can | apply it?

(Parallelism, classification.)

Implementations of Computational Logic in NNs...
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A Simple Example

B —
A —
C—AB

Tp10= {B’A}
Ifo(Tp) = Tp 11 ={B,A C}
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A Simple Example

A B C
69 (9) 62
B —
cCas (& ()

Tp10={B,A}
Ifp(Tp) = Tp 11 ={B,A,C}
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Problems with logic reasoning by boolean networks

P(0) «—
P(s(x)) — P(x)
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Problems with logic reasoning by boolean networks

P(0) «—
P(s(x)) — P(x)

Paradox:

(computability,
complexity,

proof theory,

proximity to conventional
or biological neural net-
works is illusory and de-
ceiving...)
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Neuro-symbolic architectures of other kinds:

This problem of processing truth values instead of the syntax,
causes the same problem in most of the existing Neuro-Symbolic
systems, e.g.:

@ The “core” method of computing semantic operators for logic
programs [Holldobler et al, 1994- 2009]

@ Markov Logic and Markov networks [Domingos 2006-2009]

@ Inductive and Modal logics in Neural Networks [Broda, Garcez
et al. 2002,2008]

@ Fuzzy Logic Programming in Fuzzy Networks.
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Methods we suggest:

O Logic terms can be processed directly, without processing
their truth values; one can use a one-to-one numerical
encoding, if necessary.

@ Although only scalar numbers are allowed to be processed by

a single neuron, a layer of neurons processes vectors of

symbols, and a network of several layers processes matrices of

signals. One can use vectors as representatives of strings; and
matrices - as representatives of trees.

Parallel algorithms can be easily applied in neural networks.

Many techniques of computational logic - such as unification

or term-rewriting naturally arise - in non-symbolic forms - in

conventional learning algorithms of neurocomputing.

© Learning Functions one uses in Neuro-Symbolic networks can
be arbitrary, not necessarily the conventional functions of
neurocomputing.
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Hebbian (Unsupervised) Learning

Unsupervised learning rule: Awy;(t) = F(vi(t), vj(t)), where F
is some function. Very often, it is Awy;(t) = nvi(t )vj( ), for some
constant 7, called the rate of learning.

v/ Pj Wyj + A@\
V! b; \L ,@% k

v wij k
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Example 1. Parallel Rewriting

Consider a string [1:2:3:1:2:3:3:1:2:3:1:2] and rewriting rules -
ground instantiations of x — 3x for 1,2, 3

The parallel rewriting step will give us
[3:6:9:3:6:9:9:3:6:9:3:6].
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Example 1. Parallel Rewriting

Consider a string [1:2:3:1:2:3:3:1:2:3:1:2] and rewriting rules -
ground instantiations of x — 3x for 1,2, 3

The parallel rewriting step will give us
[3:6:9:3:6:9:9:3:6:9:3:6].

This can be done in unsupervised learning network net: the rate of
learning n = 2; Aw = nyx = 2w; w™®¥ = w + Aw = 3w.
Lz [ FE ot

: 1 1 |
diew | Train | Semulate !ﬂudapt | Reanitialze 'Weights | ViewyEdd Weights | |

T Metwork: net

m}w Oﬁ#j_“f _‘
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Parallel rewriting on strings - a closer look:

w
2
4
6
2
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4
6
2
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Parallel rewriting on strings - a closer look:
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Parallel (Term) Rewriting.

An abstract rewriting system (ARS)

is a structure A = (A, {—q4 |a € I}) consisting of a set A and a
set of binary relations —, on A, indexed by a set /.

A term rewriting system (TRS)

is a pair R = (X, R) of a first-order signature ¥ and a set of
rewriting rules R for X, (subject to certain restrictions).

Parallel rewriting step

| \

Let a term t contain some disjoint redexes si, Sp, ..., Sp; that is,
suppose we have t = C[sy, sp, . . ., Sp|, for some context C. If their
contracta are respectively s;,s),...,s;, in n steps the reduct

t' = C[s}, sb,...,s,] can be reached. These n steps together are

called a parallel step.

v
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Parallel rewriting

We assume here, that symbols f, a, (, ) and b are encoded as
numbers |f], |al, |(|, |)| and |b|. The rewriting rule is a — b.

Aw =
0
0
Z
1< |b| — |al
X~
AN 0
|b| — |al
0
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Parallel rewriting

We assume here, that symbols f, a, (, ) and b are encoded as
numbers |f], |al, |(|, |)| and |b|. The rewriting rule is a — b.

Aw =
0
0
L
1€~ |b| — |al
N
N 0
|b] — |al
0

wheW — wold L Aw that is,
[F1:1C15 1als DI+ [0;0; [b] — fal; 0] = [[£]; |(I: ] DI]-
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Parallel rewriting

Parallel Term rewriting
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Parallel rewriting

Complications

@ The learning rule and change vectors may or may not be
describable by a continuous function (or a function that is
conventionally used in Neurocomputing). In the first example,
we used the conventional learning function
(Aw = nyx = 2w)... But not in the second.

e Terms may grow at each substitution: e.g., the term f(b) may
well be transformed into f(g(a)), which will require more
neurons.

This is why, the learning functions we use need to be more clever
than just arithmetic operations...
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Solutions

@ We widen the range of available learning functions, expressing
some of them algorithmically. E.g, the learning function for
the 2nd example would need to be formulated (roughly) as
follows: for a rewriting rule a — b, find |a| in the
vector w, and form the vector
Aw = [0;0; |b| — |al; 0; | b| — |al; 0]

o We define an algorithm for adding neurons to the layer, which
roughly follows the idea of “growing neural gas" [Fritzke,94].
Having a set of rewriting rules, one extends the layer of
neurons after each parallel rewriting step to allow terms to
grow as rewriting proceeds.

@ We extend this to several rewriting rules.

This set of new functions is formalised in MATLAB neural network
simulator, and the library is ready to use. The networks perform
parallel rewriting for an arbitrary term-rewriting system.
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Conclusions

@ The change in style: The networks work directly with terms,
and not truth values.

© Now the burden to do symbolic computations is taken by
learning functions, and not by architectures of the networks; -
this gives control & flexibility.

© Because we exploit the conventional rewriting abilities of
neural networks, for certain number of cases purely neural
approach will suffice. For more general cases of
term-rewriting, all we need to do is to switch a new learning
function, which may be rather “symbolic” (=algorithmic).

@ This kind of networks can be further implemented in hybrid
(neuro-symbolic) systems.

© Generally, there is always a trade-off between the amount of
symbolism we allow in neuro-symbolic networks and the level
of generality of logical problems they can solve.
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