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Big Picture: Coinduction in Theorem Proving

I Pre-history is given be the studies of recursion and fixed
points: Knaster, Tarski, Kleene, first half of XX century;

I 1994 Coquand and 1996 Gimenez – bring
inductive/coinductive methods to Type theory and Coq;

I Nowadays, most mainstream Interactive Theorem Provers
(ITP) have support for induction and coinduction:

I Inductive and Coinductive types
I Recursive and Corecursive functions
I Inductive and Coinductive proof principles.

It happens that type-theoretic setting gives just the right
background for development of coinductive methods: pattern and
co-pattern matching, laziness, productivity and guardedness,
constructive view of proofs.
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Coinduction in Automated Theorem Proving (ATP)

I Coinductive data types are as natural and common (in
verification, CS) as inductive;

I There is a need to reason about infinite/cyclic computation

I Would enrich ATPs and allow more elegant programs.

. CoInductive LP [Gupta et al, 2007]

. [Leino 2013]: Coinduction in Dafny. (A big part of motivation
is to mimic ITPs)

. [Reynolds and Blanchette 2015]: Coinduction for SMT
Solvers, CADE 2015.

. Corecursion arising in Type inference in Functional
Programming [Lamel, Peyton Jones], and OO Programming
[Ancona]

Note: introduced MUCH later and in a limited form.
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Bigger Goal and Motivation

1. Understand reasons why coinduction does not come to ATP
as easily as to ITP;

2. Find new – more structural and more constructive –
foundations for proof-search in ATP;

3. ... thereby introducing better (more natural and expressive)
coinductive methods to ATP;

4. Bridge the gap between ITP and ATP, in which best sides of
the two worlds are presented.

My goal for today:

I illustrate and explain points 1-3 by means of (first-order) Horn
Clause Logic and Resolution;

I invite discussion (and collaborators!)
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Motivation

Background: Horn Clause Logic in ATP and Type Inference

Inductive and Coinductive Big Step (Declarative) Semantics for LP

Inductive and Coinductive Small Step (Operational) Semantics for
LP

Structural Resolution: new theory of productivity for ATP

Current and future work: Type-Theoretic view of Structural
Resolution



Syntax of Horn-clause Logic

First-order signature Σ and terms, term-trees

I function symbols with arity;

I variables.

Example

I stream – arity 1

I scons – arity 2

Term-trees are trees over Σ∪V , subject to branching ≈ arity:

stream

scons

x y



Term Notation:

Term(Σ) Set of finite term trees over Σ
Term∞(Σ) Set of infinite term trees over Σ
Termω (Σ) Set of finite and infinite term trees over Σ

GTerm(Σ), GTerm∞(Σ), GTermω (Σ) will denote sets of ground (variable free)
terms.



Syntax of Horn-clause Logic

Horn Clauses

Given A,B1, . . . ,Bn ∈ Term(Σ),

I a definite clause A← B1, . . . ,Bk

I a goal clause ← B1, . . . ,Bk

Universal quantification is assumed.

A (definite) logic program is a finite set of definite clauses

... Gives us a Turing-complete programming language.



Example: lists of natural numbers

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons(x,y)) ← nat(x), list(y)



Logic Programming...

SLD resolution = Unification + Search



SLD-resolution

Program NatList:

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

list(cons(x,y))
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SLD-resolution

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

list(cons(x,y))

nat(x),list(y)

list(y)

/0

The answer is “Yes”, NatList ` list(cons(x ,y)) if x/0, y/nil , but
we can get more substitutions by backtracking.
SLD-refutation = finite successful SLD-derivation.



Horn Clauses in Type Class Inference (Haskell)

Equality type class

class Eq a where

(==) :: a −> a−> Bool.

Equality class instance declaration for datatype List

instance Eq x => Eq (List x) where...

