
Coalgebraic Logic Programming: implicit versus explicit
resource handling

Katya Komendantskaya, joint with J. Power and M. Schmidt

School of Computing, University of Dundee, UK

CoLP’12,
8 September 2012

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 1 / 34

Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 2 / 34

Example

Example

Consider the logic program below .

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 3 / 34

Examples of derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD
derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 4 / 34

Examples of derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD
derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 4 / 34

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The proof tree

← p(a)

← q(b, a)

�

← s(a, b)

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 5 / 34

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD tree

← p(a)

← q(b, a), s(a, b)

← s(a, b)

�

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 6 / 34

Is there anything at all in practice of Logic Programming
that corresponds to the action of C (PfPf)-comonad?

From the examples above, it’s clear that:

Sequential SLD-derivation

is the least suitable...

Proof trees

exhibit an and-parallelism in derivations...

SLD-trees

exhibit an or-parallelism in derivations...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 7 / 34

It turns out that the answer lies in the combination of the
two kinds of parallelism:

p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The and-or parallel tree

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Except for... and-or trees are un-
sound in the first-order case.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 8 / 34

Why unsound?

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

This is how we realised we had to come up our own computational model
for them.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 9 / 34

Why unsound?

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...
This is how we realised we had to come up our own computational model
for them.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 9 / 34

Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 10 / 34

Algebraic and coalgebraic semantics for LP

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semantics

Coalgebraic
Logic programming

__

��

KK
88

xx

First prototype (by M. Schmidt) is available on the Web.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 11 / 34

Algebraic and coalgebraic semantics for LP

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semantics

Coalgebraic
Logic programming

__

��

KK
88

xx

First prototype (by M. Schmidt) is available on the Web.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 11 / 34

Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 12 / 34

SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 13 / 34

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 14 / 34

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 15 / 34

Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 16 / 34

Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 16 / 34

Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 16 / 34

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 17 / 34

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 17 / 34

Explicitly-treated corecursion

To know whether to allow (co-LP) or disallow (standard LP) infinite loops,
explicit annotation is needed.

Example

biti (0) ←
biti (1) ←

streamc(scons(x , y)) ← biti (x), streamc(y)

listi (nil) ←
listi (cons(x , y)) ← biti (x), listi (y)

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 18 / 34

Drawbacks:

some predicates may behave inductively or coinductively depending
on the arguments provided, and such cases need to be resolved
dynamically, and not statically; in which case mere predicate
annotation fails.

... cannot mix induction and coinduction. — All clauses need to be
marked as inductive or coinductive in advance.

Can deal only with restricted sort of structures — the ones having
finite regular pattern.

Example

0:: 1:: 0:: 1:: 0:: ... may be captured by such programs.
π represented as a stream may not.

the derivation itself is not really a corecursive process.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 19 / 34

Solution - 2. Coinductive LP in [Komendantskaya, Power
CSL’11]

... arose from considerations valid for coalgebraic semantics of logic
programs

Technically:

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 20 / 34

Solution - 2. Coinductive LP in [Komendantskaya, Power
CSL’11]

... arose from considerations valid for coalgebraic semantics of logic
programs
Technically:

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 20 / 34

Coinductive trees

Definition

Let P be a logic program and G =← A be an atomic goal. The
coinductive derivation tree for A is a tree T satisfying the following
properties.

A is the root of T .

Each node in T is either an and-node or an or-node.

Each or-node is given by •.
Each and-node is an atom.

For every and-node A′ occurring in T , there exist exactly m > 0
distinct clauses C1, . . . ,Cm in P (a clause Ci has the form
Bi ← B i

1, . . . ,B
i
ni

, for some ni), such that A′ = B1θ1 = ... = Bmθm,
for some substitutions θ1, . . . , θm, then A′ has exactly m children
given by or-nodes, such that, for every i ∈ m, the ith or-node has n
children given by and-nodes B i

1θi , . . . ,B
i
ni
θi .

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 21 / 34

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 22 / 34

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 22 / 34

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 22 / 34

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 23 / 34

Solution - 2. Coinductive LP in [Komendantskaya, Power
CSL’11]

Advantages

Works uniformly for both inductive and coinductive definitions,
without having to classify the two into disjoint sets;

in spirit of corecursion, derivations may feature an infinite number of
finite structures.

there does not have to be regularity or repeating patterns in
derivations.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 24 / 34

Guarding corecursion

(Co)-Recursion is always dangerous:

... and needs to be guarded against infinite loops. Both in FP and LP,
such guards can be given semantically or syntactically
(”guardeness-by-construction”).

Example

This program is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 25 / 34

Infinite forests of infinite trees:

connected(O, z)

edge(O, y) connected(y, z))

edge(y, y1) connected(y1, z)

...

connected(O, z)

edge(O, s(y)) connected(s(y), z))

edge(s(y), y1) connected(y1, z1)

...

connected(O, z)

edge(O, s(y)) conn(s(y), z))

edge(s(y), s(y1))conn(s(y1), z1)

...

. . .
connected(O, z)

edge(O, s(s(y)))conn(s(s(y)), z))

edge(s(s(y)), y1) conn(y1, z1)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 26 / 34

Guarding corecursion

(Co)-Recursion is always dangerous:

... and needs to be guarded against infinite loops. Both in FP and LP,
such guards can be given semantically or syntactically
(”guardeness-by-construction”).

Example

This program is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.

In reality, such programs will be disallowed by the termination checker, and
will need to be reformulated.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 27 / 34

Guarding corecursion, for example:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X)) ←

conn(O, cons(y, z))

edge(O, y) conn(y, z))

→
conn(O, cons(sO, z))

edge(O, sO)

�

conn(sO, z))

→
conn(O, cons(sO, nil))

edge(O, sO)

�

conn(sO, nil))

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 28 / 34

Guarding corecursion, for example:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X)) ←

conn(O, cons(y, z))

edge(O, y) conn(y, z))

→
conn(O, cons(sO, z))

edge(O, sO)

�

conn(sO, z))

→
conn(O, cons(sO, nil))

edge(O, sO)

�

conn(sO, nil))

�

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 28 / 34

More discipline?

Adapting this sort of programming discipline from lazy functional
languages to LP may have its advantages. E.g., it will equally guard
against programs that induce infinite SLD-derivations:

Example

1. connected(x,y) ← connected(z,y), edge(x,z)

2. connected(x,x) ←

While currently, it is up to a programmer to manually weed-out such cases.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 29 / 34

Corecursion guarding parallelism:

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 30 / 34

Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 31 / 34

Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 31 / 34

Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 31 / 34

Now, by the same lazy corecursive derivation:

list(c(x, c(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(O, c(y, O)))

nat(O)

�

list(c(y, O))

nat(y) list(O)

→
list(c(O, c(O, O)))

nat(O)

�

list(c(O, O)

nat(O)

�

list(O)

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 32 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization?

... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in power...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

... in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

... in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 33 / 34

[Instead of] Conclusions...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control

... long live LOGIC!

The End.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 34 / 34

[Instead of] Conclusions...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control

... long live LOGIC!

The End.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 34 / 34

[Instead of] Conclusions...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control

... long live LOGIC!

The End.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 34 / 34

[Instead of] Conclusions...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control

... long live LOGIC!

The End.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 34 / 34

[Instead of] Conclusions...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control

... long live LOGIC!

The End.

Katya (Dundee) Coalgebraic Logic Programming: implicit versus explicit resource handlingCoLP’12 34 / 34

	Introduction
	Corecursion in LP

