
Coalgebraic Derivations in Logic Programming

Ekaterina Komendantskaya, joint work with John Power

Automated Reasoning Workshop, Glasgow, 2011

ARW’11,
11 April 2011

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 1 / 24

Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 2 / 24

Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 3 / 24

In one slide,

It is the sory of how one started with looking for a suitable semantics
for an existing derivation algorithm, and ended up proposing a new
derivation algorithm for the semantics.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 4 / 24

Part 1

Colagebraic semantics for Logic programming.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 5 / 24

Coalgebraic Analysis of Logic Programs

Generally, given a functor F , an F -coalgebra is a pair (S , α) consisting of a
set S and a function α : S −→ F (S). We will take a powerset functor Pf .

Proposition

For any set At, there is a bijection between the set of variable-free logic
programs over the set of atoms At and the set of Pf Pf -coalgebra
structures on At.

Proof.

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 6 / 24

Example

Example

Consider the logic programbelow .

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

The program has three atoms, namely q(b,a), s(a,b) and p(a). So
At = {q(b,a), s(a,b), p(a)}. And the program can be identified with
the Pf Pf -coalgebra structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 7 / 24

Right adjoint

Definition

Given two categories C and D, the functor U : C → D has a right adjoint if
for all A ∈ D there exists GA ∈ C and there exists εA : UGA→ A such
that for all B ∈ C and for all f : UB → A there exists a unique
g : B → GA such that the following diagram commutes:

UGA
εA

Ug f g

UB B

A GA//OO CC OO

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 8 / 24

Coalgebraic Analysis of derivations in Logic Programs

Theorem

Given an endofunctor H : Set −→ Set with a rank, the forgetful functor
U : H-Coalg −→ Set has a right adjoint R.

R is constructed as follows. Given Y ∈ Set, we define a transfinite
sequence of objects as follows. Put Y0 = Y , and Yα+1 = Y × H(Yα). We
define δα : Yn+1 −→ Yn inductively by

Yα+1 = Y × HYα
Y×Hδα−1−→ Y × HYα−1 = Yα,

with the case of α = 0 given by the map Y1 = Y ×HY
π1−→ Y . For a limit

ordinal, let Yα = limβ<α(Yβ), determined by the sequence

Yβ+1
δβ−→ Yβ.

If H has a rank, there exists α such that Yα is isomorphic to Y × HYα.
This Yα forms the cofree coalgebra on Y .

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 9 / 24

Coalgebraic Analysis of derivations in Logic Programs

U: H-Coalg Set

R
//

oo

Corollary

If H has a rank, U has a right adjoint R and putting G = RU, G possesses
a canonical comonad structure and there is a coherent isomorphism of
categories

G -Coalg ∼= H-Coalg,

where G -Coalg is the category of G-coalgebras for the comonad G.

Given an H-coalgebra p : Y −→ HY , we construct maps pα : Y −→ Yα
for each ordinal α as follows. The map p0 : Y −→ Y is the identity, and
for a successor ordinal, pα+1 = 〈id ,Hpα ◦ p〉 : Y −→ Y × HYα. For limit
ordinals, pα is given by the appropriate limit. By definition, the object GY
is given by Yα for some α, and the corresponding pα is the required
G -coalgebra.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 10 / 24

Coalgebraic Analysis of derivations in Logic Programs

Taking p : At −→ Pf Pf (At), by the proof of Theorem 1, the
corresponding C (Pf Pf)-coalgebra where C (Pf Pf) is the cofree comonad
on Pf Pf is given as follows: C (Pf Pf)(At) is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

This chain has length ω. As above, we inductively define the objects
At0 = At and Atn+1 = At× Pf PfAtn, and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf)(At).

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 11 / 24

Success!

We prove soundness and completeness results for the SLD-derivations
relative to the Coalgebraic semantics.

However, the observational semantics does not come naturally to this
kind of derivations.

One of the main purposes of giving an observational semantics to logic
programs is its ability to observe equal behaviors of logic programs and
distinguish logic programs with different computational behavior.
Therefore, the choice of observables and semantic models is closely related
to the choice of equivalence relation defined over logic programs.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 12 / 24

Part 2

Coalgebraic derivations in Logic programming.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 13 / 24

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 14 / 24

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 14 / 24

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The proof tree

← p(a)

← q(b, a)

�

← s(a, b)

�

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 15 / 24

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD tree

← p(a)

← q(b, a), s(a, b)

← s(a, b)

�

← s(a, b), s(a, b)

← s(a, b)

�

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 16 / 24

Is there anything at all in practice of Logic Programming
that corresponds to the action of C (PfPf)-comonad?
From the examples above, it’s clear that:

Sequential SLD-derivation

is the least suitable for the model given by C (Pf Pf)-comonad.

Proof trees

exhibit an and-parallelism in derivations - that is, parallel proof search over
conjuncts in a goal, but the choices of different clauses to use in the
process are not reflected - except for - one can use a sequence of
proof-trees for this purpose.

SLD-trees

exhibit an or-parallelism in derivations - that is, they show different
possibilities of derivations if there are multiple clauses that unify with a
goal; but they process conjuncts in a goal sequentially.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 17 / 24

It turns out that the answer lies in the combination of the
two kinds of parallelism:

p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The and-or parallel tree

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Except for... and-or trees are un-
sound in the first-order case.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 18 / 24

Why unsound?

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 19 / 24

Coalgebraic semantics for the first-order case

We use Lawvere theories,

model most general unifiers (mgu’s) by equalisers,

Given a signature Σ, the Lawvere theory LΣ generated by Σ

has objects given by natural numbers and maps from n to m given by
equivalence classes of substitutions θ of m variables by terms generated by
the function symbols in Σ applied to n variables.

We would like to model P by the putative [LopΣ ,Pf Pf]-coalgebra
p : At −→ Pf Pf At that, at n, takes an atomic formula A(x1, . . . , xn) with
at most n variables, considers all substitutions of clauses in P whose head
agrees with A(x1, . . . , xn), and gives the set of sets of atomic formulae in
antecedents.

p : At −→ PcPf At gives a Lax(LopΣ ,PcPf)-coalgebra structure on At; and
p determines a Lax(LopΣ ,C (PcPf))-coalgebra structure
p̄ : At −→ C (PcPf)(At).

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 20 / 24

Example of a first-order coinductive tree (Sound
derivations!):

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 21 / 24

Example of a first-order coinductive tree (Sound
derivations!):

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 22 / 24

The main results

We propose a new coinductive derivation algorithm inspired by the
coalgebraic semantics.

The algorithm provides an elegant solution to the problem of
implementing both corecursion and concurrency in logic programming.

We prove soundness and completeness,

... and correctness and full abstraction results for the new coinductive
derivations relative to the coalgebraic semantics.

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 23 / 24

Thank you!

Katya (ARW’11) Coalgebraic Derivations in Logic Programming ARW’11 24 / 24