Horn-Clause view of equality class instances for List and Char:

κ1 : Eq(x)⇒ Eq(List(x))
κ2 : ⇒ Eq(Char)



Outline

Motivation

Background: Horn Clause Logic in ATP and Type Inference

Inductive and Coinductive Big Step (Declarative) Semantics for LP

Inductive and Coinductive Small Step (Operational) Semantics for
LP

Structural Resolution: new theory of productivity for ATP

Current and future work: Type-Theoretic view of Structural
Resolution



Big-Step Semantics of LP

Definition (Big step rule)

P |= σ(B1), . . . ,P |= σ(Bn)

P |= σ(A)
,

for some grounding substitution σ , and A← B1, . . .Bn ∈ P.

Example

Logic program Nat
1.nat(0) ←
2.nat(s(x)) ← nat(x)



Inductive Semantics of LP

Definition (Big step rule)

P |= σ(B1), . . . ,P |= σ(Bn)

P |= σ(A)
,

for some grounding substitution σ , and A← B1, . . .Bn ∈ P.

Definition

The least Herbrand model for P is the smallest set
MP ⊆ GTerm(Σ) closed forward under the rules.

Example

Taking the logic program Nat, we obtain the set
MNat = {nat(0), nat(s(0)),nat(s(s(0))), . . .}.



CoInductive Semantics of LP

Definition (Big step rule)

P |= σ(B1), . . . ,P |= σ(Bn)

P |= σ(A)
,

for some grounding substitution σ , and A← B1, . . .Bn ∈ P.

Definition

The greatest complete Herbrand model for P is the largest set
Mω

P ⊆ GTermω (Σ) closed backward under the rules.

Example

Mω

Nat will now be given by the set:
{nat(0),nat(s(0)),nat(s(s(0))), . . .}

⋃
{nat(s(s(...)))}.



Coinductive programs

Some programs have only one natural interpretation:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ← bit(x), stream(y)

MStream = {bit(0),bit(1)}
Mω

Stream = {bit(0),bit(1),stream(scons(0,scons(0, ...)),
stream(scons(1,scons(0, ...)), . . .}
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SLD-Resolution as a reduction system
Given a logic program P, and terms t1, . . . , ti , . . . , tn we define

I SLD-reduction: P ` [t1, . . . , ti , . . . , tn] 
[σ(t1), . . . ,σ(B0), . . . ,σ(Bm), . . . ,σ(tn)] if
A← B1, . . . ,Bm ∈ P, and ti ∼σ A.

unifiers

t ∼σ t ′ denotes a unifier of t and t ′, i.e. σ(t) = σ(t ′)

SLD-resolution is sound and complete, inductively [70s Apt,
Van Emden, Kowalski]

I If P ` t n /0, for some t ∈ Term(Σ), then there exists a
substitution θ such that θ(t) ∈MP .

I If θ(t) ∈MP for some grounding substitution θ , then there
exists a reduction P ` t n /0, with an answer σ such that
there exists θ ′ making θ = θ ′σ .
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Coinductive soundness of SLD-resolution: “Computations
at infinity” [80s, van Emden&Abdallah, Lloyd]

Definition

An infinite term t is SLD-computable at infinity with respect to a
program P if there exist a finite term t ′ and an infinite fair
SLD-derivation G0 = (?← t ′),G1,G2, . . .Gk . . . with mgus
θ1,θ2, . . .θk . . . such that d(t,θk . . .θ1(t ′))→ 0 as k → ∞.

An SLD-derivation is fair if either it is finite, or it is infinite and, for every atom
B appearing in some goal in the derivation, (a further instantiated version of)
B is chosen within a finite number of steps.



Example

Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

stream(scons(x,y))

bit(x),stream(y)

stream(y)

bit(x1),stream(y1)

stream(y1)

...
At infinity, a term scons(0,scons(0, . . .)) is computed.



Computations at infinity are sound

Defining CP = {t ∈ GTerm∞(Σ) | there exists a term t ′ such that
t is SLD-computable at infinity with respect to P by t ′}.

Theorem (Van Emden&Abdallah, Lloyd, 80s)

Given a P ∈ LP(Σ), CP ⊆Mω

P .

A great insight:

This work was an early example of productive coinduction:
requiring an infinite computation must produce an infinite term.

Two problems:

I Computations at infinity are not complete;

I They do not give rise to an implementable algorithm.
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First Solution: CoLP [Gupta et al, 2007]

Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

stream(scons(x,y))

bit(x),stream(y)

stream(y)

bit(x1),stream(y1)

stream(y1)

...
Look for a loop in resolvents: if it is found, close by circular
unification: taking stream(y) and stream(scons(0,y1)) by
circular unification gives y 7→ scons(0,y). Thus, we get a
coinductive answer x 7→ 0,y 7→ scons(0,y).



Properties of CoLP

1. Sound relative to greatest complete Herbrand models;

2. Incomplete relative to greatest complete Herbrand models;

3. Neither sound nor complete relative to computations at
infinity:

Example (Unsound)

Program:
bad(x)← bad(x)
Will give rise to a reduction:
bad(x) bad(x) bad(x) . . .
CoLP will conclude bad(x) is entailed by the program, using loop
detection. However, no infinite term is computed at infinity for this
program. Its Herbrand model will not contain infinite terms, either.

Conclusion: CoLP’s loop detection does not guarantee, on its own,
productivity of computations.



Incompleteness of CoLP for Irregular term trees

Program From:

Example

1.from(x,scons(x,y)) ←

from(s(x),y)

from(0,x)

from(s(0),x′)

from(s(s(0)),x′′)

from(s(s(s(0))),x′′′)

...
No loop found, and CoLP does not terminate. But the term
from(0,scons(0,scons(s(0),scons(s(s(0)), . . .)))) is computable
at infinity.



A Fundamental Problem

Productivity theory for LP is absent:

I Operational Semantics of the 80s gives a notion of global
productivity, but it is not implementable;

I Loop detection of CoLP is implementable but does not ensure
global productivity;

I Notion of Observational Productivity is missing in both cases



Global and Observational Productivity elsewhere in
Theorem Proving

In interactive theorem provers (Coq, Agda)
Values in co-inductive types are observationally productive when all
observations of fragments made using recursive functions are
guaranteed to be computable in finite time.

Observational Productivity

We call a function (observationally) productive, if, for any given
input, it outputs a productive value.



Global and Observational Productivity elsewhere in
Theorem Proving

Observational productivity is guaranteed by means of guardedness
checks imposed on all corecursive functions:
CoInductive Stream A : Type :=

SCons : A→ Stream A→ Stream A.

Observationally productive function:

CoFixpoint fib (n m : nat) :=SCons n (fib m (n+m)).

Observationally non-productive function:

CoFixpoint bad (f : A → A) (x : A) : Stream A :=
bad f (f x).

Observational productivity guarantees global productivity.



In search of a missing theory of productivity for ATP

I Direct borrowing of methods from ITP is hard:

1. We have no types and type constructors to use as “guards”;
2. We have no pattern-matching.

Is there a mysterious Missing productivity theory for LP and
wider for ATP?

– Structural Resolution (also S-Resolution)



Outline

Motivation

Background: Horn Clause Logic in ATP and Type Inference

Inductive and Coinductive Big Step (Declarative) Semantics for LP

Inductive and Coinductive Small Step (Operational) Semantics for
LP

Structural Resolution: new theory of productivity for ATP

Current and future work: Type-Theoretic view of Structural
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Structural Resolution:
a new operational semantics for productive coinductive proof
search.

S-Resolution

Coalgebraic
Semantics

[K&Power 2010,2012,2014]

structural

properties

Tree Calculus

[Johann & K 2015]

tree

structures

Type-theoretic
Semantics

[Fu & K 2015]

Horn formulas as types

proof-witness construction

ss

;; OO

##
++



S-resolution reductions

matchers

t ≺σ t ′ denotes a matcher of t and t ′, i.e. σ(t) = t ′

I SLD-reduction: P ` [t1, . . . , ti , . . . , tn] 
[σ(t1), . . . ,σ(B0), . . . ,σ(Bm), . . . ,σ(tn)] if
A← B1, . . . ,Bm ∈ P, and ti ∼σ A.

I Term-Matching reduction:
P ` [t1, . . . , ti , . . . , tn]→ [t1, . . . ,σ(B0), . . . ,σ(Bm), . . . , tn] if
A← B1, . . . ,Bm ∈ P, and A≺σ ti .

I Substitutional reduction:
P ` [t1, . . . , ti , . . . , tn] ↪→ [σ(t1), . . . ,σ(ti ), . . . ,σ(tn)] if
A← B1, . . . ,Bm ∈ P, and ti ∼σ A.

I S-resolution reduction: P ` [t]→µ ◦ ↪→1 [t ′].

Then, (P, ) is a reduction system that models SLD-reductions
for P, and (P,→µ ◦ ↪→1) is a reduction system that models
S-resolution reductions for P.
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Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ← bit(x), stream(y)

1. SLD-resolution reduction:
[stream(x)] [bit(x ′),stream(y)] [stream(y)] 
[bit(x ′′),stream(y ′)] . . .

2. Term-matching reduction: [stream(x)] 9
3. S-resolution reduction:

[stream(x)] ↪→1 [stream(scons(x ′,y))]→µ

[bit(x ′),stream(y)] ↪→1 [bit(0),stream(y)]→µ [stream(y)] ↪→1

[stream(scons(x ′′,y ′))]→µ [bit(x ′′),stream(y ′)] . . .

Note how term-matching (≈ pattern-matching) behaves for this
coinductive program!



Productivity for free

Definition (Observational Productivity)

A logic program P is observationally productive if the reduction
system (P,→) is strongly normalising, i.e. if every term-matching
reduction is finite for P.

Example

All programs we have seen are productive with the exception of
Bad. Program From, troublesome for CoLP’s loop detection, is also
productive, just as it would be in e.g. Coq.

Benefits:

1. first-ever notion of observational productivity for LP;

2. simple and natural

3. more abstract than (and independent of) loop detection

4. Guarantees global productivity?
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Lost completeness

By decomposing  into →µ ◦ ↪→1 we lost completeness of search
(compared to SLD-resolution).

Example

Consider the following program:
0. p(c)←
1. p(X)← q(X)
We can show that P |= p(c), but p(X) will not result in a
successful S-resolution reduction: P ` p(X)→ q(X) 6↪→

Before we talk about coinductive properties of S-resolution, we
must re-gain completeness of search.



Rewriting trees

A rewriting tree is a tree over Term(Σ)∪Clause(Σ)∪VarR ,
subject to arity conditions: arity of an and-node is a number of
clauses in the program, arity of an or-node is a number of terms in
the clause body.
?← p(x)

p(x)

X1 p(x)← q(x)

q(x)

X2 X3

our example

0. p(c)←
1. p(x)← q(x)



Rewriting tree substitutions and transitions

?← p(x)

p(x)

X1 p(x)← q(x)

q(x)

X2 X3

→X/c
X1

?← p(c)

p(c)

p(c)← p(c)← q(c)

q(c)

X2 X3

our example

0. p(c)←
1. p(x)← q(x)

We call such transitions S-derivations



A coinductive productive S-derivation

?← stream(X)

stream(X)

X1 X2 X3

→X3
?← stream(scons(y,z))

stream(scons(y,z))

X4 X5 stream(scons(y,z))← bit(y),stream(z)

bit(y)

X6 X7 X8

stream(z)

X9 X10 X11
→X6

?← stream(scons(0,z))

stream(scons(0,z))

X4 X5 stream(scons(0,z))← bit(0),stream(z)

bit(0)

bit(0)← X7 X8

stream(z)

X9 X10 X11

→ . . .

We separate proof construction (done “vertically” by term
matching) and proof search (done “horizontally” by unification)



Logic and Control

[Kowalski, 74]:

Logic Programming = Logic + Control

In fact, it was:

SLD-derivations = SLD-resolution + Searching strategies

CoLP = SLD-resolution + Searching strategies + Loop detection

We now have:

S-derivations = S-resolution + Tree Calculus

I S-resolution separates proof-construction from proof-search;
I Tree calculus makes it inductively sound and complete.
I Observational Productivity is a part of Logic (rather than

Control)

We now resolve the coinductive properties
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Global Productivity of S-Derivations

... assuming light inductive/coinductive typing Ty on predicates.

Definition

Let P be observationally productive, and let t ∈ GTerm∞(Σ). We
say that t ′ ∈Term(Σ) finitely approximates t if the following hold:

1. There is an infinite S-derivation T0→ T1→ . . .Tk → . . . with
T0 being a rewriting tree for t ′, and associated resolvents
θ1,θ2, . . .θk . . . such that d(t,θk ...θ1(t ′))→ 0 as k → ∞, and

2. (inductively-typed nodes are successfully closed infinitely often
in the S-derivation).

Term t is S-computable at infinity with respect to P and Ty if
there is a t ′ ∈ Term(Σ) such that t ′ finitely approximates t.



?← stream(X)

stream(X)

X1 X2 X3

→X3
?← stream(scons(y,z))

stream(scons(y,z))

X4 X5 stream(scons(y,z))← bit(y),stream(z)

bit(y)

X6 X7 X8

stream(z)

X9 X10 X11
→X6

?← stream(scons(0,z))

stream(scons(0,z))

X4 X5 stream(scons(0,z))← bit(0),stream(z)

bit(0)

bit(0)← X7 X8

stream(z)

X9 X10 X11

→ . . .

The term stream(scons(0,scons(0, . . .))) is S-computable at
infinity.



S-derivations and Global productivity of the 80s:

S-computations at infinity generalise computations at infinity

If a term t is SLD-computable at infinity, then it is S-computable
at infinity.

How about finite proof-search procedure?



Coinductive Proof Principle

from(x,scons(x,y))← from(s(x),y)

from(0,X)

X7→[0,X′]→
from(0, [0,X′])

from(s(0),X′)

X′ 7→[s(0),X′′]→
from(0, [0, [s(0),X′′]])

from(s(0), [s(0),X′′])

from(s(s(0)),X′′)

1. Form a coinductive hypothesis observing the second tree:
from(s(0),X′)← from(0,scons(0,X′))

2. Apply it at the third tree (guarding the application by
transition)

3. Close the coinductive proof by coinductive hypothesis
application at the third tree.

General Coinductive Proof principle:

T→...→T ′ T ′`CHθ(C)
T`CHC
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Coinductive proof principle for S-resolution is...

...Sound and complete relative to S-computations at infinity

Given P is observationally productive, and t ∈ Term(Σ),
there exists a t∗ ∈ GTerm∞(Σ) that is S-computable at infinity
with respect to P and t
iff
there exists a coinductively observed proof for t.

...Sound relative to the greatest complete Herbrand models

Let P be observationally productive, and t ∈ Term(Σ). If there
exists a coinductively observed proof for t, then there exists an
infinite term t∗ ∈Mω

P that is S-computable at infinity with respect
to P and t.



Summary

I We have just given a coinductive proof-search method;

I that generalises computations at infinity from the 80s;

I but at the same time gives a coinductive proof principle and
thus is implementable.

I It incorporates observational and global productivity on par
with ITP;

I and generalises CoLP [Gupta, 2007]
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Formalization of a Type System

Horn Formulas as Types

Proof evidence as Terms

Term t ::= x | f (t1, ..., tn)
Atomic Formula A,B,C ,D ::= P(t1, ..., tn)
(Horn) Formula F ::= A1, ...,An⇒ A
Proof Term p,e ::= κ | a | λa.e | e e ′

κ : ∀x .F axiom
e : F

e : ∀x .F
gen

e : ∀x .F
e : [t/x ]F

inst
e1 : A⇒ D e2 : B,D⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut



Soundness of SLD and term-matching reductions

I If P ` {A} n /0 , then there exists a proof e : ∀x .⇒ γA.

I If P ` {A}→n /0 , then there exists a proof e : ∀x .⇒ A.

Example

κ1 nat(0) ←
κ2 nat(s(x)) ← nat(x)

κ3 list(nil) ←
κ4 list(cons(x,y)) ← nat(x), list(y)

{list(cons(x ,y))} {nat(x), list(y)}  {list(y)}  /0
yields a proof (λa.(κ4 a) κ1) κ3 : list(cons(0,nil))
(β -reducible to (κ4κ3)κ1 : list(cons(0,nil))).

list(cons(x,y))

X1 X2 X3 κ4

nat(x)

X4 X5 X6 X7

list(y)

X8 X9 X10X11

x/0→ . . .
y/nil→

list(cons(0,nil))

X1 X2 X3 κ4

nat(0)

κ1 X5 X6 X7

list(nil)

X8 X9 κ3 X11
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κ2 nat(s(x)) ← nat(x)

κ3 list(nil) ←
κ4 list(cons(x,y)) ← nat(x), list(y)

{list(cons(x ,y))} {nat(x), list(y)}  {list(y)}  /0
yields a proof (λa.(κ4 a) κ1) κ3 : list(cons(0,nil))
(β -reducible to (κ4κ3)κ1 : list(cons(0,nil))).

list(cons(x,y))

X1 X2 X3 κ4

nat(x)

X4 X5 X6 X7

list(y)

X8 X9 X10X11

x/0→ . . .
y/nil→

list(cons(0,nil))

X1 X2 X3 κ4

nat(0)

κ1 X5 X6 X7

list(nil)

X8 X9 κ3 X11



Structural resolution meets Curry-Howard

I Success rewriting trees always give a proof e : A, in which A is
atomic root of the tree and e is a witness for clause
applications.

list(cons(x,y))

X1 X2 X3 κ4

nat(x)

X4 X5 X6 X7

list(y)

X8 X9 X10X11

x/0→ . . .
y/nil→

list(cons(0,nil))

X1 X2 X3 κ4

nat(0)

κ1 X5 X6 X7

list(nil)

X8 X9 κ3 X11

(κ4κ3)κ1 :: list(cons(0,nil))



Structural resolution meets Curry-Howard
I All open rewriting trees will correspond to a proof

e : B1, . . . ,Bn⇒ A, where e is λ -term, A the root of that tree,
and B1, . . . ,Bn – all open proof obligations.

stream(X)

X1 X2 X3

→X3
stream(scons(y,z))

X4 X5 κ3 bit(y)

X6 X7 X8

stream(z)

X9 X10 X11
→X6

stream(scons(0,z))

X4 X5 κ3

bit(0)

κ1 X7 X8

stream(z)

X9 X10 X11

→ . . .

λα.(κ3α)κ1 : stream(z)⇒ stream(scons(0,z))
Next step: fully formalise the coinductive proof principle.



Conclusions-1: Q and A

Q Why is it harder to implement coinduction in ATP than in
ITP?

A ...The notions of proof and proof-search are badly separated.

A ... In absence of types and pattern-matching, we have fewer
tools for structural analysis of programs and computations

Q Is it possible, in principle, to bridge the gap?

A Yes, by using structural resolution to separate proof and proof
search components (term-matching and unification, rewriting
trees and their transitions)

A Yes, by taking a Curry-Howard view on proof component of
proof-search.
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Current work

Applications of the above to Type Inference

To construct equality class instance for datatype list and int:

κ1 : Eq(x)⇒ Eq(list(x))
κ2 : ⇒ Eq(int)

When we call a query Eq(list(int)), we can use LP-TM to construct
a proof for Eq(list(int)), which is κ2 κ1, and then the evaluation of
κ2 κ1 will correspond to the process of evidence construction, thus
yielding computational meaning of the proof.



Thank you!

S-resolution and CoALP webpage:
http://staff.computing.dundee.ac.uk/katya/CoALP/

S-resolution/CoALP authors, contributors, implementors:

I John Power

I Martin Schmidt

I Jonathan Heras

I Vladimir Komendantskiy

I Patty Johann

I Andrew Pond

I Peng Fu

I Frantisek Farka

We always welcome collaborators!
(Also currently have funding (and looking for) 1 PhD student to
start working on it at Heriot-Watt.)
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